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ABSTRACT

Complex networks are an imminent multidisciplinary field defined
by graphs that present a nontrivial topographic structure. An im-
portant information extracted from a complex network is its com-
munities structure. In the literature, there are several communi-
ties detection algorithms, however, new research have emerged
with the aim of detecting communities efficiently and with lower
computational cost. Therefore, this work analyzes different algo-
rithms for communities detection in complex networks with differ-
ent characteristics, considering the Modularity measure, the exe-
cution time and the obtained communities number. The partitions
obtained by the different algorithms presented high modularity val-
ues and it was observed that the influence of the number of ver-
tices and edges in the execution time of some detection algorithms.
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1. INTRODUCTION

The research in the complex networks area began in the mid-1930s
in the sociology field, when networks were used to model and an-
alyze the society behavior and the relationships between individu-
als. Nowadays, they are used to solve problems in different areas
and can be used in several aspects of the real world, such as social
networks and the internet, biological neural networks, metabolic
networks, food chains, among others.

Initially, the complex networks research were based on measures
such as centrality (vertex more central) and connectivity (vertex
with the highest connectivity). Technological advancement and in-
creased computational power allowed robust analyzes in large-
scale (millions or billions of vertices). These analyzes revealed
characteristics that substantially differ real-world networks of ran-
dom networks. For example, it is possible to observe the presence
of distinct and robust organizational properties in real networks.
Each network has a particular structure and characteristics with-
out a defined standard, but all have the presence of communities,
which are groups of vertices that have high density of edges be-
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tween them, with a low density of edges betwenn the group and the
others, as can be seen in the Figure m Communities detection to-
gether with the knowledge extraction from their structure has been
explored extensively in machine learning and data mining research
[19] [10]. Community detection is one of the great challenges of
the machine learning field due to the good part of the traditional
algorithms present computationally unstable to treat large amounts
of vertices and edges. These features make this theme relevant and
promising.
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Fig. 1. Example of communities present in a network.

Communities detection correlates with clustering techniques of ma-
chine learning. This enables the easy adaptation of algorithms from
one area to another. For example, partitioning methods are used
to derive subgraphs representing the network. However, partition-
ing alone is not satisfactory mainly because the number and size
of communities are not initially knonw. In this case, hierarchical
clustering can be used to discover natural divisions of the network
based on similarity concepts between vertices.

Two approaches can be derived from hierarchical clustering: ag-
glomerative and divisive [10]]. In the agglomerative approach, each



vertex is considered a unitary community and then edges are iter-
atively added to the graph to join the subgraphs until all the ver-
tices form a single graph. The divisive approach starts with only
one graph containing all the vertices. In the sequence, it proceeds
by dividing until each vertex becomes an isolated graph or until
the algorithm reaches a stopping criterion as the desired subgraphs
number.

Other proprosed algorithms use different approaches such as the
Betweenness measure, proposed by Girvan and Newman [9], which
uses the minimum path calculation between vertices to support
communities detection. The Modularity measure was also proposed
to measure the quality of possible divisions in the network without
the need for prior knowledge of its structure. From this work, sev-
eral research have been carried out in order to optimize the mod-
ularity measure such as the extreme optimization [6] and the opti-
mization using Monte Carlo method proposed by [11]].

There are several communities detection algorithms in the Igraph
tool [3]], that is a free software with advanced features in the com-
plex networks area with a vast library available for three languages
and three operating systems. Igraph tool provides access to infor-
mation for various purposes, especially the academic and commer-
cial. This tool allows to perform several analyzes based on the ap-
plication domain characteristics. The algorithms contained in the
Igraph tool allows to perform studies to understand the relevance
of partitioning in communities and to demonstrate the importance
of an algorithm appropriate to each situation or context.

This paper analyzes different algorithms, contained in the Igraph
tool, for communities detection in complex networks with differ-
ent characteristics, considering the Modularity measure, the execu-
tion time and the communities number obtained by algorithms. The
community detection algorithms considered were Betweenness [9],
Fastgreedy [4], Eigenvector [14]], Spinglass [18] and Walktrap [17].
Section 2] presents the fundamental concepts about complex net-
works, communities detection algorithms and Modularity measure.
The section [3] presents the methodology used for the comparison
of communities detection algorithms. Section [4] presents the dis-
cussion about the results and the section[5] presents the conclusions
about the realized research and future works.

