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ABSTRACT 

Nowadays the permutation flow shop scheduling problems 

become one of the most important problems in scheduling 

field. In this paper whale optimization algorithm was 

modified for solving PFSP. WOA is new meta-heuristic was 

proposed by Sayedali and Andrew in 2016 that was inspired 

from the nature of humpback whales movements in hunting 

prey. The modification is depending on two stages: firstly; 

WOA algorithm is converted to discrete algorithm to deal 

with PFSP; secondly; the mutation permutation strategy was 

used to improve the results of WOA. The modified algorithm 

is implemented on MATLAB workspace. The modified 

algorithm is tested with various benchmark datasets available 

for flow shop scheduling. The statistical results prove that the 

modified algorithm (MWOA) is competent and efficient for 

solving flow shop problems. 
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1. INTRODUCTION 
Permutation flow shop scheduling problem is known as 

combinatorial optimization problem [1]. Due to its importance 

in manufacturing, production and mathematical branched and 

PFSP was become one of the most important problem in 

scheduling field, nowadays this made it an area of interest for 

researchers [2]. There are three methods for solving the PFSP. 

First method; exact algorithm, this kind of algorithms is 

implemented for solving small scale problems and not suitable 

for complex problem that have more than few jobs and/or 

machines because of increasing in computational time. 

Second method; heuristic algorithm deal with large scale 

problems the quality of the solution is often not high .third 

method; meta-heuristic algorithm also deal with large scale 

but it is better than heuristic algorithm and it is developed by 

mimic nature of certain phenomena and processes, which is 

generally from a solution as the starting point, it will continue 

to search the search space until approximate optimal solution 

[1], [3].   

Nowadays, researchers proposed different meta-heuristics to 

solve the flow shop scheduling problems by obtaining the 

minimum makespan. M. F. Tasgetiren et al. [4] solved the 

flow shop scheduling problems using a particle swarm 

optimization algorithm (PSO). Hongcheng et al. [5] proposed 

a hybrid particle swarm optimization with estimation of 

distribution algorithm (PSO-EDA) for solving permutation 

flow shop scheduling problem. A discrete African wild DOG 

algorithm also was used for solving flow shop scheduling 

problem by authors in [2]. Vanita et al. [6] improved 

differential evolutionary (DE) algorithm for solving 

permutation flow shop scheduling problem. Also Simon el al. 

[7] solved the permutation flow shop problem with Firefly 

Algorithm (FA). A. Baskar [8] minimized the makespan in 

Permutation flow shop scheduling problems using simulation. 

Hong-Qing et al. [1] modified cuckoo search (MCS) 

algorithm for solving permutation flow shop problem. Also 

Kannan et al. [9] proposed a hybrid approach for solving 

traditional flow shop scheduling problems to minimize the 

makespan (total completion time). They solved scheduling 

problems by using a combination of Decision Tree (DT) and 

Scatter Search (SS) algorithms. They also evaluated the 

performance of the different proposed meta-heuristics so in 

this paper is used new meta-heuristic algorithm to improve 

quality of solutions of flowshop scheduling problem.  

Recently, Sayedali Andrew [10] proposed new meta-heuristic 

algorithm called whale optimization algorithm (WOA) that 

was inspired from the nature of humpback whales whale 

movements in hunting prey. WOA algorithm could well 

balance of exploration and exploitation phase that assists this 

algorithm to find the global optimum. WOA had the potential 

to be very effective in solving real problems with unknown 

search spaces as well. Also high exploration and exploitation 

ability of WOA leads this algorithm towards the local optima 

[10]. So in this paper WOA algorithm was used for solving 

PFSP, then WOA algorithm was modified to improve results. 

This paper is organized as following: in section 2, formulation 

of permutation flow shop scheduling problem is described. In 

section 3, whale optimization algorithm is described. In 

section 4, modified whale optimization algorithm with inertia 

weight (MWOA) is explained. In section 5, experimental 

results are discussed. Finally, in section 6, conclusion and 

future work is described. 

