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ABSTRACT
In this paper, a new distribution called New Generalized Ex-
treme Value (NGEV) distribution is introduced. Also, the statis-
tical properties of this model are studied, such as, quantiles, mo-
ment generating function and moments of order statistics. More-
over, maximum likelihood estimators of it’s parameters are dis-
cussed. An application of NGEV distribution to a survival times
in months of 20 acute myeloid leukemia patients data set is pro-
vided. Also, bivariate New Generalized Extreme Value BNGEV
distribution.is introduced a Marshall-Olkin type. Marginal and
conditional distribution functions are studied. Furthermore, maxi-
mum likelihood estimates (MLEs) of the parameters are presented.
An application of BNGEV distribution to an UEFA Champion′s
League data set is provided and the profiles of the log-likelihood
function of parameters of NGEVD and BNGEVD are plotted.

General Terms
Univariate distribution, Bivariate distribution

Keywords
Extreme value distribution, Exponentiated Weibull distribution,
Moment generating function, Joint cumulative distribution func-
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1. INTRODUCTION
Extreme value distributions are the limiting distributions for the
minimum or the maximum of a very large collection of random
observations from the same arbitrary distribution. In the context of
reliability modeling, extreme value distributions for the minimum
are frequently encountered. The weibull distribution and the ex-
treme value distribution have a useful mathematical relationship,
i.e. the natural log of a weibull random time is an extreme value
random observation.
The aim of this paper is to introduce a new generalized extreme
value (NGEV) distribution by using the mathematical relationship
between weibull distribution and extreme value distribution. Also,
we introduce its bivariate and we call it bivariate New Generalized
Extreme Value (BNGEV) distribution, whose marginals are NGEV
distributions. It is a Marshall-Olkin type. Many authors used this
method to introduce a new bivariate distributions, see for example
Marshall and Olkin [2], Kundu and Gupta [1], Sarhan and Balakr-

ishnan [3], Sarhan et al. [6], El-Bassiouny et al.[4] and El-Gohary
et al. [5].
This article is organized as follows, the new generalized extreme
value (NGEV) distribution are proposed in Section 2. Various prop-
erties including quantiles, median and moment generating function
are investigated in Section 3. Rényi entropy is provided in Section
4. Moments of order statistics are obtained in Section 4. Section 5
is devoted to the maximum likelihood estimates of the parameters
and the information matrix of the NGEV distribution. An applica-
tion of NGEV distribution to a survival times in months of 20 acute
myeloid leukemia patients data set is provided and the profiles of
the log-likelihood function of parameters of NGED are ploted in
section 6. In section 7, we introduced the bivariate case and we
call it bivariate New Generalized Extreme Value (BNGEV) distri-
bution. Also, various properties including the joint survival func-
tion, the joint cumulative distribution function, the joint probability
density function, marginal probability density functions are investi-
gated in Section 8. Section 9 is devoted to the maximum likelihood
estimates of the parameters of the BNGEV distribution. In Section
10, an application of the BNGE distribution to a UEFA Champion′s
League data set are provided and the profiles of the log-likelihood
function of parameters of BNGED are ploted. Finally, the results of
this paper are concluded in Section 11.

2. NEW GENERALIZED EXTREME VALUE
DISTRIBUTION

In this section, we discuss the new generalized extreme value
(NGEV) distribution. This distribution is derived from an exponen-
tiated weibull distribution. Let X be a random variable has Expo-
nentiated Weibull (EW) distribution [9] with parameters α, λ and
k > 0, then its cdf is given by

G (x) =

(
1− e−(

x
λ )
k
)α

, x ≥ 0, α, k, λ > 0 (1)

and the probability density function (pdf) is given by

g (x) =
αk

λ

(x
λ

)k−1
e−(

x
λ )
k
(

1− e−(
x
λ )
k
)α−1

, x ≥ 0, α, k, λ > 0
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Fig. 1. The pdf of the NGEV distribution at different values of its param-
eters.

2.1 NGEV Specifications
THEOREM 1. Let a non-negative random variable Y has the

exponentiated weibull distribution, symbolically we write Y ∼
EW (α, λ, k). Define a new random variable X = log Y , then
the random variable X has the new generalized extreme value dis-
tribution, symbolically we write X ∼ NGEV (α, λ, k). The cu-
mulative distribution function and the probability density function
of X are respectively given by

FX (x) =

(
1− e−(

ex

λ )
k
)α

, −∞ < x <∞, α, k, λ > 0 (2)

and

fX (x) = αk

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α−1

. (3)

PROOF. Since

FX (x) = P [X ≤ x] = P [log Y ≤ x]

= P [Y ≤ ex] = G (ex)

=

(
1− e−(

ex

λ )
k
)α

, −∞ < x <∞, α, k, λ > 0.

