
International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

MobileMonkey - A Contextual Stress Testing
Framework for Android Application

Rayhanur Rahman
Institute of Information Technology, University of Dhaka

Amit Seal Ami*
Institute of Information Technology, University of Dhaka

Kazi Sakib
Institute of Information Technology, University of Dhaka

ABSTRACT
Development of Android Apps is inherently challenging as diffi-
culties arise in tracing bugs and crashes due to GUI based event
driven work flow, contextual scenarios and diversified sources of
inputs working together. In order to alleviate developer’s challenges
in this regard, a state of the art contextual stress testing frame-
work of Android apps named MobileMonkey is proposed. This
framework facilitates developers to analyze Android apps using au-
tomatic stress inputs and contextual scenario generation with an in-
herent aim to invoke bugs or crashes, devised by a systematic and
strategic execution of static analysis in a cohesive manner, which in
essence, provides developers with plenty of insight regarding what
went wrong based on data-intense crash logs, traceable trajectories
of execution and replayable as well as replicable scripts. We eval-
uated MobileMonkeys effectiveness in comparison with industry
standard Android app stress testing tool on 30 Android apps, 15
of which are heavily utilized real world android apps. The results
demonstrate that MobileMonkey consistently performs better than
the industry standard tool for stress testing in a diverse range of
scenarios. Additionally, MobileMonkey is created to be resource
friendly, horizontally scalable and non reliant on specific versions
of Android Standard Development Kit, thus automatically becom-
ing a better choice for being integrated as stress testing framework
at any stage of Android app development.

Keywords
Android, Software Testing, Stress Testing, Contextual Testing

1. INTRODUCTION
The popularity of mobile devices and mobile applications is
continuously growing due to utility and afford-ability. Due to
usefulness, these are now touching critical domains such as NFC,
SQUARE [28], health [17] and public services [30]. Google Play
store, the official app store of the most popular smart devices
platform, contains more than 2.7 million apps. Just for Android
mobile devices, there were 2 billion monthly active users and
82 billion apps were downloaded from over 190 countries in
2016 [13]. Due to the large number of users, it is possible to
earn by utilizing advertisements and other app related purchases.
Considering its impact in the financial sector, Governments
around the world are taking initiatives to encourage mobile app

development by providing funds, initiating projects for enhancing
skill related to mobile applications development [12]. However, the
huge number of choices for apps makes the competition extremely
high. To make the choices easier, Google Play Store displays
statistics related to apps including the number of installations,
average rating made by users based on Likert scale, ratings based
on the answers of developer made questionnaire and user reviews.
Consequently, the success of a new mobile app is dependent on
User Reviews [18,25], which are dependent on the usability of the
mobile app itself.

Unfortunately, more than 1.2 billion Android apps in Google Play
Store received less than 3 out of 5 rating by 2017 [8]. This means
more than 40% of the apps were not satisfactory to the users. Even
though Google Play Store do not provide guidelines related to app
rejections; according to one of the dominant mobile app platform
named Apple Play Store, the major dominant reason of app
rejection is the lack of app completeness, or to elaborate in their
words, apps that crash or exhibit obvious technical problems [9].
Irrespective of the fact that the number of mobile apps and demand
for it are ever increasing, based on the number of low rated apps
it can easily be determined that developers often do not prepare
the apps completely. The key reason was found by Palit et al. [24]
and established that newer software engineering approaches are
required to test the mobile apps. This was further verified in the
work by Muccini et al. [23], which showed that mobile apps
are different from traditional ones, and require different and
specialized new testing techniques. They further suggested that the
key challenges are related to the contextual and always-mobile
nature of mobile apps, such as sensed data provided by context
providers, diversity of phone and phone makers and Graphical
User Interface. This is an issue mobile app developers should be
concerned about since only 16% of the users will try a bug-prone
app more than twice [29].