2. FORMULATION OF PERMUTATION 

FLOWSHOP SCHEDULING 

PEOBLEM 
The objective of the permutation flowshop scheduling 

problem is to determine the best order for processing all jobs 

on all machines to minimize total completion time of jobs 

(makespan (Cmax)). 

2.1 Mathematical Model of PFSP 
The permutation flowshop scheduling problem with n jobs 

and m machines [1], [4]: 

- n is number of jobs  unlimited                             

j=1,2,……………,n 

- m is number of machines is unlimited                

k=1,2,……………,m 

- processing time of each job on machine k is given 

(tj,k) 

- the sequence of jobs in the machine is the same of all 

machines 
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- each job is processed on only one machine, at the 

same time, each machine could process only one 

machine 

- π (π1, π2, ………., πn)  is the job mutation 

- C(πj,k)   represent the completion time of job πj on 

machine m 

- tπj,k  is the processing time of job πj on machine k 

The formulation of n-job m-machine problem is described as 

following: 

             
 

                       
                   j=2,…………,n 

                       
                 k=2,…………,m 

                                      
         

j=2,………..,n          k=2,…………,m 

So, makespan can be described as: 

                

The objective of scheduling is to find a best permutation π*, 

from all permutation ∏ 

       
                                π ϵ ∏ 

For example, assume that there are 2 jobs and 3 machines and 

the sequence of jobs was [2 1] with processing time of each 

job in machine shown in table (1), calculate completion of 

jobs based the given sequence [7]. 

Table 1. Simple example 1 

 Job1 Job2 

Mac1 2 4 

Mac2 3 2 

Mac3 4 5 

The following Gantt chart illustrate the completion time of 

given sequence Cmax(π) = 15 where π=(2,1) as shown in 

figure(1). 

 

Fig 1: Gantt Chart 

3. WHALE OPTIMIZATION 

ALGORITHM 
Sayedali and Andrew [10] suggested a novel whale 

optimization meta-heuristic algorithm that was inspired from 

the bubble-net hunting technique of humpback whales. The 

WOA simulate the special pursuing behavior of humpback 

whales, in which the whales try to encircle the prey near the 

surface of the water while creating bubbles that are in the 

shape of a circle. In the bubble-net hunting mechanism, the 

humpback whales dive almost 12 meters down and then start 

to make bubbles in a spiral shape around the prey and swim 

toward the surface. 

3.1 Encircling prey 
Humpback whales can notice the prey location and 

surrounded them. For the unknown position of the optimal 

design in the search space, the current best candidate solution 

is the target prey or is close to the optimal in the WOA 

algorithm. After selecting the best search agent, other search 

agents will try to update their positions to the best search 

agent. From this behavior the following equations are 

proposed: 

                                                       (1) 

                                                     (2) 

Where, t: represent the current iteration, A and C are 

coefficient vectors, X* is the position vector of the best 

solution obtained so far, X is the position vector, | | is the 

absolute value, and · is an element-by-element multiplication.  

The vectors A and C are calculated as follows: 

                                               (3) 

                                    (4) 

Where     is linearly decreased from 2 to 0 over the course of 

iterations (in both exploration and exploitation phases) and      
is a random vector in [0, 1]. 

3.2 Bubble-net attacking method 

(exploitation phase) 
To build the mathematical model for the bubble-net behavior 

of humpback whales, two approaches are modeled as follows: 

1. Shrinking encircling approach: This approach is 

achieved by decreasing the value of       in the Eq. (3). 

Note that the fluctuation range of      is also decreased 

by    . In other words       is a random value in the interval    

[−a, a] where a is decreased from 2 to 0 over the 

course of iterations. Setting random values for      in 

[−1, 1], the new position of a search agent can be 

defined anywhere in between the original position of 

the agent and the position of the current best agent. 

 

2. Spiral updating position: after searching humpback 
whales for the prey  then a spiral equation is then 

created between the position of whale and prey to 

update the position of humpback whales as follows: 

 

                                       (5) 

Where                               and indicates the distance of the 

ith whale to the prey (best solution obtained so far), b is a 

constant for defining the shape of the logarithmic spiral, l is a 

random number in [−1, 1], and . is an element-by-element 

multiplication.  