By diffrentiation the cdf of X given in (2) with respect to x, we
find the pdf of X given in (3), which complete the proof.
Since the cdf of NGEV is in closed form, we can use it to generate
simulated data by using the following formula

x = ln

(
λ
(
− ln

(
1− U 1

α

)) 1
k

)
,

where U is a random variable which follows a standard uniform
distribution on (0,1) interval.
Figures 1 and 2 illustrate some of the possible shapes of the pdf and
cdf of the NGEV distribution.

Fig. 2. The cdf of the NGEV distribution at different values of its param-
eters.

3. PROPERTIES OF THE NGEV DISTRIBUTION
In this section, we discuss some properties of the NGEV distribu-
tion.

3.1 Quantile, Median and Mode
The qth quantile, can be computed to the NGEV distribution as

xq = ln

(
λ
(
− ln

(
1− q 1

α

)) 1
k

)
, 0 < q < 1. (4)

The median of the NGEV distribution, i.e. x0.5, is given by

median(X) = x0.5 = ln

(
λ
(
− ln

(
1− (0.5)

1
α

)) 1
k

)
. (5)

Moreover, the mode of the NGEV distribution can be obtained by
deriving its pdf with respect to x and equal it to zero. Thus the
mode of the NGEV distribution can be obtained as a solution of the
following nonlinear equation

(α− 1)

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)−1
−
(
ex

λ

)k
+ 1 = 0.

(6)
One can’t get an explicit solution of (6) in the general case. Numer-
ical methods should be used to solve it.

3.2 Moment generating function of NGEVD
In this subsection, the moment generating function and the rthmo-
ment about the origin of the NGEV distribution are computed.
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THEOREM 2. The moment generating function of this NGEV
distribution is as follows

MX (t) = α

∞∑
i=0

(
α− 1

i

)
(−1)i λt

1

(i+ 1)
t
k+1

Γ

(
t

k
+ 1

)
PROOF.

MX (t) = E
(
etX
)

=

∫ ∞
−∞

etxf (x) dx

=

∫ ∞
−∞

etxαk

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α−1

dx

= αk

∞∑
i=0

(
α− 1

i

)
(−1)i

∫ ∞
−∞

etx
(
ex

λ

)k
×e−(i+1)( e

x

λ )
k

dx

let (i+ 1)
(
ex

λ

)k
= u, x = ln

(
λ

(i+1)1/k

)
+ 1

k
ln (u) , dx =

1
ku
du, u = 0→∞

MX (t) = α

∞∑
i=0

(
α− 1

i

)
(−1)i λt

1

(i+ 1)
t
k+1

∫ ∞
0

e−uu
t
k du

= α
∞∑
i=0

(
α− 1

i

)
(−1)i λt

1

(i+ 1)
t
k+1

Γ

(
t

k
+ 1

)
.

The rthmoment about the origin of the NGEV distribution is given
by E(Xr) = dr

dtr
MX (t) |t=0 and by using maple software, we

find MX (0) = 1.

4. RÉNYI ENTROPY OF NGEVD
In this section, we compute the rényi entropy which is a measure
of the uncertain variation

THEOREM 3. The Rényi entropies for the NGEV distribution
are given by

IR (δ) =
1

1− δ
log[I (δ)], δ 6= 1 (7)

where

I (δ) = αδkδ−1
∞∑
i=0

(
αδ − δ
i

)
(−1)i

(
1

δ + i

)δ
Γ (δ) (8)

PROOF.

IR (δ) =
1

1− δ
log(I (δ))

I (δ) =

∫
<
fδ (x) dx =

∫ ∞
−∞

αδkδ
(
ex

λ

)δk
e−δ(

ex

λ )
k

×
(

1− e−(
ex

λ )
k
)αδ−δ

dx

= αδkδ
∞∑
i=0

(
αδ − δ
i

)
(−1)i

∫ ∞
−∞

(
ex

λ

)δk
e−(δ+i)(

ex

λ )
k

dx

let (δ + i)
(
ex

λ

)k
= u, x = ln

(
λ

(δ+i)1/k

)
+ 1

k
ln (u) , dx =

1
ku
du, u = 0→∞

I (δ) = αδkδ−1
∞∑
i=0

(
αδ − δ
i

)
(−1)i

(
1

δ + i

)δ ∫ ∞
0

e−uuδ−1du

= αδkδ−1
∞∑
i=0

(
αδ − δ
i

)
(−1)i

(
1

δ + i

)δ
Γ (δ)

5. MOMENTS OF ORDER STATISTICS OF NGEVD
Suppose that n random variables X1,X2, ...,Xn are ordered in
non-decreasing magnitude and written as X1:n ≤ X2:n ≤ ... ≤
Xn:n. Where the smallest order statistic is denoted by X1:n, the
second smallest is denoted byX2:n, and so on, and the largest order
statistic is denoted by Xn:n and Xr:n is called rth order statistic.
In the definition of order statistics, there is no restriction on whether
X ,
rs are independent or identically distributed. But many well-

known results about order statistics are under the classical assump-
tion that X ,

rs are independent and identically distributed (iid). The
pdf of the rth order statistic is

fr:n (x) =
n!

