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ABSTRACT 
In recent years, Map Reduce has become a popular model 

with regard to data-intensive computation. Map Reduce can 

significantly reduce the execution time of data-intensive jobs. 

In order to achieve this objective, Map Reduce breaks down 

each job into small map and reduce tasks and executes them in 

parallel across a large number of machines. However, existing 

solutions mainly focus on scheduling at the task-level, which 

offer sub-optimal job performance, because tasks may have 

resource requirements which may vary during their lifetime. 

This makes it difficult for existing system’s task-level 

schedulers to effectively utilize available resources in order to 

reduce job execution time.  

To avoid this limitation, PRISM is introduced. PRISM stands 

for Phase and Resource Information-aware Scheduler for 

Map-Reduce. PRISM consists of various clusters that perform 

resource-aware scheduling at the level of phases.  PRISM can 

be defined as a fine-grained resource-aware Map Reduce 

scheduler that divides tasks into phases. Here, each phase has 

a constant resource usage profile, so that not a single phase 

suffers from starvation. PRISM also offers high resource 

utilization and provides 1:3x improvements in job running 

time as compared to the current Hadoop schedulers. 
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1. INTRODUCTION 
Now-a-days, businesses are entirely dependent on large-scale 

data analytics so that, they can make critical day-to-day 

business decisions. This turns towards the development of 

Map-Reduce, i.e., a parallel programming model which has 

become equivalent with large-scale and data-intensive 

computations. Map-Reduce comprises of a job, which is a 

collection of Map and Reduce tasks. These tasks can be 

scheduled synchronously on multiple machines, which results 

in substantial reduction in job running time.  

An essential component of a Map-Reduce system is its job 

scheduler. The main role of job scheduler is to create a 

schedule of Map and Reduce tasks that spans one or more 

jobs, minimizes job completion time and maximizes resource 

utilization. In many situations, heavy resource contention and 

long job completion time occurs due to a schedule with too 

many simultaneously running tasks on a single machine. On 

the contrary, starvation occurs due to the poor resource 

utilization and also due to a schedule with too few 

concurrently running tasks on a single machine. 

The problem of job scheduling becomes considerably easier to   

solve, if there is an assumption that all map tasks (and 

likewise, all reduce tasks) has consistent resource 

requirements for example, CPU, memory, disk and network-

bandwidth. However, this assumption is used to simplify the 

scheduling problem by the current Map-Reduce systems, such 

as Hadoop Map-Reduce Version 1.x. This system uses a 

simple slot-based resource allocation scheme, in which the 

physical resources on each machine are seized by the number 

of indistinguishable slots that can be allocated to tasks.   

This paper offers PRISM, i.e., a Fine- grained Phase and 

Resource Information-aware Scheduler for Map-Reduce 

clusters. PRISM accomplishes resource-aware scheduling at 

the level of phases. Precisely, this paper shows that for utmost 

Map-Reduce applications, the task resource consumption 

during run-time can vary considerably from phase to phase. 

Therefore, it is possible for the scheduler to succeed higher 

degrees of parallelism although avoiding resource contention, 

only by taking care of the resource demand at the phase level. 

Hence, by the end, this paper has developed a phase-level 

scheduling algorithm with the aim of attaining high job 

performance along with proper resource utilization.  

2. LITERATURE SURVEY 
This section provides an overview of various studies and 

surveys, which is related to PRISM. 
 

2.1 Job-Scheduling and Phases 
A number of recent studies have conveyed that, often the 

production workloads have miscellaneous utilization profiles 

and performance requirements [8]. Deteriorating to consider 

these job usage characteristics can hypothetically lead to 

ineffective job schedules with low resource utilization and 

extended job execution time too. Inspired by the above  

observation, numerous recent proposals, such as resource-

aware adaptive scheduling (RAS) [15] and Hadoop Map-

Reduce Version 2 (also known as Hadoop NextGen and 

Hadoop Yarn) [7], have announced resource-aware job 

schedulers for the Map-Reduce framework. On the other 

hand, these schedulers insist on a fixed size for each task in 

terms of essential resources (e.g. CPU and memory). Thus, the 

run-time resource consumption of each task is constant over 

its life time. 

A phase can be defined as a sub-procedure in the task that has 

a distinct determination and can be considered by the identical 

resource consumption over its duration. There are two types 

of Job-Scheduling, which are Task-level Scheduling and 

Phase-level Scheduling.  

