
International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.8, September 2017

36

Review the Tests Performed on Web Applications

Written with PHP - Survey

Omid Rashnoodi

 Dept. of Computer, Persian
Gulf International Branch,
Islamic Azad University,

Khoramshahr, Iran

Reza Ebrahimpour Razaz
Graduate Student of the

Nonprofit Institute of Arvandan,
Khorramshhr, Khozestan, Iran

Khaled Mohammadnejad
Dept. of Computer Engineering,
Nonprofit Institute of Arvandan,
Khorramshhr, Khozestan, Iran

ABSTRACT
Today's use of Web applications has become a challenge

because users expect to use a program that does not expose

their information and has a good security and also has the

speed, proper operation and high accountability. Therefore, it

is imperative to use a powerful program for designing the

Web and performing Web tests to verify the validity of Web

applications.

Software testing has been widely used in the industry as a

quality assurance technique for the various artifacts in a

software project, including the specification, the design, and

source code [1].The purpose of this study is to review the PHP

tests in the last two decades and also evaluating the results of

the tests performed on the programs written with the PHP

programming language.

Keywords

Software testing, PHP, Web applications, Web testing,

performance testing, Survey

1. INTRODUCTION
Today's use of Web applications has become a challenge

because users expect to use a program that does not expose

their information and has a good security and also has the

speed, proper operation and high accountability. Satisfaction

of users is an important and has high importance in

developing a Web application; therefore, the use of powerful

programming language, such as PHP, for designing a Web

application, as well as the regular execution of necessary tests

to enhance the capabilities of web applications to achieve this,

seems necessary. A web application should have the proper

functionality in different modes. In fact, it always has to offer

the best answer.

In software testing, a suite of test cases is designed to test the

overall functionality of the software whether it conforms to

the specification document or exposes faults in the software

(e.g., functionality or security faults). However, contrary to

the preconceived notion that software testing is used to

demonstrate the absence of errors, testing is usually the

process of finding as many errors as possible and thus

improving assurance of the reliability and the quality of the

software [1]. Web applications are used by virtually all

organizations in all sectors, including education, health care,

consumer business, banking and manufacturing, among

others. Thus, it is important to ensure that the Web

applications developed are properly tested due to the

importance and the sensitivity of the information stored in

databases of such Web applications [2,3]. PHP is a powerful

programming language for creating dynamic and dynamic

Web sites, a server-side language whose scripts run on the

server. By PHP, you can powerfully designing and

programming Web applications [4].

2. TEST CONCOLIC FOR PHP
Concolic testing, a technique that combines symbolic and

concrete random execution to improve testing effectiveness

[4]. The purpose of the Concolic Test is to participate through

the combination of implicit and symbolic performances. In

this type of test Random entries are imported into web

applications to discover additional and alternative paths in the

Web application due to different inputs [5-6-7]. Concolic

(concrete and symbolic) testing techniques automate test input

generation by combining the concrete and symbolic (concolic)

execution of the software under test. Most test input

generation techniques use either concrete execution or

symbolic execution that builds constraints and is followed by

a generation of concrete test inputs from these constraints [9].

Concolic testing, on the other hand, combines both these

techniques, which take place simultaneously. The goal in

concolic testing is to generate different input data which

would ensure that all paths of a sequential program of a given

length are covered. The program graphs, which depict

program statements and the program execution, are provided

as inputs [9].

