
International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

25

Multi Up-gradation Software Reliability Growth

Model Considering the Joint Effect of Testing and

Operational Phase

Raksha Verma
Department of Mathematics,

Sunrise University,
Alwar-301001, Rajasthan

R. S. Parihar
Department of Mathematics

Sunrise University,
 Alwar-301001, Rajasthan

Subhrata Das
Department of Operational

Research
University of Delhi, Delhi

110007

ABSTRACT

Software companies are coming with multiple add-ons to

survive in the purely competitive environment. Each

succeeding up-gradation offers some performance

enhancement and distinguishes itself from the past release

making it more prone to failures. For developing highly

reliable software it is important to understand the manner in

which faults might encounter. Majority of researchers have

focused on understanding the fault removal phenomenon

during testing phase but few have also focused on operational

phase. With the aim of catering more realistic scenario for

comprehending the fault removal process for successive

release, both the faults of new release along with remaining

bugs of its preceding release has been considered; wherein it is

assumed that remaining faults of previous release can be

debugged in its operational phase together with testing phase of

newer version. Convolution of probability distribution function

has been considered for capturing the effect of faults removed

in testing (new release) and operational phase of just previous

release. Further, two different cases are formulated depending

upon the failure distribution being followed for testing as well

as for operational phase. The proposed cases are validated on

real data set.

Keywords

Fault Removal Phenomenon (FRP), Multi Up-gradation,

Operational Phase, Testing Phase.

1. INTRODUCTION
Many a times it is difficult to be sure about the performance of

the software system unless it is assumed that software system

can run successfully without any failure which may bring it

down. Researchers [7] have defined software reliability as the

probability of failure free operation of software for a specified

period of time under the stated condition of environment. There

exist several tools to measure the reliability of the software,

one such approach is the employment of software reliability

growth models (SRGMs). Broadly, SRGMs are modeled to

have deep insight about the characteristics of how and why

does a software fails and also attempt to determine the software

reliability in quantitative terms. Many researchers have tried to

work in modeling the fault removal phenomenon either through

exponential or S-shaped growth pattern. Many categories of

models exists in literature capturing varied aspects viz. GO

model, Kapur & Garg Model and Yamada model etc. [4], [6],

[16]. One of the recent trend seen in the field of software

industry is to provide upgraded versions of the software with

some added functionalities. Firms do so in order to maintain

their competitive edge in the market, satisfy the growing need

of consumers and also to be the first in bringing new version

with added functionalities.

Up-gradation involves the replacement of existing version with

newer version of the same software product but with additional

features. Generally, software is upgraded to improve their

characteristics but some software up-gradations can be risky by

increasing the fault content. Several examples can be quoted in

which software up-gradations were hazardous:

 The U.S. federal government opened a new health

insurance exchange web site in October 2013, during

first few months of operation there were several

reported problems arising due to insufficient time given

to in-house testing of software [5].

 One of a largest bank of Europe upgraded their

software in June 2012, which resulted in breakdown of

their website due to which millions of customers were

unable to access their own money. It is being believed

that this crash occurred because of poor testing [5].

 Some recent issues were reported in July 2011 in Asia

regarding the computerized testing and grading system

which resulted in incorrect allocation of marks foe

thousands of students [5].

 In August 2013, Asian brokerage's securities order

system which resulted in more than $3 billion of

incorrect trading orders [5].

In recent era, up-gradation has become an indispensable

practice in which functionalities or features are added to meet

the expectations of users. Sometime firms upgrade in order to

survive the competition which might increase their market

hold. Also from above example it is quite clear that firms need

to upgrade their offerings but when it does not turn hazardous

or increase the eventual faults count in the software. Major

attention should be given to manner in which faults are

identified and removed so eventual reliability can be increased.