2. THEORICAL FOUNDATIONS
2.1 Complex Networks

A network can be defined as a set of points, called vertices, inter-
connected by connections called edges [[12]]. The study of networks
has become important because it is possible to apply its concept in
several distinct systems and areas, such as biological, social, chem-
ical and man-made systems. All the mentioned systems, although
of very distinct areas, present the concept of networks in common
and their composition forms what is known by complex networks.
A complex network is defined as a graph that presents a non-
trivial topological structure (non-regular pattern). However, there
is difficulty in finding in the literature an universally accepted and
clear conceptualization of a regular standard applicable to this con-
text [2]]. Some works understand Complex Networks as those that
model large systems, favoring size and/or relying on common
sense to delimit their scope [I]]. But, there are several other ap-
proaches suitable for this research area.

2.2 Communities Detection

Most of the real networks have non-homogeneous connection
structures characterized by the presence of groups in which the ver-
tices are more strongly connected to each other than to the rest of
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the network. This feature is called communities, as can be seen in
Figurem Detecting these communities in large networks is a useful
task because vertices belonging to the same community are more
likely to share properties. In addition, the quantity and characteris-
tics of the communities provide subsidies to identify the network
type, as well as to understand its organization and dynamic evolu-
tion [8]].

Fig. 2. Network with three communities well defined. Communities are
groups whose vertices are most strongly interconnected.

Communities detection in complex networks is a growing and rel-
atively recent research area involving clustering techniques present
in machine learning, more specifically, in the unsupervised learn-
ing model. However, many of the classical algorithms for detecting
groupings in graphs are inefficient when applied to complex net-
works, with very large number of vertices and edges and that model
a real system, which have a dynamic behavior.

So, many algorithms proposed for this purpose have appeared in the
literature, most of them based on the hierarchical model of cluster-
ing [10]], because the number and size of the communities present
in the network is not known a priori and this model allows the gen-
eration of a tree, known as Dendogram, that shows the order of
formation of the clusters for different amounts of groups. There are
also other algorithms that are not based on clustering, such as spec-
tral methods (which use eigenvectors and eigenvalues matrix
derived from the network), local methods [3] (which evaluate the
current community and its neighboring communities), Betwenness
measure [9] (which is based on the calculation of the minimum
path) and Modularity measure [2] (which estimates the quality of
possible divisions of the network into communities).

2.3 Modularity Measure

Newman [6] defined a modularity function Q, which measures the
quality of a possible division of the network into communities, that
is, of a given division of the graph to be significant or not. This
function is given by equation[l]

Q= Z(ei,z‘ —a}) (N



where e; ; is the fraction of the network edges that are inserted into
the community 4, and a? is this same fraction, but considering that
edges are inserted randomly. () with values close to O indicates a
low probability of the network being divided into real communi-
ties. In this sense, it is observed that values positive and distant of
0 (values equal or greater than 0.3 are already considered signifi-
cant), increases the chance that these groupings do not exist only
at random (their presence is intrinsic to the structure and semantics
of the network). In the same work, Newman proposes the use of
this measure together with a greedy agglomerative hierarchical al-
gorithm, which started from a state in which each vertex represents
a community. Then, communities are connected two by two, re-
peatedly, until all the vertices are part of the same community. Q) is
calculated for the initial state and in each fusion between two com-
munities 4 and j, the value of the variation in Q) can be measured as

equation

AQ = 2(61"1‘ — aiaj) (2)

where e; ; is the fraction of edges that connect the community 4 to
community j, a; is the total fraction of edges that connect the com-
munity ¢ to other network communities and can be calculated by
>4 € as well as a; is the total fraction of edges that connect the
community j to other network communities and can be calculated
as the same way that a;. Thus, the division of the network that ob-
tains the maximum result of () will be considered the best possible
division of the network in communities.

3. METODOLOGY

In order to compare the performance of some communities detec-
tion algorithms in complex networks, this paper uses Newman'’s
modularity [13] to measure how much the network division in
communities was significant. In addition, two other measures were
used: the execution time of the algorithm and the obtained com-
munities number (in the case of the best value of the modularity
measure). To allow the experiments to run, various features have
been used and are specified in the following subsections.

3.1 Complex networks

Four complex networks were selected for the experiments. These
complex networks represent graph, which have different amounts
of vertices and edges. In addition, they can be directed, non-
directed, connected or disconnected. With this, it was possible to
test the algorithms in different situations, providing more reliable
results. The used complex networks are available in the online
repository Nexus, an extension of the Igraph website [5], that is
made available for free. Some characteristics of the selected com-
plex networks are presented below.

—Zachary’s Karate Club [20)]: social network of relationships
among 34 members of a karate club at a University of the United
States. The network is represented by a graph with 34 vertices
and 78 non-directed edges.