Note that humpback whales swim around the prey within a 

shrinking circle and along a spiral-shaped path at one time. To 

model this synchronous behavior, assume that there is a 50% 

probability of choose either the shrinking encircling technique 

or the spiral model to update the whales position during 

optimization. The mathematical model is as follows: 

0 5 10 15 

Machine 1 

Machine 2 

Machine 3 

Legend 

Job 1 

Job 2 
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(6) 

Where p is a random number in [0, 1], In addition to the 

bubble-net strategy, the humpback whales have another 

behavior of searching for prey randomly. This behavior 

represented as following: 

3.3 Search for prey (exploration phase) 
The same mechanism based on differentiate of the A vector 

can be used to look for prey as exploration phase. In fact, 

humpback whales look for randomly based on the position of 

each other. Therefore, A used with the random values more 

than 1 or less than −1 to force look for agent to move far away 

from a reference whale. In contrast to the exploitation phase, 

the position of a search agent was updated in the exploration 

phase randomly based on selected search agent rather than the 

best search agent appeared so far.| A | > 1 in this approach is 

used to confirm exploration and allow the WOA algorithm to 

execute a global search, as showed in the following equations: 

                
                                      (7) 

                
                                             (8) 

Where      
             is a random position vector selected from the 

current population; 

Researchers in [11] improved WOA algorithm by changing in 

mechanism of updating whale position in each iteration based 

on added new parameter an inertia weight  ∈  [0, 1] is 

random number between 0 1nd 1 but the mechanism of search 

for the best solution was as the basic algorithm (A new 

control parameter, inertia weight, is introduced). Researchers 

introduced the inertia weight into WOA to obtain an improve 

whale optimization algorithm (IWOA) for high dimensional 

continuous function optimization problems and to tune the 

influence on the current best solution. This change was in two 

phase as following: 

 In Encircling prey, the updated method is 

represented by the following equations: 

                                                              (9) 

                                                           (10) 

 In Spiral updating position, the updated method is 

represented by the following equations: 

                                        
       

(11) 

            
                                                    

                                      
  

                    

(12) 

Improved Whale optimization algorithm (WOA) can be 

summarized in the pseudo code shown in Algorithm 1 in 

figure (2) [10], [11]. 

--------------------------------------------------------------------------  

                    Algorithm 1 IWOA Algorithm 

 ------------------------------------------------------------------------- 

Initialize the whales population Xi (i = 1; 2;……..; n) 

    Calculate the fitness of each search agent 

    X* = the best search agent 

    while (t < maxi iteration) 

    for each search agent 

    Update a, A, C, l, p, and   

    if1 (p < 0.5) 

    if2 (|A| < 1) 

    Update the position of the current search agent by Eq. (10) 

    else if2 (|A|   1) 

    Select a random search agent (Xrand) 

    Update the position of the current search agent by Eq. (8) 

    end if2 

    else if1 (p   0.5) 

    Update the position of the current search by Eq. (11) 

    end if1 

    end for 

    Check if any search agent goes beyond the search space and 

    amend it 

    Calculate the fitness of each search agent 

    Update X* if there is a better solution 

    t = t+1 

    end while 

    return X* 

 ------------------------------------------------------------------------ 

Fig 2: The pseudo code of IWOA 

4. MODIFIED WHALE OPTIMIZATION 

ALGORITHM WITH INTERIA 

WEIGHT (MWOA) 
The MWOA algorithm begins with a set of random solutions 

based on number of search agent, and then evaluates all 

search agents to determine the initial best solution. At each 

iteration, search agents update their positions with respect to 

either a randomly selected search agent or the best solution 

obtained so far based on the previous equations. 