In accordance with their suggestion and beyond, several state of
the art works focused on providing contextual testing as a cloud
service [19], providing testing as a service [15], modifying the
Android SDK at the Java source level for generating input to
unmodified Android apps [21], automated GUI testing [2], intent
fuzzing [27], and automatic discovering, reporting and reproducing
mobile app crashes through static and dynamic analysis [22]. Some
of these works pushed the limits of mobile app testing and intro-

1

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

duced new concepts in terms of mobile app engineering. However,
these approaches are likely to be provided as a commercial based
service, will require submitting mobile app with/without source
code and/or will be fuzzing the mobility related factors based
on existing data. For example, utilizing a context library will
definitely be dependent on submitted or collected contextual
data [20], but it will also mean that it will not be able to provide
contexts related to regions from where data was not collected.
Some of the works are tightly coupled with Android SDK and
underlying OS, thus making it unusable and less effective across
different SDK versions and kernels. Moreover, an app developer
from a developing country may not afford the services related to
contextual testing as well, when just the instrumentation testing in
virtual devices and real devices cost as much as much as $1 per
hour and $5 per hour respectively [14]. This becomes a burden for
outsourcing development related countries such as India, Brazil,
China and Bangladesh where the hourly rate of app development
starts from as low as $8 (upwork.com). Additionally, utilizing
services requires mobile app developer to go through a upload-
test-view report-develop cycle where development is dependent on
the Internet. This introduces risk in the cycle as Internet disruption
is still far too common and connectivity speed is questionable in
developing and underdeveloped countries [1].

Addressing the aforementioned issues, MobileMonkey, a
lightweight framework for contextual stress testing has been
proposed that can work in parallel with/utilize existing industry
tools such as Monkey [7], logcat [6] and Android Device Moni-
tor [5]. In principle, it takes an Android mobile app installer in the
form of .apk file and tests it in emulator based on the user provided
emulator OS and specifications, such as RAM size, number of
processors and Android OS version. After that, MobileMonkey
automatically analyzes the permissions requested by the .apk file
to determine suitable contextual scenarios for stress testing. Later,
it produces contextual scenario trace and execution trace based
on systematic static and dynamic analysis that can be utilized to
reproduce the same contextual scenarios. User can provide custom
contextual scenarios, or modify the produced contextual scenarios
for further usage. Finally, it provides developers with compre-
hensive information regarding execution, crash with replayable
and replicable scripts. MobileMonkey can work in parallel with
instrumentation tests, but is not dependent on it. User can manually
test or use the app on exploratory basis while MobileMonkey
changes the contexts. The workflow of MobileMonkey is flexible
enough to facilitate user intervention, instrumentation test and/or
automated exploration by other tools.

The following contributions has been proposed through this paper:

(1) A developer friendly lightweight framework named Mobile-
Monkey has been designed and implemented which can be uti-
lized at any stage of app testing. The execution trace, along
with the logs from logcat can be analyzed to deduce how the
app behaved, whether it encountered any warnings, errors or
failures. It is practical for the developer because it can run in
parallel with instrumentation tests, exploratory tests or without
user intervention. It is also unaffected by the different versions
of Android Standard Development Kit (SDK) since it uses the
APIs of SDK.

(2) It has been evaluated for 15 apps from the AndroTest repos-
itory. Since the apps are considered rather simple [33], it has
been additionally evaluated with 15 Google Play Store apps
with at least 4 out of 5 rating, over 1 million downloads and

latest version released at 2017. The performance of Mobile-
Monkey is compared with existing industry standard approach.
The result shows that it is suitable for stress testing a mobile
app by producing unexpected contextual scenarios.

2. RELATED WORK
Different concepts and approaches were introduced and evaluated
in existing literature. The differences between mobile applications
and traditional applications were discussed in [31] and concluded
that user experience, non-functional requirements, portability and
tools were areas that should software engineering research for
mobile applications should focus on. Additionally, the differences
were further investigated in [3] and concluded that reliable mobile
application testing cost can be made cheaper through automa-
tion, and should consider the contextual and mobility nature of
mobile applications. Several works are done to automate mobile
application testing such as random input generation, code analysis
based input generation and model based testing. In the following
discussions, those approaches and novelty of MobileMonkey will
be focused which surpasses limitations of those approaches.

At beginning, Random Input Generation based techniques gained
momentum because of event based flow of process triggered by
diversified source of inputs were the first line of testing strategies
identified by the researchers. Such an approach is proposed in
Dynodroid [21] where journal of event execution frequencies in
a context-sensitive manner is maintained to trace corresponding
events. Intent Fuzzer [27] conducts app testing by offline infor-
mation extraction and static analysis with a pitfall of not being
scalable for large apps. Vanarsena [26] is a Windows Phone
testing approach based on analysis over app binaries and injection
of random adverse contextual scenarios. The trend of random
input generation is followed by more advanced systematic input
generation techniques. These are mainly dependent upon heuristics
such as BFS/DFS traversal on execution paths. For example,
AndroidRipper [2] generates GUI based event triggering paths and
profiles all possible permutation of events. Due to the extraordinary
number of possible paths and scenario combinations, Convirt [20]
introduced virtualized contexts by cloud enabled infrastructure for
automated large scale mobile app testing based on static analysis.