3. CONCRETE, SYMBOLIC

EXECUTION
Concolic testing uses concrete values as well as symbolic

values for input and executes a program both concretely and

symbolically, called concolic execution. The concrete part of

concolic execution is where the program is normally executed

with concrete inputs, drawn from random testing. The

symbolic part of concolic execution collects symbolic

constraints over the symbolic input values at each branch

point encountered along the concrete execution path. At the

end of the concolic execution, the algorithm com- puts a

sequence of symbolic constraints corresponding to each

branch point. The conjunction of these symbolic constraints is

known as path constraints. More formally, a path constraint

(PC) is defined as the conjunction of conditions on variables

as a result of executing the Web application with concrete

values. All input values that satisfy a given path constraint

will cover the same execution path. Concolic testing first

generates random values for primitive inputs and the NULL

value for pointer inputs. The algorithm then executes the

program concolically in a loop. At the end of execution, a

symbolic constraint is negated in the original path constraint

(which contains a conjunction of symbolic constraints) and

the alternative branches of the program are explored. The

algorithm is continued with the newly generated concrete

inputs for the new path constraint. As a result, concolic testing

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.8, September 2017

37

combines random testing and symbolic execution, thus

overcomes the limitations of random testing, such as the

inefficient and ad hoc nature of the test cases generated [10],

the difficulty in traversing the different paths in a program,

redundant test input data which lead to the same observable

program behaviors [12], and the low coverage obtained (due

to the random nature of the input data) [11].

4. A STRING-BASED CONCOLIC

TESTING APPROACH FOR PHP

APPLICATION
Wassermann et al. develop a concolic testing-based

framework for detecting SQL injection defects through

dynamic test input generation by manipulating string

operations in PHP. String operations are modelled using finite

state transducers. Constraints are then used to generate new

string values. An algorithm is then used to validate whether a

string constitutes an SQL injection attack. Finally, backward

slices are dynamically constructed at runtime to enable testing

beyond unit level. Scripting languages such as PHP support

met programming capabilities and hence are more dynamic.

For instance, PHP allows function call names and variable

names to be constructed dynamically, from user inputs. The

presence of such dynamic language features makes it very

hard for static analysis tools to analyses PHP programs. The

approach tackles this challenge by using a concolic approach

that records variable values in concrete execution and use

them as constraints to generate new inputs symbolically [8].

In this framework, new string-typed test inputs are generated

from current string values through the use of constraints. The

generation of such constraints is enabled by modelling string

operations and type casts as finite state transducers (FSTs),

finite state machines with an input tape and an output tape. As

in concolic testing, constraints are generated, solved and

inverted to generate new test inputs to cover different paths of

the PHP program under test [8].

The state space of any non-trivial program may be too large

for a concolic testing technique to handle efficiently.

Sometimes, significant portions of a program's execution,

such as logging, are not relevant to the properties of interest.

This problem is alleviated by analyzing program points that

are (directly or indirectly) relevant to possible failure, in a

backward manner. Starting at function calls that send a query

to the database, other functions where this call occurs are

iteratively added. Control dependency and data dependency

are resolved by maintaining a stack trace of function calls, and

by examining symbolic values during execution.

Approximately this process constructs a backward program

slice, and is shown to dramatically reduce the number of

constraints generated, sometimes by several orders of

magnitude [8].

5. APOLLO: A PATH-BASED

CONCOLIC TESTING

FRAMEWORK FOR PHP THEN THE

ADDITIONAL PATH CONSTRAINTS

ARE ADDITIONAL
Artzi offers a concolic test technique for the PHP web

application. The path restrictions generated by symbolic

execution are stored in a queue; the queue begins with an

empty path restriction. A restrictor is used to find the implicit

input that meets the path limit taken from the queue. The

program runs implicitly on the input, and tested for failure and

error. The path and input limits for each detected failure are

merged.in the report. The program is now implemented

symbolically with the same implicit input values (That are

selected by the constraint eliminator) And limitations of

different paths is obtained (That is, a Boolean expression with

the conjunction of the conditions that are correct, when the

application runs with the input) New test inputs are created by

solving modified versions of the resulting path restrictions, If

there is a solution to the alternative path restriction that

matches the input, the execution of the program is completed

with the opposite branch[7].