4.1 Representation of Solution 
Firstly: WOA is proposed for solving continuous problems, 

but PFSP problem is discrete problem, so algorithm was 

converted to make suitable for our problem by sorting and 

indexing solution. A simple example of the rule is shown in 

table 2. In table 2, there are eleven jobs, so the job is from 1 to 

11, the candidate solution which was supposed is: positioni = 

[0.9883, 0.9652, 0.2030, 0.3092, 0.7251, 0.2849, 0.1744, 

0.7852, 0.9984, 0.5376, 0.7035], by sorting the positioni in 

descending order. Finally, the order of job is the processing 

order π = [7_3_6_4_10_11_5_8_2_1_9] which refer to the 

candidate solution to the PFSP. 

 

Table 2. Simple example 2 

Jobs 1 2 3 4 5 6 7 8 9 10 11 

position .98 .96 .20 .30 .72 .28 .17 .78 .99 .53 .70 

Π 7 3 6 4 10 11 5 8 2 1 9 

Secondly: at the end of each iteration there is current 

candidate solution, this permutation solution is token, 

mutation permutation function is used to change permutation 

of jobs in scheduling problem. This mechanism consisted 

from 3 strategies developed in the following: 

4.2 Swap Strategy 
Random number is selected from 1 to 3 to choice between 

three strategies and i, j random number from 1 to number of 

jobs (N_jobs =11); Swap is the first strategy can be 

implemented. This strategy is shown in figure (3): 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 173 – No.2, September 2017 

29 

 
1 … i i+1 …. j-1 J … N_jobs 

 

  
7 3 6 4 10 11 5 8 2 1 9 

Parent (i=2 and j=6) 

7 11 6 4 10 3 5 8 2 1 9 

Offspring 

Fig 3: An example of Swap 

4.3 Reversion Strategy 
Reversion is the second strategy that can be implemented by 

selection two random numbers from 1 to number of jobs (for 

example [4, 7]); i= min (two selected numbers), j=max (two 

selected numbers). This strategy is shown in figure (4): 

1 … i i+1 …. j-1 J … N_jobs 

 

 

1 …. J j-1 …. i+1 I …. N_jobs 

 

  

7 3 6 4 10 11 5 8 2 1 9 

Parent (i=4 and j=7) 

7 3 6 5 11 10 4 8 2 1 9 

Offspring 

Fig 4: An example of Reversion 

4.4 Insertion Strategy 
Insertion is the third strategy that can be implemented by 

selection two random numbers from 1 to number of jobs. This 

strategy is shown in figure (5a) and (5b): 

 

 

1 … i-1 i i+1 … J j+1 …. N_jobs 

 

 

1 … i-1 i+1 … J I j+1 … N_jobs 

 

If (i < j) 

 

7 3 6 4 10 11 5 8 2 1 9 

Parent (i=5 and j=8) 

7 3 6 4 11 5 8 10 2 1 9 

Offspring 

Fig 5a: An example of Reversion 

1 … J j+1 … i-1 I … N_jobs 

 

 

1 … J I j+1 … i-1 … N_jobs 

 

If (i ≥ j) 

 

7 3 6 4 10 11 5 8 2 1 9 

Parent (i=9 and j=4) 

7 3 6 4 2 10 11  5 8 1 9 

Offspring 

Fig 5b: An example of Reversion 

Also to improve the exploration, local optimal optima 

avoidance, exploitation and convergence of the WOA, the 

value of C vector in equation 4 that is important in determine 

the current best candidate solution in local search is replaced 

with Lévy flight equation used in dragonfly algorithm that is 

shown in  the following equation [12]. 

                                                (13) 

                
     

    
 
 

                                  (14) 

where r1, r2 are two random numbers in [0,1], β is a constant 

(equal to 1.5 in this work), and σ is calculated as follows: 

    

 

 
              

  
 
 

  
    
 

        
 
   
 

 

 

 

 
  

             (15) 

where Γ(x) = (x-1)ǃ. 

This update can maximize the diversification of search agents, 

which guarantees that the algorithm can explore the search 

place efficiently and accomplish local minima avoidance. This 

finding implies that the Lévy flight trajectory is helpful in 

obtaining a better trade-off between exploration and 

exploitation in the WOA. 