(n− r)! (r − 1)!
f (x) [F (x)]r−1 [1− F (x)]n−r

, −∞ < x <∞.

where f (x) comes from (3) and F (x) comes from (2).
The kth moment about zero of the rth order statistic is given by the
following theorem

THEOREM 4. The kth moment about zero of the rth order
statistic for the NGEV distribution is given by

µ(k)
r:n =

n!

(r − 1)! (n− r)!
α

n−r∑
i=0

∞∑
j=0

(
n− r
i

)(
α (r + i)− 1

j

)
× (−1)i+j

1

j + 1

PROOF.

µ(k)
r:n =

n!

(r − 1)! (n− r)!

∫ ∞
−∞

f (x) [F (x)]r−1 (1− F (x))n−r dx

=
n!

(r − 1)! (n− r)!
αk

n−r∑
i=0

(
n− r
i

)
(−1)i

∫ ∞
−∞

(
ex

λ

)k
×e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α(r+i)−1

dx

=
n!

(r − 1)! (n− r)!
αk

n−r∑
i=0

∞∑
j=0

(
n− r
i

)(
α (r + i)− 1

j

)

× (−1)i+j
∫ ∞
−∞

(
ex

λ

)k
e−(j+1)( e

x

λ )
k

dx
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let (j + 1)
(
ex

λ

)k
= u, x = ln

(
λ

(i+1)1/k

)
+ 1

k
ln (u) , dx =

1
ku
du, u = 0→∞

µ(k)
r:n =

n!

(r − 1)! (n− r)!
α

n−r∑
i=0

∞∑
j=0

(
n− r
i

)(
α (r + i)− 1

j

)

× (−1)i+j

j + 1

∫ ∞
0

e−udu

=
n!

(r − 1)! (n− r)!
α

n−r∑
i=0

∞∑
j=0

(
n− r
i

)(
α (r + i)− 1

j

)
× (−1)i+j

1

j + 1

6. ESTIMATION AND INFORMATION MATRIX
OF NGEVD

In this section we discussed the estimation of the NGEV parameters
by using the method of maximum likelihood based on a complete
sample.

6.1 Maximum Likelihood Estimators
Let x1, x2, . . . , xn be a random sample from NGEV distribution.
Then the log-likelihood function of the NGEV may be expressed
as

L = log l(x;α, k, λ) = n logα+ n log k + k

n∑
i=1

log

(
exi

λ

)

−
n∑
i=1

(
exi

λ

)k
+ (α− 1)

n∑
i=1

log

(
1− e−

(
exi
λ

)k)
(9)

Differentiating the log-likelihood with respect to α, λ and k, re-
spectively, and setting the result equal to zero, we have

∂L

∂α
=

n

α
+

n∑
i=1

log

(
1− e−

(
exi
λ

)k)
(10)

∂L

∂k
=

n

k
+

n∑
i=1

log

(
exi

λ

)
−

n∑
i=1

(
exi

λ

)k
log

(
exi

λ

)

+ (α− 1)

n∑
i=1

e
−
(
exi
λ

)k (
exi
λ

)k
log
(
exi
λ

)
1− e−

(
exi
λ

)k (11)

∂L

∂λ
=
−nk
λ

+
k

λ

n∑
i=1

(
exi

λ

)k
− (α− 1) k

λ

×
n∑
i=1

e
−
(
exi
λ

)k (
exi
λ

)k
1− e−

(
exi
λ

)k (12)

The maximum likelihood estimates α̂, λ̂ and k̂ of the unknown
parameters α, λ and k respectively, are obtained by setting these
above equations (10)- (12) to zero and solving them simultane-
ously.

6.2 Asymptotic Confidence Bounds
In this subsection, we derive the asymptotic confidence intervals of
the unknown parameters α, λ and k when α, λ > 0 and k > 0. The
simplest large sample approach is to assume that the MLEs(α, λ, k)
are approximately multivariate normal with mean (α, λ, k) and co-
variance matrix I−10 where I−10 the inverse of the observed infor-
mation matrix which is defined by

I−10 = −

 ∂2L
∂α2

∂2L
∂α∂λ

∂2L
∂α∂k

∂2L
∂λ∂α

∂2L
∂λ2

∂2L
∂λ∂k

∂2L
∂k∂α

∂2L
∂k∂λ

∂2L
∂k2


−1

=


var (α̂) cov

(
α̂, λ̂

)
cov

(
α̂, k̂

)
cov

(
λ̂, α̂

)
var

(
λ̂
)

cov
(
λ̂, k̂
)

cov
(
k̂, α̂

)
cov

(
k̂, λ̂
)

var
(
k̂
)
 (13)

The second partial derivatives included in I−10 are given as follows
∂2L
∂α2 = −n

