Abstract

In optical communication system to compensate dispersion Fiber Bragg grating (FBG) is one among the applicable and vital parts. Here we tend to are calculative best quantity of parameters by simulating the model so observe the result of this element in information receiver. To tackle the non linear effects of transmission Fiber Bragg grating has been utilized with optisystem software system very length. The analysis supported the chromatic dispersion. During this analysis style system with fiber Bragg grating and while not fiber Bragg grating and really the length. The role of the communication is to transport the optical signal from transmitter to receiver while not distorting it. Most light wave communication systems use optical fibers because the communication because fibers will transmit light-weight with a relatively bit of power loss. Fiber loss is, of course, a vital style issue, because it determines directly the repeater spacing of a long-haul light wave system. Another vital style issue is fiber dispersion that results in broadening of individual pulses within the fiber.

References
1. Yan Feng-Ping, Tong Zhi, Wei Huai, Pei Li, Ning Ti-Gang, Fu Yong-Jun, Zheng Kai, Wang Lin, Li Yi-Fan, Gong Tao-Rong, and Jian Shui-Sheng “The system of L-band 2 × 10 Gb/s WDM transmission over conventional single mode fibre with 600 km by chirped fibre Bragg gratings dispersion compensation” Institute of Lightwave Technology, Beijing Jiaotong University, China Vol 16 No 6, June 2007 Chin. Phys. Soc. and IOP Publishing Ltd.

4. Pei ChinWon, Jinsong Leng, Yicheng Lai and J A Rwilliams “Distributed temperature sensing using a chirped fibre Bragg grating” institute of physics publishing measurement science and technology 2004 IOP Publishing Ltd.

Index Terms

Computer Science
Information Sciences
Keywords

Chirped fibre Bragg grating, dispersion compensation, L-band, conventional single mode fibre