The pseudo code of modified whale optimization algorithm is 

shown in Algorithm 2 in figure (6): 

 ------------------------------------------------------------------------ 

                Algorithm 2 MOWA Algorithm 

------------------------------------------------------------------------ 

    Initialize the whales population Xi (i = 1; 2;……..; n) 

    Calculate the fitness of each search agent 

    X* = the best search agent 

    while (t < maxi iteration) 

    for each search agent 

    Update a, A,  l, p, and   

    Update C vector based on Eq. (13) 

    if1 (p < 0.5) 

    if2 (|A| < 1) 

    Update the position of the current search agent by Eq. (10) 

    else if2 (|A|   1) 

    Select a random search agent (Xrand) 

    Update the position of the current search agent by Eq. (8) 
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    end if2 

    else if1 (p   0.5) 

    Update the position of the current search by Eq. (11) 

    end if1 

    end for 

    For each iteration 

    Create new solution by using the mutation permutation    

    function 

    Calculate the fitness of the new solution 

    If3 (new solution ≤ fitness) 

    Update the position of current candidate solution based on  

    the new solution of mutation function 

    end if3 

    end 

    Check if any search agent goes beyond the search space and 

    amend it 

    Calculate the fitness of each search agent 

    Update X* if there is a better solution 

    t = t+1 

    end while 

    return X* 

-------------------------------------------------------------------------- 

Fig 6: The pseudo code of MWOA 

 

5. EXPERIMENTAL RESULTS 

5.1 Testing Benchmarks 
To test the quality of solution of proposed algorithm in 

solving permutation flowshop scheduling problem to obtain 

the minimum makespan, 54 instances is used that were 

selected from OR-Library benchmarks. The first eight 

instances are proposed by Carlier in [13], the next six 

instances were called rec01; rec03 through rec11 that are 

proposed by Reeves in [14] and the last 40 instances (Ta01- 

Ta40) are given by Taillard in [15]. 

5.2 The Carlier and Reeves datasets of 

PFSP 
All computational experiments are implemented on MATLAB 

R2015a, and run on Intel (R) Core(TM) i7-4510U CPU, 2.60 

GHz with 8 GB RAM. Each instance is run for 20 times with 

population size (500) and search agents (30). To compare 

between proposed algorithm and other meta-heuristic 

algorithms average Error Ratio (ERi) is used and it is 

calculated as the following equation: 

      
          

    
      

Where C*(x) is the makespan that obtained by proposed 

algorithm and Opt. is best known or optimal value available in 

the previous literature. The performance of the proposed work 

for Carlier and Reeves datasets are compared with MCS 

(Modified Cuckoo Search) [1], AWDAA [2] , hybridized 

version of PSO with EDA [5] and DT+SS [9]. Table 3 show 

total completion time (makespan) obtained from using WOA 

for solving permutation flowshop scheduling problem 

instances and from using Modified Whale Optimization 

Algorithm (MWOA) and from using previous researches for 

each instance. 

 

Table 3. Results of MWOA algorithm for Carlier and Reeves datasets 

P n,m 

Optimal Value 

available in the 

Literature 

Results of the 

WOA algorithm 

Error 

Ratio 

Results of the 

MWOA 

algorithm 

Error 

Ratio 

Car1 11,5 7038 7038 0 7038 0 

Car2 13,4 7166 7166 0 7166 0 

Car3 12,5 7302 7312 0.14 7312 0.14 

Car4 14,4 8003 8003 0 8003 0 

Car5 10,6 7720 7767 0.61 7720 0 

Car6 8,9 8505 8505 0 8505 0 

Car7 7,7 6590 6590 0 6590 0 

Car8 8,9 8366 8366 0 8366 0 

Rec01 20,5 1247 1293 3.69 1247 0 

Rec03 20,5 1109 1131 1.98 1109 0 

Rec05 20,5 1242 1269 2.17 1245 0.24 

Rec07 20,10 1566 1584 1.15 1566 0 

Rec09 20,10 1537 1599 4.03 1537 0 

Rec11 20,10 1431 1472 2.86 1431 0 

 