α2

∂2L
∂k2

= −n
k2

−
∑n
i=1

(
exi
λ

)k (
log
(
exi
λ

))2
+

(α− 1)
∑n
i=1

(
log
(
exi
λ

))
Wi

1−e
−
(
exi
λ

)k(1−( exiλ )k)
−W2

i

1−e
−
(
exi
λ

)k
2

∂2L
∂λ2 = nk

λ2 − k(1−k)
λ2

∑n
i=1

(
exi
λ

)k
+ (α−1)k

λ2

∑n
i=1

Ri

1−e
−
(
exi
λ

)k −

(α−1)k
λ

∑n
i=1

1−e
−
(
exi
λ

)k k
λRi

((
exi
λ

)k
−1
)
+ k
λR

2
i

1−e
−
(
exi
λ

)k
2

∂2L
∂α∂k

=
∑n
i=1

Wi

1−e
−
(
exi
λ

)k
∂2L
∂α∂λ

=
∑n
i=1

−k
λ Ri

1−e
−
(
exi
λ

)k
∂2L
∂k∂λ

= −n
λ

+ 1
λ

∑n
i=1

(
exi
λ

)k
+ k

λ

∑n
i=1

(
exi
λ

)k
log
(
exi
λ

)
−

(α−1)k
λ

∑n
i=1

1−e
−
(
exi
λ

)kWi[−( exiλ )k
+1

]
−R2

i log
(
exi
λ

)
1−e

−
(
exi
λ

)k
2 −

(α−1)
λ

∑n
i=1

Ri

1−e
−
(
exi
λ

)k
where the functions Wi and Ri are given by

Wi = log
(
exi
λ

)
e
−
(
exi
λ

)k (
exi
λ

)k
,

Ri = e
−
(
exi
λ

)k (
exi
λ

)k
.

The above approach is used to derive the (1− δ) 100% confidence
intervals for the parameters α, λ and k as in the following forms

α̂± Z δ
2

√
var (α̂), λ̂± Z δ

2

√
var

(
λ̂
)
, k̂ ± Z δ

2

√
var

(
k̂
)

,

where Z δ
2

is the upper ( δ
2
)th percentile of the standard normal

distribution.
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7. APPLICATION OF THE NGEV DISTRIBUTION
Now we use a real data set to show that the NGEV distribution is
competitive among other known distributions such as Gumbel type-
2 (G type-2) distribution, Exponentiated Fréchet (EF) distribution,
Fréchet distribution and lognormal (LN) distribution. The data set
in Table 1 shows the survival times in months of 20 acute myeloid
leukemia patients reported in Afify et al. [19].

Table1: Survival times in months of 20 acute myeloid leukemia patients
2.226 2.113 3.631 2.473 2.720 2.746 1.972
2.050 2.061 3.915 0.871 1.548 2.808 1.079
1.200 0.726 2.967 1.958 2.265 2.353

The MLEs of the unknown parametersα, λ and k are given in Table
2. Also, the values of the log-likelihood functions L, the statistics
AIC (Akaike Information Criterion), CAIC (Consistent Akaike-
Information Criteria) and BIC (Bayesian Information Criterion)
are given in Table 3 for the five distributions in order to verify which
distribution fits better this real data set.

Table 2: The MLEs and the values 0fL

Model MLEs L

G type-2 θ̂ = 2.6040, φ̂ = 2.0651 -29.08667
EF α̂ = 0.3928, φ̂ = 3.4393 -31.89448

Fréchet φ̂ = 1.7378 -35.45610
LN µ̂ = 0.6971, σ̂ = 0.4360 -25.71549

NGEV α̂ = 26.389, λ̂ = 0.292 -24.347
k̂ = 0.382

Table 3: The values 0fAIC,BIC andCAIC

Model AIC BIC CAIC

G type-2 62.1733 64.1648 66.1648
EF 67.7889 69.7804 71.7804

Fréchet 72.9122 76.9037 74.9079
LN 55.431 57.4225 59.4225

NGEV 54.694 52.5971 56.194

Since the values of −L, AIC, BIC and CAIC (see Table 2 and
Table 3) are smaller for the NGEV distribution compared with
those values of the other models, then the new distribution seems
to be a very competitive model based on this real data set.
Substituting the MLEs of the unknown parameters into (13), we get
an estimation of the variance covariance matrix as the following:

I−10 =

1.559× 103 −27.535 −5.764
−27.535 0.513 0.111
−5.764 0.111 0.025


The approximate 95% two sided confidence intervals of the
unknown parameters α, λ and k are, respectively,given as [-
50.99,103.78], [-1.112,1.696], [0.0721,0.6919].
The profiles of the log-likelihood functions of α, λ and k of NGEV
for survival times in months of 20 acute myeloid leukemia patients
data are ploted in Fig. 3 and Fig. 4. From the plots of the profiles
of the log-likelihood function of α, λ and k , we observe that the
likelihood equations have a unique solution.

Fig. 3. The profile of the log-likelihood function of α.

Fig. 4. The profile of the log-likelihood function of k.

