Abstract

Identification of cars is a demanding function for surveillance and control systems. People can recognize automobiles through license plates which consist of alphabets and numbers. We can use the uniqueness of a combination of characters in license plates for many purposes. For example, an arrest of a suspect's vehicle, imposing parking violation fines, and entrance authentication are possible. However, it is a labor intensive job to identify all passing or parked vehicles' license plates.

This paper presents a training based approach for the recognition of vehicle number plate. The whole process has been divided into three stages i.e. capturing the image, plate localization and recognition of digits over the plate. HOG features have been used for the training purpose and Support Vector Machine is employed for the classification purpose yielding in more than 99% accuracy while recognition. The algorithm has been tested over more than 100 images.

References
 0018-9 162 / 15/$31.00 © IEEE.
2. C.N.E. Anagnostopoulos et al., 2006, “A License Plate-Recognition Algorithm for
 Intelligent Transportation System Applications,” IEEE Trans. Intelligent Transportation Systems,
 Detecting Vehicle License Plates Using DSP’s, Cellular Neural Networks and Their
 (IVSS 03), pp. 163–16.
5. L. Xiaoqing, 1998, Research on Automatic Recognition of Car License Plate, Journal of
 Nanjing University of Aeronautics and Astronautics 30 (5), 573-576.
 Plates in Rear-view Images, In: Jorge L. C. Sanz (Ed.), Image Technology, Advances in Image
7. M.-L. Wang et al., 2010, “A Vehicle License Plate Recognition System Based on
 Spatial/Frequency Domain Filtering and Neural Networks,” Proc. 2nd Int’l Conf. Computational
 63–70.
 with MSER and SIFT Unigram Classifier,” Proc. IEEE Conf. Sustainable Utilization

Index Terms

Computer Science Pattern Recognition

Keywords

ANPR, SVM, HOG Features, Character Recognition.