Table 4 shows error ratio values for all fourteen datasets along 

with literature results. From table 4, except for the Car-3 

instance AWDAA is the best but other 13 instances modified 

algorithm obtained optimal value such as modified cuckoo 

search algorithm. The proposed approach yielded much better 

solution quality compared to various hybrid algorithms, meta-

heuristics and heuristics for Carlier and Reeves datasets. 
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Table 4.  Average Error Ratio of algorithms 

 

P n,m 
Modified WOA 

(MWOA) 
WOA MCS AWDAA PSO-EDA DT+SS 

Car1 11,5 0 0 0 0 0 0 

Car2 13,4 0 0 0 0 0 0 

Car3 12,5 0.14 0.14 0.14 0 0.14 0.14 

Car4 14,4 0 0 0 0 0 0 

Car5 10,6 0 0.61 0 0.93 0 0 

Car6 8,9 0 0 0 2.35 0 0.02 

Car7 7,7 0 0 0 0 0 0 

Car8 8,9 0 0 0 0 0 0 

Rec01 20,5 0 3.69 0 0.08 0.13 0 

Rec03 20,5 0 1.98 0 0.63 0.04 0 

Rec05 20,5 0.24 2.17 0.24 1.77 0.24 0.24 

Rec07 20,10 0 1.15 0 0.38 0 0 

Rec09 20,10 0 4.03 0 0.39 0.42 0 

Rec11 20,10 0 2.86 0 8.04 0.50 0 

 

5.3 The Taillard Datasets of PFSP 
In this section, 40 well-known benchmark instances given by 

Taillard were experimented. For comparing modified 

algorithm efficiency, most literature resources used an upper 

bound and a few authors used a lower bound of Taillard to test 

dataset instances. Because most of the literature used upper 

bound, the proposed approach also uses upper bound as 

optimal value and compares it with the other algorithms from 

the literature such as Scatter Search (SS) [16], Self-guided GA 

[17], NEH+SA+C [18], and PSOspv [4]. Table 5 shows the 

test results of the modified algorithm along with completion 

time and Table 6 shows average error ratio of various 

literatures on all 40 instances.  

From Table 6, it is seen that for all 10 problems of 20×5 

dataset, the modified algorithm yields an optimal value and 

much lower average error ratio for 20×10 datasets. In the 

20×20 and 50×5 datasets showed that hybrid algorithm of 

NEH, SA and composite heuristics produced lower values. 

 

Table 5.  Results of proposed method for Taillard (1993) datasets 

 

P n×m 
Optimal Value available in the 

Literature 

Results of the MWOA 

algorithm 

Error 

Ratio 

Ta01 

20×5 

1278 1278 0 

Ta02 1359 1359 0 

Ta03 1081 1081 0 

Ta04 1293 1293 0 

Ta05 1235 1235 0 

Ta06 1195 1195 0 

Ta07 1234 1239 0.41 

Ta08 1206 1206 0 

Ta09 1230 1230 0 

Ta10 1108 1108 0 

Average 0.04 

Ta11 

20×10 

1582 1583 0.06 

Ta12 1659 1674 0.90 

Ta13 1496 1508 0.80 
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P n×m 
Optimal Value available in the 

Literature 

Results of the MWOA 

algorithm 

Error 

Ratio 

Ta14 1377 1385 0.58 

Ta15 1419 1430 0.77 

Ta16 1397 1404 0.50 

Ta17 1484 1484 0 

Ta18 1538 1546 0.52 

Ta19 1593 1603 0.63 

Ta20 1591 1599 0.50 

Average 0.526 

Ta21 

20×20 

2297 2307 0.43 

Ta22 2099 2119 0.95 

Ta23 2326 2344 0.77 

Ta24 2223 2235 0.54 

Ta25 2291 2317 1.13 

Ta26 2226 2230 0.18 

Ta27 2273 2291 0.79 

Ta28 2200 2218 0.82 

Ta29 2237 2242 0.22 

Ta30 2178 2198 0.92 

Average 0.675 

Ta31 

50×5 

2724 2724 0 

Ta32 2834 2838 0.14 

Ta33 2621 2621 0 

Ta34 2751 2753 0.07 

Ta35 2863 2864 0.03 

Ta36 2829 2831 0.07 

Ta37 2725 2725 0 

Ta38 2683 2683 0 

Ta39 2552 2555 0.12 

Ta40 2782 2782 0 

Average 0.043 

 