2.1.1 Task-Level Scheduling 
In Task-level Scheduling, it is difficult for schedulers to 

effectively utilize the available resources to reduce job 

execution time, because tasks can have highly varying 

resource requirements during their lifetime. Subsequent phase 

of the task may not be scheduled simultaneously. Task level 

scheduling suffers from insufficient scheduler decision 
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making problem. There are inadequate resources problems 

too. Therefore, delay problem might occur. Overall, 

performance and efficiency of map reduce frameworks have 

become critical. 

2.1.2 Phase-Level Scheduling 
In Phase-level Scheduling, PRISM, i.e., a fine-grained 

resource-aware map-Reduce scheduler, divides tasks into 

phases, where each phase has a persistent resource usage 

profile and implements scheduling at the phase level. Here, by 

considering the resource demand at the level of phases, it is 

possible for the scheduler to succeed higher degrees of 

parallelism to avoid resource contention. Because of this 

parallel implementation there is enhancement in high 

Resource Utilization. However, this improves the job Running 

Time. Therefore, achieves high job Performance. 

2.2 Map-Reduce Job Phases 
Existing Hadoop job schedulers implement task-level 

scheduling, where tasks are considered as the supreme 

granularity for scheduling. However, if the execution of each 

task is examined, then it can be found that a task consists of 

multiple phases. In particular, a Map-Reduce job consists of 

two types of tasks, namely map and reduce tasks. A Map task 

takes as input a key-value block stored in the distributed file 

system. Subsequently, a Reduce task is responsible for 

collecting and applying a user-specified reduce function on 

the collected key-value to produce the final output. 

In the map phase, when a mapper draws an input data block 

from the Hadoop Distributed File System [4] and applies the 

user-defined map function on each record, then those records 

are collected into a buffer. When the buffer becomes full, then 

the content of the buffer will be written to the local Input-

Output disk. Finally, the mapper performs a merge phase to 

group the output records and store the records in multiple 

files, so that each file can be fetched a consistent reducer. In 

the same way, the implementation of a reduce task can be 

distributed into three phases: shuffle, sort, and reduce. In the 

shuffle phase, the reducer raises the output file from the local 

storage of each map task. Then, it places that file in a storage 

buffer that can be either memory or disk depending on the size 

of the content. When the buffer is fully occupied, then the 

content of the buffer will be written to the local Input-Output 

disk. At the same time, the reducer also inaugurates one or 

more threads to implement local merge sort in order to reduce 

the running time of the succeeding sort phase. As soon as, all 

the map output records have been collected, then the sort 

phase will perform an ultimate sorting procedure to confirm 

all collected records are in a specific order. Finally, in the 

reduce phase, the records are processed in the sorted order, 

and the output is written to the HDFS. Different phases may 

have different characteristics in associated to resource 

consumption. For instance, the shuffle phase often consumes 

substantial network I/O resources as it needs collecting 

outputs from all accomplished map tasks. In disparity, the 

map and reduce phases essentially process the records on the 

local machines. Therefore, they usually demand greater CPU 

resources than network bandwidth. 

 

 

 

 

 

3. PRISM 

3.1 Prism Architecture 
As it is cleared from the definition that, PRISM is a resource 

information-aware Map Reduce scheduler that distributes 

tasks into phases in a fine-grained manner, where each phase 

has a persistent resource usage profile and implements 

scheduling at the level of phases. During the execution time of 

a task, resource usage analysis may lead to ineffective 

scheduling decisions. Because of this, at run-time, if the 

resource allotted to a task is higher than the existing resource 

usage, then the idle resources are wasted. On the other hand, if 

the resources allotted to the task is much less than the actual 

resource demand, then the resource can suffer from a situation 

called, bottleneck, which may slow down task execution.  

Therefore, a fine-grained, phase-level scheduling mechanism 

has been introduced. This allocates the resources according to 

the demand of the phase that each task is currently executing. 

Due to this fine-grained resource allocation, not a single task 

suffers from either bottleneck or starvation problem.  

An overview of the PRISM architecture is shown in Fig. 1. 

PRISM comprises of four main modules: resource manager, 

local node managers, a job progress monitor and a phase-

based scheduler. Initially, Resource Manager (also known as a 

job tracker), is responsible for scheduling tasks on each local 

node. Then, Local Node Manager, (also known as a task 

tracker) that coordinate phase transitions with the scheduler. 