Sometimes the remaining fault of earlier versions can become

active in succeeding version and can be risky as a result it is

important to understand the manner in which remaining faults

will be tackled. A lot of work has been done in the field of

multi generation starting from the very early concept in which

the overall reliability was computed based on the effect of

faults from all preceding releases of the software [8]. Later it

was felt that the count of faults from all preceding releases is

not an appropriate measure and its numeric value is not very

significant in affecting the reliability of the software [13].

Later on, researchers realised that testing team may not always

be able to debug the fault perfectly leading to imperfect

scenario which was modeled by Kapur et al. [9] under the

consideration of faults from just previous release. Other

researchers also worked on incorporating the concept of

stochasticity in multi up-gradations [11]. Kapur et al. [10]

worked on fault severity modeling i.e. simple and hard faults

modeling. Several practitioners realised the importance of

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

26

multi up-gradations and have worked further on elaborating the

effect of imperfect debugging and stochastic differential

equation into severity of faults; to model more realistic

scenarios [1], 12]. Not only the faults encountered under

testing phase were given importance but researchers also

explore the fault removal phenomenon both under testing as

well as the operational phase [2], [3].

In this paper, emphasis has been given to mathematically

model, the faults which are removed in each version of the

software keeping in mind that new add-ons are risky and will

increase the faults in the software. Also, the remaining faults of

just previous release can be removed both in testing phase of

its succeeding release and its operational phase through a joint

fault removal process. The conjoint effect employs the more

realistic context of fault evaluation by taking into consideration

both; the testing phase faults (for the new release) and the

reported faults from operational phase.

Rest of the paper is structured as follows: Section 2 describes

the mathematical framework for proposed methodology. Model

validation and Conclusion are supplemented in Section 3 & 4.

Further the list of references is given at the end.

2. MODELING FRAMEWORK
In general sense, each upgraded version of the software is

assumed to be accompanied with new applications in order to

attract a large pool of users which assist the firm in attaining

competitive edge over other competing software. It is a general

perception that adding new functionalities might increase fault

content in the software. Thus there are two set of faults one due

to add-ons and other comprise of the remaining faults of

preceding release. Now it is a major concern about how these

faults will be removed. There are several chances that some of

the bugs in the previous release are removed directly by the

testing team of existing release and some are removed in the

operational phase of succeeding release. This paper focuses

upon modeling the fault removal phenomenon for multiple

releases of the software by inculcating the removal process of

remaining faults which are removed during the testing as well

as operational phase.

Prior to study the mathematical structure, some notations and

assumptions are discussed which form the basis of our

proposal.

2.1 Notations

()iF t Probability distribution functions for fault removal

process in testing phase.  1,2,3, 4i 

 iG t Probability distribution functions for fault removal

process in operational phase.  2, 3, 4i 

()im t Expected number of faults removed by time t .

 1,2,3, 4i 

ia Initial fault content for thi release  1,2,3, 4i 

ib Rate of fault removal for thi release  1,2, 3, 4i 

2.2 Assumptions
The basic assumptions of the model are as follows:

1. Fault removal process is modeled by Non

homogeneous poisson process (NHPP).

2. The number of bugs discovered at any instant of time is

directly dependent on the remaining number of bugs in

the system.

3. The count of faults in the software is finite.

4. The detected faults can be removed instantly, as soon

as it occurs.

First Release of the Software

Based on the following set of assumption, it has been

considered that the testing for the first release starts at time

1 0t   and the testing process for first release has been

continued till time
2' 't  and there are chances that some

bugs will remain in the software as no software can be bug free

[2]. Thus the expression representing the fault debugged can

be given as follows:

     1 1 1 1 2. ; 0m t a F t t     (1)

where   1 .