However, even though these approaches are capable of stress
testing an app to some extent, simply crashing an app is not much
helpful if it is not traceable or does not provide enough information
to find the underlying cause of such a crash. CrashScope [22]
explored from this perspective and introduced a framework
that can provide systematic input generation, crash detection,
and replayable script related to crash. Several of the industrial
approaches are also available for stress testing or contextual testing
of Android app. For example, Google Test Cloud [15] and Xamarin
Test Cloud [32] offers real device based infrastructure for app
testing without contextual factors.

These approaches are compared against each other in different
works from several types of perspectives. However, the compara-
tive study concerning the application of these approaches in real
world conditions showed that Monkey [7], a random input based
stress testing tool that is available as part of the Android Standard
Development Kit, performs better than the existing tools from the
academia on real world apps. However, it also lacks the contextual
event injection, replay-ability and configure-ability - thus making it

2

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

ill suited for stress testing mobile apps specially reliant on contexts.

In essence, all the aforementioned work provided app testing fa-
cilities for the developers with one or combination of GUI driven
techniques, source analysis, binary analysis, SDK integration etc.
However, there is still lack of testing facilities based on contextual
information of specific mobility factors, lesser coupling with SDK
integration and everlasting scope of performance improvements.

3. SYSTEM ARCHITECTURE

Algorithm 1 Overall algorithm of MobileMonkey
Input: Mobile App, Test Duration,

Optional: Minimum Interval, Maximum Interval, Seed, Con-
textual Events, Intervals, Steps

Output: List of Contextual Events
Ma := Mobile App
Td := Test Duration
MaI := Maximum Interval
MiI := Minimum Interval
S := Seed
Ce := Array(s) of Contextual Events
It := Array of Intervals St := Steps
INITIALIZATION:

1: Provide the Ma to MobileMonkey
2: Extract Permissions (P) requested by MA
3: if (St is None) then
4: St = 0
5: end if
6: if (St is None and Ce is None) then
7: repeat
8: Based on S, generate array(s) of Ce from P at interval

(i) between MiI and MaI until sum of all intervals is
equal to Td

9: append i to It
10: St = St+ 1
11: until (St ≤ Td)
12: end if

EXECUTION:
13: Start Emulator
14: install app Ma
15: for i = l to St do
16: execute Ce[i]
17: wait for It[i] interval
18: uninstall Ma
19: Reset Emulator
20: end for

Based on the previous works, it can be deduced that a framework
is necessary, which will be able to introduce contextual events in
stress testing a mobile app. Furthermore, it will be configurable
enough to automatically create scripts, as well as allow user to
utilize custom scripts for stress testing app. The scripts generated
should be replay-able and reproducible to ensure that the bugs are
reproducible and traceable. Due to the regularly changing nature of
Android Standard Developer Kit(SDK), naturally the framework
requires less coupling and dependency of the SDK. Additionally, it
should be resource friendly so that it can be utilized in standalone
machines and horizontally scalable infrastructures alike.
Based on these conditions above, MobileMonkey has been
schemed. In this section, the system architecture of MobileMonkey

is presented. For easier understanding, an overall algorithm of Mo-
bileMonkey is provided in Algorithm 1. MobileMonkey is divided
to several components, which are:

—Configuration Reader

—App Manager

—Contextual Events Generator

—Executor

—Log Analyzer

These components work independently and are reusable as sepa-
rate components. For example, user can use manually generated
contextual events in a specific format or modify generated contex-
tual events. Those manually created events can later be used by Ex-
ecutor during stress testing instead of using the Contextual Events
Generator.
The components are discussed in further details in the following
subsections.

Table 1. Configuration of MobileMonkey
Configuration Value
emulator the name of the phone model to be used, such as

Nexus6
emulator port the port using which the emulator will be connected,

such as 5555
apk full path the full path of the apk to be tested
uniform interval the uniform amount to be used in between contex-

tual events
minimum interval the minimum interval to be used in between contex-

tual events
maximum interval the maximum interval to be used in between contex-

tual events
telnet key telnet key is used for low level communication with

emulator, such as setting network delay
seed the seed is used to generate pseudo random num-

bers. This ensures consistency of creating exact se-
ries of random series with the same seed.

duration the duration for which MobileMonkey will continue
testing

duration the duration for which MobileMonkey will continue
testing

3.1 Configuration Reader
Configuration reader determines the nature of MobileMonkey. It
can configure itself by reading and assigning values, such as the
emulator type, emulator OS type, the minimum and maximum in-
terval to be used in between contextual events, the total duration of
the execution of MobileMonkey, and the seed value to be used for
randomization. The notable configurations used for MobileMonkey
in key, value format is provided in Table 3.