Next is Job Progress Monitor, which is responsible to capture 

phase-level progress information. Finally, Phase-Based 

Scheduler, i.e., a fine-grained, phase-level scheduling 

mechanism that allocates resources according to the demand 

of executing phase (neither overflow nor underflow).  

3.2 Phase-Level Scheduling Mechanism 
In this mechanism, there are some steps which are followed 

during the execution of PRISM. These steps are: 

(Step 1): Each local node manager sends a heartbeat 

message to the phase-based scheduler 

periodically. As soon as a task requests to be 

scheduled, then the scheduler immediately 

responses to the heartbeat message with a task 

scheduling request. 

(Step 2): Then, the local node manager initiates the task. 

(Step 3): As and when a task completes implementing a 

particular phase (shuffle phase), then the task 

requests the local node manager for permission to 

start the next phase (e.g. reduce phase). 

(Step 4): The local node manager then forwards this 

permission request to the phase-based scheduler. 

(Step 5): Finally, once the task is permitted to execute the 

next phase (reduce phase), the local node 

manager grants permission to process that task 

and once the task is completed; the task status is 

received by the local node manager and then 

dispatched to the phase-based scheduler. 

PRISM requires constant phase-level resource information for 

each job to perform phase-level scheduling. In this way, the 

entire task is implemented. Each phase travels through all the 

above steps and finally get completed successfully. 
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   Task/Phase Scheduling Decisions 
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Fig. 1: System architecture [16]

 

4.  ALGORITHM AND ITS 

DESCRIPTION 
 

4.1 Phase-Level Scheduling Algorithm 
1: Upon receiving a status message from machine n: 

2. Obtain the resource utilization of machine n 

3. PhaseSelected PS ← {∅} 

4. CandidatePhases CP ← {∅} 

5. repeat 

6. for each job j ∈ jobs that has tasks on n do 

7. for each schedulable phase i ∈ j do 

8. CP ← CP ∪ {i} 

9. end for 

10. end for 

11. For each job j ∈ top k jobs with highest deficit n do 

12. if exist schedulable data local task then 

13. CP ← CP ∪ {first phase of the local task i} 

14. else 

15. CP ← CP ∪ {first phase of the non-local task i} 

16. end if 

17. end for 

18. if CP ≠ ∅ then 

19. for i ∈ CP do 

20. if i is not schedulable on n given current utilization then 

21. CP ← CP ∪ {i} 

22. Continue; 

23. end if 

24. Compute the utility U (i, n) 

25. if U(i, n) <= 0 then 

26. CP ← CP ∪ {i} 

27. end if 

28. end for 

29. if CP ≠ ∅ then 

30. i ← task with highest U (i ,n) in the CP 

31. PS ← PS U {i} 

32. CP ← CP ∪ {i} 

33. Update the resource utilization of machine n 

34. end if 

35. end if 

36. Until CP = = ∅ 

37. Return PS 
 

4.2 Algorithm Description 
This algorithm describes the scheduling algorithm used by the 

phase-based scheduler. In this algorithm, two important 

concepts are used, which are Efficiency and Fairness [8], [14]. 

However, a Map-Reduce scheduler is responsible to assign 

each task to an appropriate machine along with the 

consideration of both Efficiency and Fairness. 

Efficiency is achieved only by maintaining high utilization of 

resources in a cluster by the job schedulers. Another effective 

measure for efficiency is job running time because, during an 

execution of a task, minimum job running time indicates 

maximum utilization of resources in an efficient manner. 

Secondly, Fairness provides an assurance that, all the 

resources are fairly distributed among each and every job. 

This aspect ensures that, there will be neither a bottleneck 

situation (i.e. overflow of resources) nor a starvation situation 

(i.e. underflow of resources).  

However, achieving both the aspects, i.e. Efficiency and 

Fairness concurrently seems to be very challenging with 

respect to the multi-resource scheduling.     

Phase-Based Scheduler 

    Resource Manager 

Job Request 
(With phase-level             

resource 

requirement) 

 

Task 3 

Task 4 

… 

 

 

Task 1    

Task 2     
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Initially in the above algorithm, the local node manager sends 

the status message to the Phase-Level Scheduling Algorithm 

in order to allocate necessary resources. Then, Line 2 states 

that, upon receiving the status message from a local node 

manager running on machine n, the algorithm computes the 

utilization u of the machine using job’s phase-level resource 

requirement. Next, Lines 4-10 consists of a set of candidate 

phases (i.e. the schedulable phases) and selects these phases in 

an iterative manner. 