8. BIVARIATE NEW GENERALIZED EXTREME
VALUE DISTRIBUTION

In this section, we discuss the BNGEV distribution.We start with
the joint survival function and derive the corresponding joint prob-
ability density function of this distribution

8.1 The Joint Cumulative Distribution Function
Suppose that U1 ∼ NGEV (α1, λ, k) , U2 ∼ NGEV (α2, λ, k)
and U3 ∼ NGEV (α3, λ, k) are independent random variables.
Define X1 = max{U1, U3} and X2 = max{U2, U3}. Then, the
bivariate vector (X1,X2) ∼ BNGEV (α1, α2, α3, λ, k)
In the following lemma, We study the joint cumulative distribution
function of the random varibles X1 and X2.

LEMMA 5. The joint cdf of X1 and X2 is given by
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Fig. 5. The profile of the log-likelihood function of λ.

FBNGEV (x1, x2) =

(
1− e−

(
ex1
λ

)k)α1
(

1− e−
(
ex2
λ

)k)α2

×
(

1− e−(
ez

λ )
k
)α3

, (14)

where z = min (x1, x2) .

PROOF.

FBNGEV (x1, x2) = P (X1 ≤ x1,X2 ≤ x2)

= P (max {U1, U3} ≤ x1,
max {U2, U3} ≤ x2)

= P (U1 ≤ x1, U2 ≤ x2,
U3 ≤ min (x1, x2)) .

Where, Ui (i = 1, 2, 3) are mutually independent random vari-
ables. Then, we obtain

FBNGEV (x1, x2) = P (U1 ≤ x1)P (U2 ≤ x2)

×P (U3 ≤ min (x1, x2))

= FNGEV (x1;α1, λ, k)FNGEV (x2;α2, λ, k)

×FNGEV (z;α3, λ, k)

=

(
1− e−

(
ex1
λ

)k)α1
(

1− e−
(
ex2
λ

)k)α2

×
(

1− e−(
ez

λ )
k
)α3

.

8.2 The Joint Probability Density Function
In this subsection, we study the joint probability density function
of the random varibles X1 and X2 in the following theorem.

THEOREM 6. If the joint cdf of (X1,X2) is as in (14) then, the
joint pdf of (X1,X2) is given by

fBNGEV (x1, x2) =

 f1 (x1, x2) if x1 < x2
f2 (x1, x2) if x2 < x1
f3 (x) if x1 = x2 = x

where

f1 (x1, x2) = fNGEV (x1;α1 + α3, λ, k) fNGEV (x2;α2, λ, k)

= (α1 + α3) k2
(
ex1

λ

)k
e
−
(
ex1
λ

)k
α2

(
ex2

λ

)k
×e
−
(
ex2
λ

)k (
1− e−

(
ex1
λ

)k)α1+α3−1

×
(

1− e−
(
ex2
λ

)k)α2−1

(15)

f2 (x1, x2) = fNGEV (x1;α1, λ, k) fNGEV (x2;α2 + α3, λ, k)

= α1k
2

(
ex1

λ

)k
e
−
(
ex1
λ

)k (
1− e−

(
ex1
λ

)k)α1−1

× (α2 + α3)

(
ex2

λ

)k
e
−
(
ex2
λ

)k

×
(

1− e−
(
ex2
λ

)k)α2+α3−1

(16)

f3 (x) =
α3

α1 + α2 + α3

fNGEV (x;α1 + α2 + α3, λ, k)

= α3k

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α1+α2+α3−1

(17)

PROOF. Let us first assume that x1 < x2. Then,
FBNGEV (x1, x2) in (14) becomes

FBNGEV (x1, x2) =

(
1− e−

(
ex1
λ

)k)α1+α3
(

1− e−
(
ex2
λ

)k)α2

.

Then, upon differentiating this function w.r.t. x1 and x2 we obtain
the expression of f1 (x1, x2) gives in (15). By the same way we
obtain f2 (x1, x2) when x2 < x1. But f3 (x) cannot be derived
in a similar way. For this reason, we use the following identity to
derive f3 (x)∫∞
−∞

∫ x2
−∞ f1 (x1, x2) dx1dx2 +

∫∞
−∞

∫ x1
−∞ f2 (x1, x2) dx2dx1 +∫∞

−∞ f3 (x, x) dx = 1
let
I1 =

∫∞
−∞

∫ x2
−∞ f1 (x1, x2) dx1dx2 and I2 =∫∞

−∞

∫ x1
−∞ f2 (x1, x2) dx2dx1

then

I1 =
∫∞
−∞

∫ x2
−∞ (α1 + α3) k2

(
ex1
λ

)k (
1− e−

(
ex1
λ

)k)α1+α3−1

×α2e
−
(
ex1
λ

)k (
ex2
λ

)k
e
−
(
ex2
λ

)k (
1− e−

(
ex2
λ

)k)α2−1

dx1dx2

=

∫ ∞
−∞

α2k

(
ex2

λ

)k
e
−
(
ex2
λ

)k (
1− e−

(
ex2
λ

)k)α1+α2+α3−1

dx2

(18)
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Similarly

I2 =

∫ ∞
−∞

α1k

(
ex1

λ

)k
e
−
(
ex1
λ

)k

×
(

1− e−
(
ex1
λ

)k)α1+α2+α3−1

dx1 (19)