3.2 App Manager
As the name implies, the App Manager manages the installation,
removal and running of App. It also extracts permissions requested
by the mobile app. These permissions can later be utilized by the
Contextual Events Generator to generate relevant contextual events.

3

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

Table 2. Context Types and Possible Values of Mobile Monkey
based on Android Guidelines [4]

Gsm
Profile
Strength

Network
Delay

Network Status Key
Events

User Rota-
tion

0 GSM GSM HSDPA Alphabets Potrait
1 EDGE HSCSD LTE Numerals Landscape
2 UMTS GPRS EVDO Symbols Reverse Po-

trait
3 None UMTS FULL Backspace Reverse

Landscape
4 EDGE Delete

3.3 Contextual Events Generator
Based on the permissions extracted by the App Manager, Contex-
tual Events Generator determines the types of tests it will use for
the app. Scope has been limited to Network Speed and Delay, Air-
plane Mode, UI Rotation, GSM Profile and Keyboard events as
contextual events. Among these, User Interface Rotation, Keyboard
Events and Airplane mode are considered default contextual events.
In MobileMonkey, values of context types are used on the basis of
Android guidelines, which are provided in Table 3.3. Additionally,
user will also provide the total duration of testing, minimum and
maximum possible interval between each contextual event. Further-
more, a seed value is required by the internal randomness generator
to maintain consistency similar to Monkey [7]. To illustrate, lets
assume that for a mobile app called AppX user set the total du-
ration as 10 seconds. After permission extraction from AppX, it
is found that it utilizes android.permission.INTERNET permis-
sion. Contextual Events Generator will generate sets of contextual
events related to Network Speed, Network Delay, Key Events,
User Rotation and Network Status. Each set will contain rel-
evant events with a randomly selected interval based on minimum
and maximum interval. The total duration of intervals in a set will
be equal to the total duration as specified by the user.These sets
of contextual events are then fed to the MobileMonkey Executor,
which injects contextual events to the Emulator while execution.

3.4 Executor
It is possible to facilitate manual, automatic and combined contex-
tual stress testing while using MobileMonkey. To elaborate, a hu-
man user can perform regular operations such as tapping or chang-
ing orientation manually while MobileMonkey executes the gener-
ated contextual events. Furthermore, it is possible to execute more
than one contextual event at the same time. For example, it is pos-
sible to have a Network Delay of GSM type, while having Network
Status of HSDPA type at the same time. It should be mentioned that
it generates logs similar to the application logs collected by log-
cat [6] for traceability. To illustrate, lets consider that it set Network
Status to HSDPA type at a certain time. A MobileMonkey trace
06-17 18:53:29 NetworkStatus 1 10 hsdpa will be gener-
ated, which describes that during execution, a Network Status of
HSDPA was maintained for 10 seconds. It should be noted that
this format is based on logcat’s default logging format. To auto-
mate testing, MobileMonkey can also execute the Monkey [7] in
parallel for the duration of the MobileMonkey. Monkey facilitates
generating pseudo random input events, such as tapping, touching,
gestures, and a few system events. It is possible to configure the
nature of the Monkey, like interval between each events, number of
events, and the seed to be used for random input event generation.
Executor utilizes the settings provided by the Config Reader for

the Monkey. An internal Fault Watcher monitors the app for Fatal
Exceptions/Crashes and stops execution as soon as it is triggered.
It should be clarified that MobileMonkey injects events indepen-
dently, and it is also possible to use instrumentation tests on behalf
of users while executing MobileMonkey contextual events. Lastly,
after completing execution, the traces generated by MobileMonkey
related to contextual events and Android OS are collected and sent
to Log Analyzer for further analysis.