1 1 b tF t e 

Second Release of the Software

One basic reason for constant addition of functionalities and

features by the firms is the competition between software firms

and the need to survive in the market. When the first version of

the software is in the operational phase, there are reports from

users regarding the issues faced and this is how firms get

information about any failure that is occurring while the

software was under usage. New functionalities and fixing of

bugs are done in accordance to feedback or reports received by

the company. It is being assumed that adding some features

results in the change of source code which might increase fault

count in the software. Here, the differentiation between the

faults removal phenomenon of the new version and remaining

faults of just preceding release has been presented. In the

course of testing of new version, there are two situations by

which remaining faults of just previous release can be tackled

viz. some faults will be removed by the testing team of current

release and some faults will be debugged in the operational

phase through the reports received from the users. To model

such situation, a joint rate which unites both fault removal

phenomenon using Steiltjes convolution approach has been

considered [7]. Thus, the faults which will be debugged in the

second release when it’s testing process started at time point

2' 't  are given by equation (2)

        *

2 2 2 2 1 1 2 1 2 2

2 3

. 1 . ;m t a F t a F F t

t

   

 

     

 
 (2)

where    *

2 2 2 2 2F t F G t     show the impact of both

testing and operational phase based on the conjoint effect of

two distribution function  2 2F t  being fault removal

process under the testing phase of second release where as

 2 2G t  defines the removal process in operational phase of

first release; convolution probability function has been used

which has a following mathematical representation [14]:

          
0 0

. .

t t

F G t F t x g x dx G t x f x dx      (3)

Third Release of the Software

On similar basis as in second release, it has been assumed that

faults are generated due to new add-ons, which implies that

there will bugs due to addition of new features and also there

will be some remaining faults of just previous release. Thus

under the testing phase of third release, faults generated will be

removed with FRP  3 3F t  and the faults from previous

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

27

version will be removed with FRP  3 3 3F G t   . Equation

(4) gives the count of overall faults removed for third release

when testing phase begins at
3' 't  .

       *

3 3 3 3 2 2 3 2 3 3

3 4

. 1 . ();m t a F t a F F t

t

   

 

     

 
 (4)

where    *

3 3 3 3 3F t F G t     show the impact of both

testing and operational phase based on the conjoint effect of

two distribution function  3 3F t  being fault removal process

under the testing phase of third release where as  3 3G t 

defines the removal process in operational phase of second

release.

Fourth Release of the Software

Further, a case when the new features are added in the software

for the third time has been explained. Then the mean value

function for overall fault removal process when testing starts at

4' 't  is given as follows:

        *

4 4 4 4 3 3 4 3 4 4

4 5

. 1 . ;m t a F t a F F t

t

   

 

     

 
(5)

where    *

4 4 4 4 4F t F G t     show the impact of both

testing and operational phase based on the conjoint effect of

two distribution function  4 4F t  being fault removal

process under the testing phase of fourth release where as

 4 4G t  defines the removal process in operational phase of

third release;

The process of adding new functionalities is an ongoing

process. These add-ons keep on happening till software is there

in the market. This phenomenon helps in improving the value

of software and also helps in increasing the reliability of the

product as more and more faults are removed when testing and

integration of code is done. Then the mean value function for
thn version is given as follows:

      

 

1 1 1

*

1

. 1 .

;

n n n n n n n n

n n n n

m t a F t a F

F t t T

  

  

  



    

   
 (6)

The above presented structure is empirically tested for four

releases of the software and under two different scenarios

whose equations are given in model-I and model-II.

Model-I: In this case it has been considered that the remaining

faults of just previous release will be removed with the joint

rate of its operational as well as the testing phase of its

succeeding release. The FRP for testing phase follows

exponential pattern where as FRP for operational phase is

constant i.e.    iF t exp b and    1G t t .

          
    

11

*

..

1. 1 . 1 1 .

1 ; 2,3,4

i iii i

i i

bb t

i i i

b t

m t a e a e

e i

 



  



 

    

 

 (7)

Model-II: In second case it has been considered that the

remaining faults of just previous release will be removed with

the joint rate of its operational as well as the testing phase of its

succeeding release. The FRP for testing phase as well as

operational phase follows exponential pattern i.e.

   iF t exp b and    iG t exp b .