Then, in Lines 11-23, for each job j, if phase has highest 

deficit n, then first phase of local task i is executed; otherwise 

first phase of the non-local task i is executed. These steps are 

iterated for each job. 

Next, in Lines 24-28, for each schedulable phase i of each job 

j in each iteration, the algorithm computes the utility function 

U (i, n) according to the following equation: 

U (i, n) = U fairness(i, n) + a .U perf (i, n) 
where, 

U fairness and U perf signifies the utilities for improving the 

fairness and job performance, respectively, and ‘a’ is an 

adjustable weight factor.  

The fairness of each phase is calculated as 

U fairness(i, n)  =U before fairness(i, n) – U after fairness(i, n) 

where,  

U before fairness and U after fairness signify the fairness measures of 

the job before and after scheduling phase i on machine n. 

Then, in Lines 29-32, the phase with the highest utility for 

scheduling is selected and Line 33 updates the resource 

utilization of the machine n. 

Subsequently, in Lines 34-37, the algorithm repeats the above 

steps by re-computing the utility of all the phases in the 

candidate set, and selects the succeeding best phase to 

schedule. Finally, the algorithm concludes when the candidate 

set becomes empty, which means that, there is no suitable 

phase to be scheduled.  

5.  IMPLEMENTATION AND 

EXPERIMENTAL RESULTS 
 

5.1 Implementation 
The PRISM architecture is implemented as both, i.e. existing 

and proposed systems. These systems are simulated in Net-

Beans IDE version 8.1 simulator. All the implementation and 

experiments are performed on a machine running Microsoft 

Windows XP operating system. The algorithm for executing 

the project is implemented in Java, i.e. JDK1.7.0 version.  

The Net-Beans simulation for proposed system is as shown in 

Fig. 2. This simulation consists of a Master node, a Job 

Request module and three Local Node Managers. The 

important component, i.e. a Phase-Based Scheduler is 

appeared in Master node. This Phase-Based Scheduler is 

responsible for scheduling the phases and allocating the 

resources. This scheduler is also known as a Fine-Grained 

Resource-Aware Scheduler because; it allocates the resources 

as per the demand of the phases, (i.e. neither overflow nor 

underflow). 

Another vital component of Master node is Job Progress 

Monitor. This is responsible to capture the phase-level 

progress information, i.e. a particular phase is completed or 

not. 

Next is the Job Request module. In this module, a user can 

browse a file which is to be mapped and reduced and then, 

this file is assigned to the Job Monitor for further execution. 

Finally, there are three Local Node Managers, which are 

responsible for coordinating transitions between phase and the 

scheduler. 

In this manner, the Phase-Level scheduling, i.e. proposed 

system of PRISM is implemented. After successful 

completion of all three jobs in the Master node; certain graphs 

are obtained as results, which are explained in the next sub-

section.  

 

Fig. 2: Simulation of PRISM 
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5.2 Experimental Results 
As it is discussed that, PRISM architecture is implemented as 

both, i.e. existing and proposed systems; therefore certain 

graphs are obtained as results in both the systems. 

The existing system is based upon Task-Level scheduling; 

whereas the proposed system is entirely based upon Phase-

Level scheduling. 
 

5.2.1 Existing System and its Results 
In the Existing system (i.e. Task-level Scheduling), it is 

difficult for schedulers to effectively utilize the available 

resources in order to reduce job execution time, because tasks 

may have highly varying resource requirements during their 

lifetime. Also, there is no pipelining of tasks (i.e. subsequent 

phases are not scheduled simultaneously). 

As a result, there is a huge delay problem. Hence, existing 

system is too much time-consuming system. Due to this, the 

performance and efficiency of the system is reduced.  

The following Fig. 3 shows how the tasks suffer from delay 

problem. As shown in Fig. 3, there is a XY Line Chart 

example, in which there are three nodes (Node 1, Node 3, and 

Node 5) on X-axis and there is Time (in sec) on Y-axis. 

It can be observed from this graph structure that, each and 

every node consumes too much time to complete its 

execution. Because of this delay in execution, the existing 

system slows down its performance.   

In short, these are the drawbacks of existing system, which are 

minimum utilization of resources, no pipelining, delay 

problem and insufficient scheduler decision making. 

 

 
 

Fig. 3: Node and Time Graph (existing system) 
 

Additionally, there are two results (i.e. Line charts). In 

existing system, map and reduce functions are implemented. 