3.5 Log Analyzer
First, Log analyzer collects warning level logs and above from log-
cat. Next, it cleans the garbage data, misfired events, and non-
relevant logs. Furthermore, it creates lists of warning, error and
Fault incidents separately. Log analyzer also collects MobileMon-
key traces regarding contextual scenarios. It then combines both
traces to connect application logs with contextual scenarios. Con-
sequently, it becomes easier to understand what type of contextual
scenario helped create an unexpected application log. All the com-
ponents and flow of MobileMonkey is depicted in Figure 1.
Due to its flexible architecture, MobileMonkey ensures low mem-
ory footprint and CPU utilization at any stage as well as allows to
be used in conjunction with various approaches. For example,

—As Service: MobileMonkey can be utilized in a distributed sys-
tem where it is utilized in various types of emulated OS models,
and device emulator. This further helps stress testing a Mobile
App based on device heterogeneity and OS versions.

—As Individual Tester: MobileMonkey focuses on blackbox test-
ing and does not require access to source code. As a result, any
testing team member can provide values to the configuration file
and start testing.

—As Developer: The low memory footprint ensures MobileMon-
key being used in development machine. A developer can run his
instrumentation test and use MobileMonkey at the same time to
test the context related stress handling of the app.

In essence, the holistic view on proposed MobileMonkey under-
scores that it will facilitate app developers with stress testing on
the basis of contextual information, static analysis and myriad of
execution traces, crash logs and replicable sequence of events that
might be insightful for the developers.

4. EMPIRICAL STUDY AND RESULT ANALYSIS
After creating MobileMonkey, the process model from [11] has
been followed to define the empirical study. At first, it has been con-
ceptualized that the utilization of MobileMonkey should be benefi-
cial to mobile app developers by introducing contextual scenarios
that will help stress test. However, the measurement metrics had to
be clearly defined. Therefore, based on the conception, the follow-
ing null hypothesis and alternative hypothesis are raised:

(1) Null Hypothesis: Using MobileMonkey for stress testing will
not create any more significant effect than industry standard
tool as it will raise equal or less warnings,errors, failures or
crashes in mobile apps dependent on contexts.

(2) Alternative Hypothesis: Using MobileMonkey stress testing
will help produce better quality mobile app than industry stan-
dard tool since MobileMonkey will raise more warnings, er-
rors, failures, or crashes in mobile apps dependent on contexts.

For the experiment, Monkey [7] was chosen as industry standard
tool since it is found to be better performing than any other state-
of-the-art tools or approaches [33]. At first, it was determined

4

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

Fig. 1. MobileMonkey Flow

that there will be two types of trials; with one being treated with
MobileMonkey and the other treated with Monkey. Next, it is a
within-subjects experiment. Therefore, both treatments are applied
on same experimental subjects, e.g. mobile apps. Third, The Ex-
perimental objects have to represent real world mobile apps and/or
existing data set experimented on by others in academia. 20 apps
from AndroTest repository [10] were chosen. 15 more apps were
chosen representing real world based on the following criteria:

—is available as a released mobile app in Google Play Store
—is updated frequently, with latest update in 2017
—is downloaded more than 1 million times
—is dependent on contexts
—has a user rating of 4.0 out of 5.0 or above

Last criterion was chosen specifically to ensure that the real world
apps are quality ensured. Additionally, it was determined to avoid
apps that required sign-in before accessing any of its features and
to focus on apps which are usable right after installation. Fourth,
for the Control Situation the following criteria are determined:

—the duration of trial is 300 seconds
—each trial will be repeated for 3 times
—Monkey will generate 300 specific events both individually and

as part of MobileMonkey. Each event will be executed with 500
milliseconds delay. While executing, Monkey takes less time as
it groups up events as a single event during execution.

—Monkey will be specified to app activity only by the package
specific switch (-p).

—Same seed will be used for Monkey and MobileMonkey

—Emulated Device with Android version Nougat (7.0) x86, 1.5GB
RAM, 800MB internal storage, 2 multi-core CPUs with screen
size and other specification similar to Nexus6 [16]

—To ensure each trial are independent, the emulator is hard reset
after each trial

—Internet is made available for all trials
—The minimum interval is set to be 5 seconds, and maximum is 8

seconds for MobileMonkey. The Uniform interval is set to be 24
seconds for Gsm Profile.

For tools, the latest available binaries were used during the empir-
ical study. For Android SDK, the version utilized was 26.0.2, the
emulator was of version 26.0.3. Finally, To measure and determine
whether the Null Hypothesis or the alternative Hypothesis stands,
the following incidents were considered as Response Variables:

—Warning: the app does not crash, but the app functionality
didn’t work properly work

—Failure: the app does not crash, but malfunction oc-
curred, perhaps an internal activity crashed. For example,
android.view.WindowLeaked is an error type incident that in-
dicates that a dialog was dismissed improperly.