—American College Football [9)]: American football network be-
tween high school colleges. The network is represented by a
graph with 115 vertices (each vertex represents a team) and 615
non-directed edges, where each edge corresponds to a game be-
tween two teams.

—Neural Network [7]]: directed and weighted network representing
the neural network of C. Elegans. In total there is a graph with
297 vertices and 2.359 edges.
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—Coauthorship Network Science (Netscience) [14)]: Network of
scientists co-authorship. In total, there is a disconnected graph
with 1.589 vertices and 2.742 non-directed and weighted edges.

3.2 Communities Detection Algorithms

Communities detection algorithms belonging to different ap-
proaches (divisive, agglomerative, spectral and modularity opti-
mization) were selected, enabling a direct comparison of its per-
formance in different complex networks. All selected algorithms
are contained in the Igraph library [3].

—Betweenness[9]]: divisive algorithm based on the count of mini-
mum paths between vertices. In this way, it is defined that edges
with low value of Betweenness belong to the same community
and edges with high value of Betweenness separate different
communities.

—FastGreedy[4]: algorithm that optimizes Newman’s original
modularity measure [6] using a greedy search.

—Figenvector[14]: algorithm that reformulates the modularity
concept in terms of eigenvectors and eigenvalues of a new ma-
trix, the modularity matrix.

—Spinglass[18]: algorithm that optimizes Newman’s modularity
using Simulated Annealing.

—Walktrap[17]]: algorithm that considers short random paths tend
to be in the same community.

3.3 Modularity measure

The modularity measure implemented in the Igrapy tool is a ver-
sion optimized of the original measure and was proposed by New-
man and Girvan in [16]. The equation[3]shows the used modularity
meansure Q:

1 kik;
Q=g— Z[Aij — 5 0(cics)] (©)

)

Where m is the edges number of the network, A;; is the element
ij of the incidence matrix A, k; is the degree of the vertex 4, k; is
the degree of the vertex j, c; is the value of the component of the
vertex ¢, ¢; is the same value for vertex j. The function ¢ returns
1 case 7 and j belong to the same component and O otherwise. The
summation runs through all pairs of vertices (¢, j) of the network.
This function in the Igraph library receives the original network,
the tree (dendogram) that contains the formation hierarchical of the
communities and a parameter that indicates which position in the
tree to be analyzed. Given this, a loop was used to sweep every
tree and select the division to return the highest modularity value.
However, the variation in () was not calculated, beucause ) was
directly calculated for each level of the tree (dendogram).

3.4 Computational Environment

The experiments were performed on a machine with a processor
Core 2 Duo of 2.00 GHz*2 and 2GB of RAM, containing 64-bit
Linux operating system (Ubuntu, version 12.04 LTS). In addition,
the Igrapy library [S] was used, which is a collection of network
analysis tools, with emphasis on efficiency, portability and use easy.
The Igraph library is open source, free and can be programmed in
GNU R, Python and C/C ++. The Igraph library can be found at
http://igraph.org/.



4. RESULTS AND ANALYSIS

The selected communities detection algorithms were evaluated
considering three measures: modularity, execution time (measured
in seconds - s) and communities number obtained for the highest
modularity value. Table 1 presents the results for the Zachary’s
Karate Club network [20] and Figure |§| graphically compares the
modularity measures obtained by the different algorithms. It is no-
ticed that all the algorithms obtained satisfactory modularity val-
ues, low execution time and similar communities number.

Table 1. Results of the Karate Club network.

Algorithms Modularity Value | Time(s) | Communities
Betweenness 0.4012985 0.060 5
FastGreedy 0.3806706 0.023 3
Eigenvector 0.3934089 0.127 5
Spinglass 0.4449036 0.689 4
Walktrap 0.3532216 0.001 5

Modularity values obtained by diferent detection algorithms
0.46

0.44
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0.4

Modularity

Algorithms

Modularity
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Fig. 3. Modularity values obtained in the Karate Club network by the
diferent detection algorithms.

Table 2 presents the results obtained in the American College Foot-
ball network [9] and the Figure ] graphically demonstrates the
modularity measures found by algorithms. The network is more
robust, with 115 vertices and 615 edges. It should be noted that the
FastGreedy [4] algorithm was unable to work with this network.
The other algorithms obtained high values of modularity, similar
communities and low execution time (mainly the Walktrap algo-
rithm [[17]).

Table 2. Results of the Football network.