6. EVALUATION OF PERFORMANCE

TESTING IN APPLICATIONS

WRITTEN WITH PHP
To evaluate PHP's performance, a scenario was developed

that included a simple logical page using a three-layer

architecture, In order to obtain the pass rate, response time,

percentage of CPU utilization and percentage of

unemployment time, the performance test was performed

[13]. The performance test is used to evaluate a program that

is able to run under expected and peak conditions and for a

capacity increase scale. Performance test, the process of

measuring the performance of a program depends on a given

set of conditions and inputs. In order to test performance, the

program should be expanded and deployed in infrastructures

similar to the production environment [14]. To run the test,

WAPT Pro software was used by Soft Login Company, This

software will test virtual users instead of real client, and In

other words, it implements applications by downloading tests

by virtual users. And confirms whether it supports the tested

traffic levels, patterns, and combinations or not. This method

is typically used to evaluate the software's ability to perform

under expected loads, determine the system capacity and

identify the source of each tag [15]. Three performance tests,

such as load tests, stress testing and capacity testing, were

carried out in this scenario[14].

Load Test: Usually this test is used to verify the behavior of

applications under normal and peak times and in order to

investigate the web application, it can provide the desired

performance goals these goals are often outlined in the service

level agreement or the collection of document requirements.

The load test is able to measure response times, power levels,

utilization levels of resources (memory, CPU, disk input and

output, and network input / output) [14]. Stress Test: This test

is used to assess the behavior of programs at times that are

beyond the normal condition [14]. Capacity Test: This is a test

for load testing and determining the final failure point of the

host server [14]. The goal was to measure the performance of

a Web application written in PHP programming language

Implemented with WAPT pro software and a virtual user

sample of 1, 25, 50, 75, 100 virtual users were created [16].

The process of carrying out the load test was performed

according to Microsoft's standard [17].

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.8, September 2017

38

Fig. 1: Steps to Perform a Load Test in accordance with

Microsoft® Standard [17]

In order to evaluate the programming language of PHP. The

results were compared to other powerful programming

language software called asp.net. The same scenario with the

same quality, implemented on similar systems and

implemented with asp.net [13]. The results showed that, in

terms of response time and memory consumption,

implementation using PHP is better than asp.net. Of course,

this assessment was conducted solely to measure ineffective

goals[16].

Table 1: Comparison of response time in using PHP and

asp.net [16]

Response time(my)

Users

asp.net PHP

3.0682 1.98 1

4.865 4.621 25

57.452 15.482 50

65.652 20.952 75

76.9 34.768 100

Fig. 2: Chart Response time in using PHP and asp.net [16]

Table 2: Comparing Memory Productivity Using PHP and

Asp.net [16]

Memory Utilization(MB)
Users

asp.net PHP

1032 755 1

1134 796 25

1282 864 50

1325 985 75

1376 1185 100

.

Fig. 3: Chart of memory usage in using PHP and asp.net

[16]

0

10

20

30

40

50

60

70

80

90

1 25 50 75 100

R
es

p
o

n
se

 T
im

e(
m

s)

Number of Virtusal Users

PHP asp.net

0

200

400

600

800

1000

1200

1400

1600

1 25 50 75 100

M
em

o
ry

(m
s)

Number of Virtual Users

PHP asp.net

Load Testing Process

[1]. Identify Key Scenarios

 [2]. Identify Workload

 [3]. Identify metrics

 [4]. Create Test Cases

 [5]. Simulate Load

 [6]. Analyze Results

Iterate

International Journal of Computer Applications (0975 – 8887)

Volume 173 – No.8, September 2017

39

7. CONCLUSIONS
In this research, the testing methods performed on web

applications written with the PHP programming language

were reviewed and the goal was to review the tests that took

place in the last few years on the powerful PHP programming

language and in an experiment this programming language

was compared to another programming language called

asp.net. Finally, this review and comparison showed that PHP

has better response time and memory usage than asp.net, and

it seems more appropriate to meet non-operational goals.