—Error/Crash: the app is forced to close, or some severe error
occurred, but app continued execution. For example, an error of
TextToSpeech may take place due to absence of Text to Speech
Engine in the OS.

It should be emphasized that the unique incidents were counted
once in several cases. For example, if Deeplink not found is
shown 5 times, it was counted as one incident. The message is fairly
simple and shows the absence of a requested resource. Addition-
ally, it was intervened specifically due to new permission system in-
troduced in Android 7 right after installation of the app where user

5

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

Table 3. Comparison of MobileMonkey with Monkey [Total, Unique, Fatal] / [Warning, Error] - [T,U,F] / [W,E]
A

nd
ro

Te
st

R
ep

o
A

pp
s

App Category Version MobileMonkey Monkey
TW UW TE UE FE TW UW TE UE FE

hu.vsza.adsdroid Generic 1.6 4 4 9 7 1 0 0 3 3 1
com.ringdroid Audio 2.7.4 5 3 1 1 0 3 3 1 1 0
com.templaro.opsiz.aka Utility 1 13 3 0 0 0 14 3 0 0 0
org.totschnig.myexpenses Business 2.7.9 0 0 4 3 0 0 0 0 0 0
cri.sanity Utility 2.11 3 2 18 10 0 0 0 0 0 0
org.tomdroid Utility 0.7.5 4 3 5 5 0 5 4 2 2 0
net.jaqpot.netcounter Utility 0.14.1 1 1 2 2 0 1 1 0 0 0
jp.gr.java conf.hatalab.mnv Productivity 0.4 2 1 0 0 0 2 1 0 0 0
net.fercanet.LNM Productivity 1.4 2 2 4 3 0 1 1 3 3 0
com.bwx.bequick Utility 1.9.9.3 17 3 4 3 0 0 0 4 3 0
caldwell.ben.bites Pro 1.3 5 0 0 0 0 3 1 0 0 0
com.chmod0.manpages Utility 1.51 210 10 9 7 0 16 5 3 3 0
com.gluegadget.hndroid Utility 0.2.1 5 5 1 1 0 0 0 5 5 0
com.zoffcc.applications.aagtl Productivity 1.0.36 35 8 7 7 0 14 6 7 7 0
org.liberty.android.fantastischmemo Utility 10.9.993 2 1 7 6 1 5 2 0 0 0

R
ea

lW
or

ld
A

pp
s

com.bikroy shopping 1.0.9 68 13 3 3 0 23 11 3 3 0
com.daraz.android shopping 2.8.2 17 11 5 5 0 4 2 0 0 0
com.hostelworld.app travel 5.12.0 35 11 3 3 0 7 7 1 1 0
com.alibaba.aliexpresshd shopping 5.3.2 36 33 23 18 0 49 30 29 18 0
com.accuweather.android weather 4.7.4 110 42 43 19 0 97 36 42 17 0
com.ebay.mobile shopping 5.11.0.12 12 5 3 3 0 20 16 0 0 0
jp.gocro.smartnews.android news 4.1.13 20 16 6 3 0 77 22 435 10 0
com.apalon.weatherlive.free weather 5.3 193 53 20 7 0 58 15 4 4 0
com.ixigo.train.ixitrain travel 3.5.5 26 20 0 0 0 33 19 7 5 0
com.popularapp.thirtydayfitnesschallenge health 1.0.25 29 7 165 90 0 1 1 98 50 0
com.reddit.frontpage news 2.9.1 31 14 6 3 0 24 16 4 3 0
de.motain.iliga news 9.5.0 565 20 6 3 0 2 2 0 0 0
com.guardian news 4.27.1152 56 28 33 18 0 52 26 29 15 0
de.wetteronline.wetterapp weather 4.4.2 37 20 23 3 0 16 13 8 3 0
com.cricbuzz.android sports 3.2.5 166 36 31 15 0 138 34 30 12 0

will have to explicitly allow permissions for an app when started
for the first time. Based on these, the empirical study was done. The
results are provided in Table 3. As shown, MobileMonkey outper-
forms the industry standard Monkey tool in almost all real world
and AndroTest Repo Apps in terms of total number of warnings,
unique warnings, total errors and unique errors. As shown in the
Table 3, MobileMonkey outperforms Monkey in 24 cases in total
warnings and 26 cases of total errors. In several cases, MobileMon-
key is also able to fatally crash the android app being tested, which
monkey could not in our experimental study.