From (18) and (19), we get∫∞
0
f3 (x) dx = 1− I1 − I2

=
∫∞
−∞ (α1 + α2 + α3) k

(
ex

λ

)k
e−(

ex

λ )
k

×
(

1− e−(
ex

λ )
k
)α1+α2+α3−1

dx−

∫∞
−∞ α2k

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α1+α2+α3−1

dx−

∫∞
−∞ α1k

(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α1+α2+α3−1

dx

Then
f3 (x, x) = α3

α1+α2+α3
fNGEV (x;α1 + α2 + α3, λ, k)

= α3k
(
ex

λ

)k
e−(

ex

λ )
k
(

1− e−(
ex

λ )
k
)α1+α2+α3−1

This completes the proof of the theorem.

8.3 Marginal Probability Density Functions
The following theorem gives the marginal probability density func-
tions of X1 and X2.

THEOREM 7. The marginal probability density functions ofXi
(i = 1, 2) is given by

fXi (xi) = (αi + α3) k

(
exi

λ

)k
e
−
(
exi
λ

)k

×
(

1− e−
(
exi
λ

)k)αi+α3−1

= fNGEV (xi;αi + α3, λ, k) , i = 1, 2. (20)

PROOF. The marginal cumulative distribution function of Xi,
say F (xi) , as follows:

F (xi) = P (Xi ≤ xi)
= P (max{Ui, U3} ≤ xi)
= P (Ui ≤ xi, U3 ≤ xi)

since, the random variables Ui (i = 1, 2) and U3 are mutually in-
dependent, then

F (xi) = P (Ui ≤ xi)P (U3 ≤ xi)
= FNGEV (xi;αi + α3, λ, k)

=

(
1− e−

(
exi
λ

)k)αi+α3

(21)

Differenting w.r.t. xi we obtain the formula given in (20).

8.4 Conditional Probability Density Functions
Given the marginal probability density functions of X1 and X2

we can now derive the conditional probability density functions as
presented in the following theorem

THEOREM 8. The conditional probability density functions of
Xi, given Xj = xj , f (xi|xj) ,i, j = 1, 2; i 6= j, is given by

fXi|Xj (xi|xj) =


f
(1)

Xi|Xj
(xi|xj) if xj < xi,

f
(2)

Xi|Xj
(xi|xj) if xi < xj ,

f
(3)

Xi|Xj
(xi|xj) if xi = xj = x,

where

f
(1)

Xi|Xj
(xi|xj) =

(
αj (αi + α3) k

(
exi
λ

)k
e
−
(
exi
λ

)k
(

1− e−
(
exi
λ

)k)αi+α3−1
)
÷ (αj + α3)

(
1− e

−
(
e
xj

λ

)k)α3

f
(2)

Xi|Xj
(xi|xj) = αik

(
exi
λ

)k
e
−
(
exi
λ

)k (
1− e−

(
exi
λ

)k)αi−1
f
(3)

Xi|Xj
(xi|xj) = α3

αi+α3

(
1− e−

(
exi
λ

)k)αi
.

PROOF. The proof follows immediately by substituting the joint
probability density function of (X1,X2) given in (15), (16) and
(17) and the marginal probability density function of Xi (i = 1, 2)
given in (20), using the relation

fXi|Xj (xi|xj) =
fXi,Xj (xi,xj)

fXj (xj)
, i = 1, 2.

9. MAXIMUM LIKELIHOOD ESTIMATORS OF
BNGEVD

Kundu and Gupta [1] used the method of maximum likelihood
to estimate the unknown parameters of the bivariate generalized
exponential distribution. In the same way we use the method of
maximum likelihood to estimate the unknown parameters of the
BNGVD distribution.
Suppose ((x11, x21) , ..., (x1n, x2n)) is a random sample from
BNGVD distribution.Consider the following notation
I1 = {i; x1i < x2i} , I2 = {i; x1i > x2i} , I3 =
{i; x1i = x2i = xi} , I = I1 ∪ I2 ∪ I3, |I1| = n1, |I2| = n2,
|I3| = n3, and n1 + n2 + n3 = n.
The likelihood function of the sample of size n is given by:

l (α1, α2, α3, λ, k) =n1
i=1 f1 (x1i, x2i)

n2
i=1 f2 (x1i, x2i)

n3
i=1 f3 (xi)

The log-likelihood function can be expressed as
L (α1, α2, α3, λ, k) = ln l (α1, α2, α3, λ, k)
= n1 ln (α1 + α3) + n1 ln (k) + k

