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ABSTRACT 

In a three-phase transformer, irregular temperature variation 

carries information on the underlying faults. In this paper, a 

fault detection method for three-phase distribution 

transformers has been developed to identify the type of fault 

needed for preventive maintenance. Infrared thermography 

and image processing techniques, like Otsu thresholding, 

Canny edge detection, image segmentation, and histogram 

equalization were used in the enhancement of the 

thermograms to identify the regions of interest (ROIs) from 

which temperature data have been extracted. It has been 

established that temperature variation resulting from local 

faults like loose cable connections have weak correlation 

compared to those that emanate from loading effects on a 

transformer. The proposed method is non-invasive, safer and 

cheaper compared to the conventional methods.   

General Terms 

Fault Detection, Non-ionizing Radiation, Image Processing 

Keywords 

Preventive Maintenance, Infrared Thermography, Non-

Destructive testing 

1. INTRODUCTION 
It is essential that distribution transformers in an electricity 

grid system function efficiently to ensure a stable, 

uninterruptable supply of electrical power to the consumer.  

Furthermore, there is a continuous increase in demand for 

electricity as a result of a considerable number of smart 

appliances on the consumer side. The rise in consumer load 

calls for a reliable diagnostic tool that would access the health 

and performance of transformers for effective preventive 

maintenance [1], [2], [3],[4].  

In recent years, several algorithms have been proposed in the 

detection of faults in distribution transformers. For instance, 

the Dissolved Gas Analysis (DGA) method that is widely 

used in the detection of the incipient faults in transformers [2]. 

The DGA method relies on laboratory analysis of the 

transformer oil properties to establish anomalies. However, 

the method is invasive, time-consuming and is limited to 

investigating internal faults of the transformer only. Also, Dos 

Santos et al. [5] proposed the use of Infrared thermography in 

the detection of incipient faults in transformers by analyzing 

the surface temperatures of a transformer. Ding et al [2] used 

fuzzy logic and artificial neural networks in the determination 

of slow-developing faults, each with a classification of the 

correctness of 83% and 86%, respectively. Mlakić et al. [6] 

improved the analysis of thermal images by employing Deep 

Learning as an upgrade of artificial neural networks. The 

infrared thermography techniques employed, however, did not 

explore the temperature variation at the fuse boxes as well as 

the individual phase terminations. The algorithms did not 

extract temperatures or attempt to identify the actual cause of 

the temperature fluctuations. Besides, local inherent faults like 

loose cable connections, were not investigated. 

This paper proposes a fault identification method in three-

phase transformers that uses infrared thermography and image 

processing. The image processing is based on Otsu 

thresholding, Canny edge detection, image segmentation, 

noise reduction, histogram equalization and feature extraction. 

The proposed method identifies the type of fault and 

recommends the necessary preventive measures to avert 

downtimes. In addition, the method investigates temperature 

variation on the transformer tank, low voltage connection 

terminals and the fuse boxes surfaces. The extracted 

temperatures were analyzed to establish whether the fault is 

local or distributed. It has also been demonstrated that it is 

possible to investigate inherent faults besides the incipient 

ones. 

The rest of the paper is organized as follows: section 2 

describes the theoretical background of infrared 

thermography. Section 3 gives an overview of the proposed 

method, and section 4 presents the results of the proposed 

method. Finally, the conclusion and future work are outlined 

in section 5.  

2. THEORETICAL BACKGROUND 
Infrared thermography uses a thermal camera as a core tool to 

capture and record the temperature distribution on the surface 

under inspection onto a thermogram. Consequently, the 

infrared camera can display these temperature values to show 

the distribution of the surface temperatures in real-time during 

the inspection [7]. The captured radiation can be analyzed to 

retrieve information about the object’s sub-surface, which is 

then used to understand its internal configuration or the faults 

within the object. In thermography, the sub-surface anomalies 

are shown as regions where the heat flow is modified due to 

the irregularities. It forms the basis for the identification of a 

fault in the equipment or materials.  

The infrared cameras could be sensitive to either short-

wavelength or long-wavelength infrared radiation [8]. These 

cameras are equipped with the software that can read and 

convert the temperature data into a thermal image. Thermal 

images are stored on either the internal camera storage 

memory or external disk drive with a unique base filename. 