The first Line chart describes the CPU and memory usages 

required for executing map and reduce functions (i.e. Fig. 4).  

 

In this Line chart, the X-axis shows how much time (in sec) 

the CPU and Memory has taken during execution and the Y-

axis shows how much percentage of CPU and Memory has 

been utilized.  
 

 
 

Fig. 4: Map CPU and Memory Usage (existing system) 
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Next Line chart is about Map IO usage (i.e. Fig. 5). In this 

Line chart, the X-axis shows how much time (in sec) the 

Local Disk I/O and HDFS I/O has taken during execution and 

Y-axis describes the rate (MB/sec) of data for which the I/O 

devices has been used.  

These I/O devices are used as buffers for storing data blocks 

while running map-reduce functions. 

During the execution, the data blocks are first stored on HDFS 

(i.e. Hadoop Distributed File System) for implementing map-

reduce functions. When this buffer becomes full, then the 

remaining content is written into the Local Disk I/O buffer.      

 

 

Fig. 5: Map I/O Usage (existing system) 

 

5.2.2 Proposed System and its Results 
The Proposed System (i.e. Phase-level Scheduling) introduces 

PRISM, which is a fine-grained resource-aware map-Reduce 

scheduler. PRISM divides tasks into phases, where each phase 

has a persistent resource usage profile and implements 

scheduling at the level of phases. 

In the proposed system, schedulers allocate the resources as 

per the demand of the phases during run-time. Here, the 

concept of pipelining is used (i.e. subsequent phases are 

scheduled simultaneously), which avoids resource contention 

and enhances resource utilization. Therefore, there is no time 

consumption, which improves the speed of job Running Time. 

Overall, proposed system achieves high job Performance and 

efficiency. 

The following Fig. 6 shows the Node and Time Graph of 

proposed system. As shown in this figure, there are three 

nodes (Node 1, Node 3, and Node 5) on X-axis and Time (in 

sec) on Y-axis. 

Because of pipelining, it can be observed from this graph 

structure that, each and every node consumes as minimum 

time as needed for execution. Due to this, the performance 

and execution speed of the proposed system is appreciably 

enhanced.  

In short, these are the advantages of proposed system, which 

are maximum utilization of resources, pipelining 

(improvement in job running time), no delay problem and 

achievement in high job performance. 

 

 

 
 

Fig. 6: Node and Time Graph (proposed system) 
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Moreover, there are two results (i.e. Line charts) in the 

proposed system too. In this system, shuffle, sort and reduce 

functions are implemented. The first Line chart describes the 

CPU and memory usages required for executing the shuffle, 

sort and reduce functions (i.e. Fig. 7).  

In this Line chart, the X-axis indicates how much time (in sec) 

the CPU and Memory has taken during the execution and the 

Y-axis describes how much percentage of CPU and Memory 

has been utilized.  

 
 

 
 

Fig. 7: Map CPU and Memory Usage (proposed system) 
 

At the end of execution, the final Line chart is about Map IO 

usage (i.e. Fig. 8). In this Line chart, the X-axis indicates how 

much time (in sec) the Local Disk I/O and HDFS I/O had 

taken during execution and Y-axis defines the rate (MB/sec) 

of data blocks for which the I/O devices has been used. 

These I/O devices are referred to as buffers for storing data 

blocks while running the shuffle, sort and reduce functions.  

During the execution, the data blocks are first stored on HDFS 

buffer (i.e. Hadoop Distributed File System) for implementing 

the specified functions. When this buffer is fully occupied, 

then the remaining content is written into the Local Disk I/O 

buffer. Hence, these are the Graphs and Line charts, which 

appear while executing the proposed system.  

 
 

Fig. 8: Map I/O Usage (proposed system) 

 

6. CONCLUSION AND FUTURE SCOPE 
Therefore, in this paper, Map-Reduce is used a popular 

programming model for computing the data intensive jobs. 

PRISM, i.e., a fine-grained resource-aware Map-Reduce 

scheduler, divides tasks into phases and also performs 

scheduling at the phase level. Because of using this Phase-

level scheduling, there is enhancement in Resource 

Utilization.  

The scheduling algorithm used by PRISM contributes in 

minimization of job running time as compared to the current 

Hadoop schedulers. Overall, PRISM achieves high job 

Performance. Finally, the future scope of this paper will be 

improvement in the scalability of PRISM by using the 

distributed schedulers. 
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