 

Table 6.  Average Error Ratio of algorithms 

 

Problem n×m 
Modified WOA 

(MWOA) 
SS Self-guided GA NEH+SA+C PSOSPV 

Ta01-Ta10 20×5 0.04 0.33 1.10 0.91 1.75 

Ta11-Ta20 20×10 0.526 0.88 1.90 0.665 3.25 

Ta21-Ta30 20×20 0.675 0.497 1.60 0.459 2.82 

Ta31-Ta40 50×5 0.043 0.166 0.52 0.025 1.14 
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5.4 Statistical Test 
The Statistical tests were performed on all datasets. For 

Carlier and Reeves datasets, the error ratio for all the 

instances of the instances were specified in the previous 

researches and it is decided to use a Friedman’s Test for these 

two datasets. In the Taillard dataset, most researchers 

specified an error ratio of population means of dataset. For 

example Ta01-Ta10 consists of 10 instances, so most 

researchers would use an average error ratio of 10 instances: 

they would not specify error ratio of individual instances. 

Accordingly, a Friedman’s Test is used for grouped Taillard 

instances.  

From Table 9, it is clear that for Carlier and Reeves problems 

sets modified algorithm (MWOA) & MCS gives statistically 

the same average error ratio and are more statistically 

significant than the other methods. Also from Table 10, it is 

clear that for Taillard problem sets modified algorithm 

(MWOA) & NEH+SA+C gives statistically the same average 

error ratio and are more statistically significant than the other 

methods. 

Table 7. Test Statistics for Carlier and Reeves 

N 14 

Chi-Square 23.640 

Df 5 

Asymp. Sig. .000 

significance level α = 0.05 

Table 8. Ranks of algorithms for Carlier and Reeves 

datasets 

 Mean Rank 

MWOA 2.82 

WOA 4.57 

MCS 2.82 

AWDAA 4.25 

PSO_EDA 3.54 

DT_SS 3.00 

 

Table 9. Test Statistics for Taillard dataset 

N 4 

Chi-Square 13.400 

Df 4 

Asymp. Sig. .009 

significance level α = 0.05 

 

Table 10. Ranks of algorithms for Taillard dataset 

 Mean Rank 

MWOA 1.75 

SS 2.50 

Self_guided_GA 4.00 

NEH_SA_C 1.75 

PSO_SPV 5.00 

 

 

6. CONCLUSION AND FUTURE WORK 
Based on our knowledge, this is the first attempt of the whale 

optimization algorithm to solve the permutation flow shop 

scheduling problem with the makespan criteria in the 

literature. A modified WOA algorithm is proposed for solving 

PFSP. Three strategies of mutation methodology and Levy 

flight function are added to a whale optimization algorithm 

for improving WOA algorithm’s performance. The 

performance of the modified whale optimization algorithm is 

tested using the benchmark problem such as Carlier, Reeves 

and Taillard datasets. The statistical results show that the 

proposed algorithm is considerably effective to the PFSP. The 

proposed algorithm can be used in the future for solving other 

mathematical and industry problems to obtain the best 

solutions and researchers can made more improving on the 

whale optimization algorithm by using another optimization 

techniques to obtain optimal solution. In the future work, the 

modified algorithm may be used in hybrid with other 

heuristics and meta-heuristics and researchers can improve t. 

It would be interesting to apply the proposed algorithm to 

solve other stochastic scheduling problems with single or 

multiple objective functions in the future. 
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