8. REFERENCES
[1] G.J. Myers, C. Sandler, T. Badgett, 2011. The Art of

Software Testing, Wiley, New Jersey, USA.

[2] S. Kals, E. Kirda, C. Kruegel, N. Jovanovic, SecuBat,

2006. a web vulnerability scanner, in: Proceedings of the

15th International Conference on World Wide Web,

WWW’06, ACM, New York, NY, USA, pp. 247–256.

[3] S. Sampath, V. Mihaylov, A. Souter, L. Pollock, 2004. A

scalable approach to user-session based testing of Web

applications through concept analysis, in: Proceedings of

the 19th International Conference on Automated

Software Engineering, pp. 132–141.

[4] R.J. Lerdorf, K. Tatroe, B. Kaehms, R. McGredy,

Programming PHP, 1st ed. O’Reilly & Associates, 2002.

Inc, Sebastopol, CA, USA.

[5] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant,

D. Song, 2010. A symbolic execution framework for

JavaScript, in: Proceedings of the 2010 IEEE

Symposium on Security and Privacy, SP’10, IEEE

Computer Society, Washington, DC, USA, pp. 513–528.

[6] L. Zhou, J. Ping, H. Xiao, Z. Wang, G. Pu, Z. Ding,

2010. Automatically testing web services choreography

with assertions, in: Proceedings of the 12th International

Conference on Formal Engineering Methods and

Software Engineering, ICFEM’10, Springer-Verlag,

Berlin, Heidelberg, pp. 138–154.

[7] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, M.D. Ernst, 2008. Finding bugs in dynamic

web applications, in: Proceedings of the 2008

International Symposium on Software Testing and

Analysis, ISSTA’08, ACM, New York, NY, USA, pp.

261–272.

[8] G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H.

Imamura, Z. Su, 2008. Dynamic test input generation for

web applications, in: Proceedings of the 2008

International Symposium on Software Testing and

Analysis, ISSTA’08, ACM, New York, NY, USA,

pp. 249–260.

[9] K. Sen, 2007. Concolic testing, in: Proceedings of the

Twenty-second IEEE/ ACM International Conference on

Automated Software Engineering, ASE’07, ACM, New

York, NY, USA, pp. 571–572.

[10] B.P. Miller, G. Cooksey, F. Moore, 2006. An empirical

study of the robustness of Mac OS applications using

random testing, in: Proceedings of the 1st International

Workshop on Random Testing, RT’06, ACM, New

York, NY, USA, pp. 46–54.

[11] P. Godefroid, N. Klarlund, K. Sen, 2005, DART:

directed automated random testing, SIGPLAN Not. 40,

p. 213–223.

[12] K. Sen, D. Marinov, G. Agha, CUTE, 2005. A concolic

unit testing engine for C, in: Proceedings of the 10th

European Software Engineering Conference held jointly

with 13th ACM SIGSOFT International Symposium on

Foundations of Software Engineering, ESEC/FSE-13,

ACM, New York, NY, USA, pp. 263–272.

[13] Ch Ram Mohan Reddy, D Evangelin Geetha, KG

Srinivasa, 2011. Eearly performance prediction of web

services, International Journal on Web Service

Computing (IJWSC), Vol.2, No.3.

[14] Osama Hamed, Nedal Kafri, 2009. “Performance

Prediction of Web Based Application Architectures Case

Study: .NET vs. Java EE”, International Journal of Web

Applications, Vol.1.

[15] WAPT pro, Available at: http://www.softlogica.com.

[16] Meier, J. D., Vasireddy, S., Babbar, A., Mackman, A,

2004. Improving .NET Application Performance and

Scalability, Patterns & Practices”. Microsoft

Corporation, ISBN 0-7356-1851-8.

[17] Microsoft web application stress tool, MSDN library,

Available at: http://www.microsoft.com.

IJCATM : www.ijcaonline.org

http://www.softlogica.com/