Algorithms | Modularity | Time(s) | Communities
Betweenness 0.6009076 0.611 10
FastGreedy - - -
Eigenvector 0.4884414 0.034 8
Spinglass 0.5972113 1.243 12
Walktrap 0.6042796 0.004 10
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Fig. 4. Modularity values obtained in the Football network by the diferent
detection algorithms.

Results contained in Table 3 refer to the Neural Network [7] and
the Figure [5] presents the modularity values obtained for this net-
work. This network presents the more robust graph than the pre-
vious ones, composed by 297 vertices and 2359 directed edges.
It should be noted that the FastGreedy [4] and Eigenvector [14]
algorithms do not work with directed graphs. The other results
were quite different. The algorithm Betweenness [9] presented ex-
tremely low modularity and a high number of communities. The
algorithm Walktrap [17] presented a satisfactory modularity value
and the shortest execution time. Finally, the Spinglass algorithm
[[18] presented satisfactory modularity value, but the longest execu-
tion time.

Table 3. Results of the Neural Network.

Algorithms Modularity | Time(s) | Communities
Betweenness 0.0886453 7.159 198
FastGreedy - - -
Eigenvector - -

Spinglass 0.4905347 13.659 6
Walktrap 0.4693830 0.021 24

Finally, Table 4 presents the results for the Netscience network [[14]]
and Figure[B|graphically shows the obtained modularity values. The
Netscience network [[15] is the most robust of all, represented by a
disconnected graph with 1589 vertices and 2742 edges. It should be
noted that the Spinglass algorithm [18]] does not work with discon-
nected graphs. Already the other algorithms presented high mod-
ularity values (probably due to the graph being disconnected) and
resulted in different communities numbers, but with close values.
The FastGreedy algorithm [4] had the best execution time, even
with a high number of vertices. Already the Betweennes algorithm
obtained the worst execution time.

To allow a better analysis of the results, measures were analyzed
together. The graphics shown in the Figures [7]and [8] respectively,
present the relationship between modularity versus vertices number
and modularity versus edges number. With that, results showed that
with few vertices and edges, the different algorithms present simi-
lar modularity values. However, with increasing number of vertices
and edges, it is not possible to establish a pattern.
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Fig. 5. Modularity values obtained in the Neural network by diferent de-
tection algorithms.

Table 4. Results of the Netscience network.

Algorithms | Modularity | Time(s) | Communities
Betweenness 0.9251278 17.306 405
FastGreedy 0.9551002 0.0007 403
Eigenvector 0.9408197 0.390 411
Spinglass - - -
Walktrap 0.9559724 0.045 416
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0.96

0.95

Modularity
[=]
w0
b

093
092 ry 4
% @,
T, G
% o B, v %
Algorithms
Modularity
Netscience

Fig. 6. Modularity values obtained in the Netscience network by diferent
detection algorithms.

The graphics shown in the Figures [J] and [T0] present, respectively,
the relation between execution time versus vertices number and ex-
ecution time versus edges number. It is possible to observe that
the execution time increases when the number of vertices and
edges also increases, except for the Walktrap, Eigenvector and Fast-
Greedy algorithms. It should be noted that, in most cases, the Sp-
inglass and Betweenness algorithms present the longest execution
time.
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S. CONCLUSIONS

In this work, experiments were conducted in four known com-
plex networks: Zachary’s Karate Club, American College Football,
Neural Network and Coauthorship Network Science (Netscience).
These experiments had the objective of evaluating the comunnities
detection algorithms Betweenness, FastGreedy, Eigenvector, Spin-
glass and Walktrap, belonging to the different approaches, by cal-
culating the modularity value of the partition obtained by the algo-
rithms, the execution time and the communities number found in
the partition with the greatest modularity value. In most cases, al-
gorithms resulted in partitions with satisfactory modularity values.
However, there is not consensus between the different algorithms
in relation to the communities number contained in the partition
with the highest modularity value. As this information generally is
not known a priori, it is expected that partitions with the highest
modularity value will result in better division of the network into
communities.

It was also possible to observe that the algorithms present an in-
crease in the execution time as the number of vertices and edges of
the network increases, but some of them increase in less significant
quantities than others. For example, the algorithms that maintained
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a low execution time were Walktrap, FastGreedy and Eigenvector,
which are not so influenced by the number of vertices and edges,
being executed quickly. It is important to notice that these algo-
rithms also presented satisfactory modularity values.

The next step for further improvements consist of evaluating the
communities detection algorithms considering other databases (in-
cluding databases with a greater number of vertices and edges, for
example, the Internet database). In addition, it is necessary to com-
pare the results with others found in the literature. In this way, it
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will be possible to confirm more accurately the behavior obtained
by the algorithms in the realized experiments.
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