          
       

11

*

..

1

*

. 1 . 1 1 .

1 1 . . ; 2,3,4

i iii i

i i

bb t

i i i

b t

i i

m t a e a e

b t e i

 




  



 

    

   

 (8)

where ib represents the rate of removal of testing team in

current release and *

ib shows the rate of removal of debugging

team with the joint effect of testing team and operational team.

Equation (7) & (8) demonstrate the mathematical form of fault

removal phenomena for multi releases of a software with the

impact of fault testified from operational phase of previous

release and testing phase of current release. Further, in next

section equation (1), (7) and (8) are analyzed on software fault

data.

3. MODEL VALIDATION
In this study, the Statistical Analysis System (SAS) software

has used for estimating the parameters of equations [14]. The

present study is analyzed on the data available for Tandem

Computers [15]. From the analysis, the value of total number

for release 1 is 130.202 and the rate of debugging is 0.083. The

estimated values of each release for model-I and model-II are

given in Table 1 & 2 and set of computed comparison criteria

for all four releases are given in Table 3. The deviation

between estimated and actual value of removed faults is being

given in Figure (1 to 4) for all four versions of the software.

From table 3, it can be observed that the values of 2R is closer

to 1, which is quite significant for the proposed cases. In

model-I, it is observed that the rate by which faults have been

removed in current release is same as the rate by which the left

over faults have been removed conjoint effect of testing team

and operational team because operational team acting

constantly.

Table 1: Parameter Estimates of Model-I for Different Releases  2,3,4i 

Parameters Release 2 Release 3 Release 4

a 158.278 92.42 40.89

ib 0.061 0.52 0.037

*

ib

0.061 0.52 0.037

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

28

Table 2: Parameter Estimates of Model-II for different releases  2,3,4i 

Parameters Release 2 Release 3 Release 4

a 146.397 84.025 60.42

ib 0.062 0.030 0.054

*

ib

0.240 0.302 0.032

Table 3: Comparison Criteria for four releases

Criterion Release 1

Release 2 Release 3 Release 4

Model-I Model-II Model-I Model-II Model-I Model-II

SSE 232.3 442 323.9 249.4 134.8 85.01 87.17

MSE 12.91 26.002 20.243 22.67 14.98 5.001 5.128

2R 0.986 0.982 0.987 0.951 0.974 0.976 0.975

Fig 1: Goodness of Fit curve for Release 1

Fig 2: Goodness of Fit curve for Release 2

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

C
u

m
u

la
ti

v
e

N
u

m
b

er
 o

f
F

a
u

lt
s

Time

Actual Faults

Observed Faults

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
u

m
u

la
ti

v
e

N
u

m
b

er
 o

f
F

a
u

lt
s

Time

Actual Faults

Model-I

Model-II

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

29

Fig 3: Goodness of Fit curve for Release 3

Fig 4: Goodness of Fit curve for Release 4

4. CONCLUSION
The proposed model is based on the assumptions that the

overall fault removal of the new release depends on the

reported faults from the just preceding release of the software

which are removed both in its operational as well as the

testing phase of its newer version and on the faults generated

due to addition of some new functionalities to the existing

software system. The remaining faults of just previous release

are debugged through a joint rate modeled via the use of

convolution approach and two different cases have been

discussed. In the first case it is assumed that the fault removal

phenomenon follows constant and exponential pattern for

testing as well as operational phase, respectively whereas in

second case both distributions follow exponential pattern with

same rate. The proposal has been validated on failure data of

tandem computers for four different releases and the result so

obtained justifies the concept. In future the concept can be

extended to study the fault removal phenomenon for

successive releases of the software under various environment

viz. stochastic environment, imperfect environment etc. Also

release time problem can also be formulated to determine the

time at which firm should release their software in the field

for usage.