5. CONCLUSION
In this paper, we present MobileMonkey, a contextual stress test-
ing framework form Android App developers. The proposed frame-
work provides a systematic analysis of bugs, crashes and execution
traces on the basis of static analysis and contextual execution which
will provide insightful data regarding discovering what went wrong
during app development. We evaluated MobileMonkeys effective-
ness in comparison with industry standard Android app stress test-
ing tools. The results demonstrate that MobileMonkey consistently
performs better than the industry standard tool for stress testing
in a diverse range of scenarios with desirable properties of being
resource friendly, horizontally scalable and SDK agnostic. More
advanced approach will be explored for based on richer set of con-
texts, learning of mobility scenarios, model based system calls etc.

ACKNOWLEDGEMENT
The work is supported by Innovation Fund of fiscal year 2014-15,
reference code: 3-0001-2801-5965, ICT Division, Peoples’ Repub-
lic of Bangladesh.

6. REFERENCES

[1] Akamai. Q1 2017 State of the Internet - Connectivity Report
— Akamai. Technical report, Akamai Technologies, 2017.

[2] Domenico Amalfitano, Anna Rita Fasolino, and Porfirio
Tramontana. A GUI Crawling-Based Technique for Android
Mobile Application Testing. In 2011 IEEE Fourth
International Conference on Software Testing, Verification
and Validation Workshops, pages 252–261. IEEE, mar 2011.

[3] Domenico Amalfitano, Anna Rita Fasolino, Porfirio
Tramontana, and Bryan Robbins. Testing Android Mobile
Applications: Challenges, Strategies, and Approaches.
Advances in Computers, 89:1–52, 2013.

[4] Android.com. Settings.Global — Android Developers.
(https:// developer.android.com/ refer-
ence/android/provider/Settings.Global.html, accessed
28-May-2017).

[5] Android.com. Android Device Monitor — Android Studio.
(https://developer.android.com/studio/profile/monitor.html,
accessed 28-May-2017).

6

International Journal of Computer Applications (0975 - 8887)
Volume 172 - No.9, August 2017

[6] Android.com. Logcat Command-line Tool — Android
Studio . (https://developer.android.com/studio/command-
line/logcat.html, accessed
28-May-2017).

[7] Android.com. UI/Application Exerciser Monkey — Android
Studio.
(https:// developer.android.com/studio/test/monkey.html,
accessed 28-May-2017).

[8] Appbrain.com. Ratings on Google Play - AppBrain.
(https://www.appbrain.com/stats/android-app-ratings,
accessed 28-May-2017).

[9] Apple.com. App Store Review Guidelines - Apple
Developer. (https://developer.apple.com/app-
store/review/guidelines/#app-completeness, accessed
28-May-2017).

[10] Shauvik Roy Choudhary, Alessandra Gorla, and Alessandro
Orso. Automated test input generation for android: Are we
there yet? In Proceedings - 2015 30th IEEE/ACM
International Conference on Automated Software
Engineering, ASE 2015, 2016.

[11] Norman Fenton and James Bieman. Software Metrics: A
Rigorous and Practical Approach, Third Edition. CRC Press,
Inc., Boca Raton, FL, USA, 3rd edition, 2014.

[12] Gameapp.gov.bd. Skill Development for Mobile Game and
Application. (http://gameapp.gov.bd/, accessed
28-May-2017).

[13] Googleblog.com. Android Developers Blog: I/O 2017:
Everything new in the Google Play Console.
(https://android-developers.googleblog.com/2017/05/whats-
new-in-google-play-at-io-2017.html, accessed
28-May-2017).

[14] Google.com. Firebase. (https://firebase.google.com/pricing/,
accessed 28-May-2017).

[15] Google.com. Firebase Test Lab for Android — Firebase.
(https://firebase.google.com/docs/test-lab/, accessed
28-May-2017).

[16] Google.com. Nexus 6P - Google.
(https://www.google.com/nexus/6p/, accessed
28-May-2017).

[17] imedicalapps.com. iMedicalApps - Reviews of Medical apps
& Healthcare Technology. (https://www.imedicalapps.com/,
accessed 28-May-2017).

[18] Hammad Khalid, Emad Shihab, Meiyappan Nagappan, and
Ahmed E. Hassan. What Do Mobile App Users Complain
About? IEEE Software, 32(3):70–77, may 2015.