∑n1
i=1 ln

(
ex1i
λ

)
−∑n1

i=1

(
ex1i
λ

)k
+ (α1 + α3 − 1)

∑n1
i=1 ln

(
1− e−

(
ex1i
λ

)k)
+

n1 ln (α2) + n1 ln (k) + k
∑n1
i=1 ln

(
ex2i
λ

)
−
∑n1
i=1

(
ex2i
λ

)k
+

(α2 − 1)
∑n1
i=1 ln

(
1− e−

(
ex2i
λ

)k)
+ n2 ln (α1) +

n2 ln (k) + k
∑n2
i=1 ln

(
ex1i
λ

)
−

∑n2
i=1

(
ex1i
λ

)k
+

(α1 − 1)
∑n2
i=1 ln

(
1− e−

(
ex1i
λ

)k)
+ n2 ln (α2 + α3) +

n2 ln (k) + k
∑n2
i=1 ln

(
ex2i
λ

)
−

∑n2
i=1

(
ex2i
λ

)k
+

(α2 + α3 − 1)
∑n2
i=1 ln

(
1− e−

(
ex2i
λ

)k)
+ n3 ln (α3)

+n3 ln (k) + k
∑n3
i=1 ln

(
exi
λ

)
−

∑n3
i=1

(
exi
λ

)k
+

(α1 + α2 + α3 − 1)
∑n3
i=1 ln

(
1− e−

(
exi
λ

)k)
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Differentiating the log-likelihood with respect to α1, α2, α3, λ and
k respectively, and setting the results equal to zero, we have
∂L
∂α1

= n1
α1+α3

+
∑n1
i=1 ln

(
1− e−

(
ex1i
λ

)k)
+ n2

α1

+

n2∑
i=1

ln

(
1− e−

(
ex1i
λ

)k)
+

n3∑
i=1

ln

(
1− e−

(
exi
λ

)k)
(22)

∂L
∂α2

= n1
α2

+
∑n1
i=1 ln

(
1− e−

(
ex2i
λ

)k)
+ n2

α2+α3

+

n2∑
i=1

ln

(
1− e−

(
ex2i
λ

)k)
+

n3∑
i=1

ln

(
1− e−

(
exi
λ

)k)
(23)

∂L
∂α3

= n1
α1+α3

+
∑n1
i=1 ln

(
1− e−

(
ex1i
λ

)k)
+ n2

α2+α3
+ n3

α3

+

n2∑
i=1

ln

(
1− e−

(
ex2i
λ

)k)
+

n3∑
i=1

ln

(
1− e−

(
exi
λ

)k)
(24)

∂L
∂k

= n1
k

+
∑n1
i=1 ln

(
ex1i
λ

)
+

(α1 + α3 − 1)
∑n1
i=1

e
−
(
ex1i
λ

)k(
ex1i
λ

)k
ln
(
ex1i
λ

)
1−e

−
(
ex1i
λ

)k + n1
k

+

∑n1
i=1 ln

(
ex2i
λ

)
+ (α2 − 1)

∑n1
i=1

e
−
(
ex2i
λ

)k(
ex2i
λ

)k
ln
(
ex2i
λ

)
1−e

−
(
ex2i
λ

)k +

n2
k

+
∑n2
i=1 ln

(
ex1i
λ

)
+ n2

k
+∑n2

i=1 ln
(
ex2i
λ

)
+ n3

k
+

∑n3
i=1 ln

(
exi
λ

)
−∑n1

i=1

(
ex1i
λ

)k
ln
(
ex1i
λ

)
−

∑n1
i=1

(
ex2i
λ

)k
ln
(
ex2i
λ

)
−∑n2

i=1

(
ex1i
λ

)k
ln
(
ex1i
λ

)
−

∑n2
i=1

(
ex2i
λ

)k
ln
(
ex2i
λ

)
+

(α1 − 1)
∑n2
i=1

e
−
(
ex1i
λ

)k(
ex1i
λ

)k
ln
(
ex1i
λ

)
1−e

−
(
ex1i
λ

)k +

(α2 + α3 − 1)
∑n2
i=1

e
−
(
ex2i
λ

)k(
ex2i
λ

)k
ln
(
ex2i
λ

)
1−e

−
(
ex2i
λ

)k +

(α1 + α2 + α3 − 1)
∑n3
i=1

e
−
(
exi
λ

)k(
exi
λ

)k
ln
(
exi
λ

)
1−e

−
(
exi
λ

)k

−
n3∑
i=1

(
exi

λ

)k
ln

(
exi

λ

)
(25)

∂L
∂λ

= −n1k
λ

+ k
λ

∑n1
i=1

(
ex1i
λ

)k −

(α1 + α3 − 1)
∑n1
i=1

k
λ

(
ex1i
λ

)k
e
−
(
ex1i
λ

)k

1−e
−
(
ex1i
λ

)k − n1k
λ

+

k
λ

∑n1
i=1

(
ex2i
λ

)k − (α2 − 1)
∑n1
i=1

k
λ

(
ex2i
λ

)k
e
−
(
ex2i
λ

)k

1−e
−
(
ex2i
λ

)k − n2k
λ

+

k
λ

∑n2
i=1

(
ex1i
λ

)k
+ (α1 − 1)