5. REFERENCES
[1] Aggarwal, A.G., Kapur, P.K., and Garmabaki, A.S. 2011

“Imperfect Debugging Software Reliability Growth

Model for Multiple Releases” Proceedings of the 5th

National Conference on Computing for Nation

Development-INDIACOM, New Delhi.

[2] Anand A., Singh O., and Das S., 2015 “Fault Severity

based Multi up-gradation Modeling Considering Testing

and Operational Profile”, International Journal of

Computer Applications (0975 – 8887), Volume 124 –

No.4.

[3] Garmabaki, A. H. S., Aggarwal, A.G., Kapur, P. K., and

Yadavali, V. S. S., 2014 , “ The Impact of Bugs Reported

from Operational Phase on Successive Software

Releases”, International Journal of Productivity and

Quality Management, volume 14, number 4, pp 423-

440.

[4] Goel, A.L., Okumoto, K.., 1979, “Time dependent error

detection rate model for software reliability and other

performance measures”, IEEE Transaction Reliability,

R-28(3), 206-211.

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12

C
u

m
u

la
ti

v
e

N
u

m
b

er
 o

f
F

a
u

lt
s

Time

Actual Faults

Model-I

Model-II

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

C
u

m
u

la
ti

v
e

N
u

m
b

er
 o

f
F

a
u

lt
s

Time

Actual Faults

Model-I

Model-II

International Journal of Computer Applications (0975 – 8887)

Volume 172 – No.5, August 2017

30

[5] Software QA and Testing Frequently-Asked-Questions,

Part 1 [online] http://www.softwareqatest.com/

qatfaq1.html.

[6] Kapur P.K. and Garg R.B., 1992, “A software reliability

growth model for an error removal phenomenon”,

Software Engineering Journal, (7), 291-294.

[7] Kapur P. K., Pham H., Gupta A., and Jha P. C., 2011,

“Software Reliability assessment with OR application”,

Springer, Berlin.

[8] Kapur P.K, Tandon A., and Kaur G., 2010, “Multi Up-

gradations Software Reliability Model”, ICRESH, 468-

474.

[9] Kapur P. K., Singh O., Garmabaki A. and Singh, J.,

2010, “Multi up-gradation software reliability growth

model with imperfect debugging”, International Journal

of systems Assurance Engineering and Management,

1(4),299-306.

[10] Kapur P. K., Anand A., and Singh O., 2011, “Modeling

Successive Software Up-Gradations with Faults of

Different Severity”, Proceedings of the 5th National

Conference on Computing For Nation Development,

ISSN 0973-7529 ISBN 978-93-80544-00-7.

[11] Singh O., Kapur P.K., Anand A. and Singh, J., 2009,

“Stochastic Differential Equation based Modeling for

Multiple Generations of Software”, Proceedings of

Fourth International Conference on Quality, Reliability

and Infocom Technology (ICQRIT), Trends and Future

Directions, Narosa Publications, pp. 122-131.

[12] Singh O., Kapur P.K., and Anand A., 2011, “A

Stochastic Formulation of Successive Software Releases

with Fault Severity” Industrial Engineering and

Engineering Management, 136-140.

[13] Singh O., Kapur P.K., Khatri S.K., and Singh J.N.P.,

2012, “Software Reliability Growth Modeling for

Successive Releases”, proceeding of 4th International

Conference on Quality, Reliability and Infocom

Technology (ICQRIT), PP 77-87.

[14] SAS Institute Inc., 2004, “SAS/ETS user’s guide version

9.1”, Cary, NC: SAS Institute Inc..

[15] Wood A., 1996, “Predicting Software Reliability”, IEEE

Computer (11) 69-77.

[16] Yamada S., Ohba M., Osaki S. 1983 “S-shaped software

reliability growth modelling for software error

detection”, IEEE Transaction Reliability, R-32(5), 475-

484.

IJCATM : www.ijcaonline.org

http://www.softwareqatest.com/qatfaq1.html
http://www.softwareqatest.com/qatfaq1.html