[19] Chieh-jan Mike Liang, Nicholas D Lane, Niels Brouwers,
Li Zhang, Börje F. Karlsson, Hao Liu, Yan Liu, Jun Tang,
Xiang Shan, Ranveer Chandra, and Feng Zhao. Caiipa:
Automated Large-scale Mobile App Testing through
Contextual Fuzzing. MobiCom, pages 519–530, 2014.

[20] CJM Liang, ND Lane, Niels Brouwers, and Li Zhang.
Context Virtualizer: A Cloud Service for Automated
Large-scale Mobile App Testing under Real-World
Conditions. Msr-Waypoint.Com, MSR-TR-201, 2013.

[21] Aravind Machiry, Rohan Tahiliani, and Mayur Naik.
Dynodroid: an input generation system for Android apps.
Proceedings of the 2013 9th Joint Meeting on Foundations of
Software Engineering - ESEC/FSE 2013, page 224, 2013.

[22] Kevin Moran, Mario Linares-Vasquez, Carlos
Bernal-Cardenas, Christopher Vendome, and Denys
Poshyvanyk. Automatically Discovering, Reporting and
Reproducing Android Application Crashes. In Proceedings -
2016 IEEE International Conference on Software Testing,
Verification and Validation, ICST 2016, pages 33–44, 2016.

[23] Henry Muccini, Antonio Di Francesco, and Patrizio
Esposito. Software testing of mobile applications:
Challenges and future research directions. In Proceedings of
the 7th International Workshop on Automation of Software
Test, AST ’12, pages 29–35, Piscataway, NJ, USA, 2012.
IEEE Press.

[24] Rajesh Palit, Renuka Arya, Kshirasagar Naik, and Ajit
Singh. Selection and execution of user level test cases for
energy cost evaluation of smartphones. In Proceedings of the
6th International Workshop on Automation of Software Test,
AST ’11, pages 84–90, New York, NY, USA, 2011. ACM.

[25] Fabio Palomba, Mario Linares-Vasquez, Gabriele Bavota,
Rocco Oliveto, Massimiliano Di Penta, Denys Poshyvanyk,
and Andrea De Lucia. User reviews matter! Tracking
crowdsourced reviews to support evolution of successful
apps. In 2015 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pages 291–300. IEEE,
sep 2015.

[26] Lenin Ravindranath, Suman Nath, Jitendra Padhye, and Hari
Balakrishnan. Automatic and scalable fault detection for
mobile applications. In Proceedings of the 12th annual
international conference on Mobile systems, applications,
and services - MobiSys ’14, pages 190–203, New York, New
York, USA, 2014. ACM Press.

[27] Raimondas Sasnauskas and John Regehr. Intent fuzzer:
crafting intents of death. In Proceedings of the 2014 Joint
International Workshop on Dynamic Analysis (WODA) and
Software and System Performance Testing, Debugging, and
Analytics (PERTEA) - WODA+PERTEA 2014, pages 1–5,
New York, New York, USA, 2014. ACM Press.

[28] squareup.com. Credit Card Processing - Accept Credit Cards
Anywhere — Square. (https://squareup.com/, accessed
28-May-2017).

[29] Techcrunch.com. Users Have Low Tolerance For Buggy
Apps Only 16% Will Try A Failing App More Than Twice
— TechCrunch. (https://techcrunch.com/2013/03/12/users-
have-low-tolerance-for-
buggy-apps-only-16-will-try-a-failing-app-more-than-twice,
accessed 28-May-2017).

[30] tourism.gov.in. Mobile Application For Tourist on Google
play — Ministry of Tourism. (http://tourism.gov.in/mobile-
application-tourist-google-play, accessed
28-May-2017).

[31] Anthony I Wasserman and Fosser. Software Engineering
Issues for Mobile Application Development. In FoSER ’10
Proceedings of the FSE/SDP workshop on Future of software
engineering research, pages 397–400, 2010.

[32] Xamarin.com. Mobile App Testing On Hundreds Of Devices
- Xamarin Test Cloud. (https://www.xamarin.com/test-cloud,
accessed 28-May-2017).

[33] Xia Zeng, Dengfeng Li, Wujie Zheng, Fan Xia, Yuetang
Deng, Wing Lam, Wei Yang, and Tao Xie. Automated Test
Input Generation for Android : Are We Really There Yet in
an Industrial Case ? pages 3–8, 2015.

7

	Introduction
	RELATED WORK
	SYSTEM ARCHITECTURE
	Configuration Reader
	App Manager
	Contextual Events Generator
	Executor
	Log Analyzer

	EMPIRICAL STUDY and Result Analysis
	Conclusion
	References