∑n2
i=1

k
λ

(
ex1i
λ

)k
e
−
(
ex1i
λ

)k

1−e
−
(
ex1i
λ

)k − n2k
λ

+

k
λ

∑n2
i=1

(
ex2i
λ

)k − (α2 + α3 − 1)
∑n2
i=1

k
λ

(
ex2i
λ

)k
e
−
(
ex2i
λ

)k

1−e
−
(
ex2i
λ

)k −

n3k
λ

+ k
λ

∑n3
i=1

(
exi
λ

)k

− (α1 + α2 + α3 − 1)

n3∑
i=1

k
λ

(
exi
λ

)k
e
−
(
exi
λ

)k

1− e−
(
exi
λ

)k (26)

The maximum likelihood estimates α̂1, α̂2, α̂3, λ̂ and k̂ of the un-
known parameters α1, α2, α3, λ and k respectively, are obtained
by solving Equations (22) - (26).

10. DATA ANALYSIS OF BNGEVD
In this section, a real data set is used to compare the goodness of
fiting of the Marshall-Olkin bivariate exponential (MO) distribu-
tion and Bivariate New Generalized Extreme value (BNGEV) dis-
tribution. The data set (see Table 4) was first analyzed in [1] and
represents the soccer data where at least one goal is scored by the
home team and at least one goal is scored directly from apenalty
kick, foul kick or any other direct kick( all of them will be called
kick goals) by any team that has been considered. It is a bivariate
data set, and the variablesX1 andX2 are as follows:X1 represents
the time in minutes of the first kick goal scored by any team and
X2 represents the first goal of any type scored by the home team.
Clearly, the variables X1 and X2 have the following structure: (i)
X1 < X2, (ii) X1 = X2, (iii) X1 > X2.

Table 4 UEFA Champion′s League Data

X1 X2 X1 X2 X1 X2 X1 X2

26 20 66 62 51 28 42 3
63 18 25 9 76 64 27 47
19 19 41 3 64 15 28 28
66 85 16 75 26 48 2 2
40 40 18 18 16 16
49 49 22 14 44 13
8 8 42 42 25 14
69 71 36 52 55 11
39 39 34 34 49 49
82 48 53 39 24 24
72 72 54 7 44 30

The required numerical evaluations are carried out using the Pack-
age of Mathcad software. Table 5 provides the MLEs of the model
parameters.The model selection is carried out using the AIC
(Akaike information criterion) and theBIC (Bayesian information
criterion).

Table 5: The Maximum likelihood estimates (MLEs)

Model MLEs

MO λ̂1 = 0.012, λ̂2 = 0.014

λ̂3 = 0.022
BNGEV α̂1 = 3.682, α̂2 = 1.398

α̂3 = 3.386, λ̂ = 57.447

k̂ = 0.022
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Fig. 6. The profile of the log-likelihood function of α1

Table 6: The values 0fL,AIC andBIC.

Model L AIC BIC

MO -339.006 684.012 -344.423

BNGEV -297.342 604.684 -306.369

Since the values of −L, AIC and BIC (see Table 6) are smaller
for the BNGEV distribution compared with those values of the
other models, then the new distribution seems to be a very com-
petitive model to these data
The profiles of the log-likelihood function of α1, α2, α3, λ and k
of BNGEV for UEFA Champion′s League data are ploted in Fig. 5,
Fig. 6 and Fig. 7. From the plots of the profiles of the log-likelihood
function of α1, α2, α3, λ and k ,we observe that the likelihood
equations have a unique solution.

11. CONCLUSIONS
In this paper, we proposed a new generalized extreme value
(NGEV) distribution. Some statistical properties of this distribu-
tion have been studied and discussed such as quantile, median,
moment generating function and moments of order statistics. The
maximum likelihood estimators of the parameters are derived. A
real data set is analyzed using the new distribution, Gumbel type-
2 (G type-2) distribution, Exponentiated Fréchet (EF) distribu-
tion, Fréchet distribution and lognormal (LN) distribution. Baised
on the comparisons between all these models, we conclude that,
the introduced model is highly competitive in the sense of fitting
this real data set. Also, bivariate New Generalized Extreme Value
(BNGEV) distribution.is introduced. Marginal and conditional dis-
tribution functions are studied. Furthermore, maximum likelihood
estimates (MLEs) of the parameters are presented. A real data set
is analyzed using the new distribution and Marshall-Olkin bivariate
exponential (MO) distribution. Baised on the comparisons between
all these models, we conclude that, the introduced model is highly
competitive in the sense of fitting this real data set.

Fig. 7. The profile of the log-likelihood function of α2

Fig. 8. The profile of the log-likelihood function of α3
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