One typical file compression format is the Joint Photographic 
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Experts Group (jpeg) [9]. This image compression does not 

re-size the image physically but preferably compresses that 

image data to a smaller size. This compression is necessary 

for processing large images since compressed images load 

faster and consume less memory space [1]. 

Infrared thermography encompasses two broad categories, 

either passive or active IRT [10]. The passive IRT is used to 

examine and evaluate objects whose temperatures levels are 

different from the ambient temperatures, which are usually 

high. It can be used to monitor heat loss in buildings, power 

stations and in the mapping of the human skin temperatures. 

This type of IRT does not require external excitations from 

the temperature source. The active IRT uses an external 

excitation source like an optical flash lamp, cold or hot air 

guns, to disrupt the temperature distributions within a material 

for effective detection of the thermal contrasts. Both active 

and passive IRT techniques are useful in the detection of 

abnormities in the materials or equipment. 

3. PROPOSED METHOD 
The adopted methodology is presented in Figure 1. An 

infrared camera was used to record infrared radiations emitted 

by the three-phase distribution transformer. The images were 

stored on the memory card and then imported into the 

MATLAB platform. The image enhancement was carried out 

in the following steps. 

Step (i): The image was first converted to grayscale using 

adaptive RGB to grayscale conversion using Equation 1.  

                                                 

Where values of a, b, and c represent the weight contribution 

values assigned to the R, G, and B channels of the input image 

respectively, during the conversion process. The values x and 

y represent the indices of the pixels in the image and J is the 

output grayscale image. 

 

Fig 1: Methodology block diagram 

Step (ii): The contrast of the image was enhanced by 

employing the Adaptive Histogram Equalization with 10 bins 

and various region tiles with sizes of 10x10, 50x50, 100x100, 

150x150 and 200x200 pixels. The number of the bins was 

selected to be less than the sum of pixels within the tile size. 

The image is divided into regions and their histograms 

evaluated. The image’s sectional contrast was then adjusted 

using the section’s local histogram at the provided bin size.    

Step (iii): The Canny edge detection was employed in 

detecting the transformer and fuse box edges. First, the 

thermograms were smoothed with a Gaussian filter to reduce 

noise, as given in Equation 2. 

       
 

     
     

     

                                   

Where the values       are the pixel coordinates for the 

input image,   is the standard deviation,        is a value 

calculated using the Gaussian Kernel formula. and        is 

the input grayscale image.  

The gradients of the smoothed image        were computed 

using the 2x2 first difference approximations to produce two 

arrays         and         as in equations 3 and 4. 

        
                      

 
                 

        
                      

 
                 

Where the expressions               ,      
         and                   .     

The magnitude and orientation of the gradient were computed 

using the standard rectangular-to-polar conversion formulas in 

equations 5 and 6. 

                       
         

                                  

                           
         

         
                                 

Step (iv): Otsu thresholding was performed to convert the 

image into binary and the image segmentation employed to 

detect the Regions of Interest (ROIs). 

Step (v): Image indexing was performed to map the 

temperature value on the colourmap to all the identical pixels 

on the grayscale image. The temperature data was extracted 

from the ROIs and statistically correlated to identify the type 

of faults.   

4. RESULTS AND DISCUSSION  

4.1 Image Enhancement Techniques 
The infrared image was obtained using the Testo 875-2i 

imager. Figure 2 shows an example of a thermogram range 

obtained using the imager from the transformer with tag 

number G28159. The temperatures on the thermogram ranged 

between 4 oC to 86.1 oC. The lower temperature values near 4 
oC emanated from the pixels in the background, with no 

defined surface. These pixels are considered to be at the 

greatest depth of field the Testo-875i imager could detect. The 

image format was Joint Photographic Experts Group file 

format (.jpeg) with a dimension of 1633x1000 pixels. 

Capturing thermograms using an infrared camera 

Importation of thermal images into MATLAB 

Image processing in MATLAB 

ROI identification and feature extraction 

Extraction of temperature data 

Analysis of temperature data 
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Fig 2: Transformer temperature profile 

Using the adaptive RGB to grayscale conversion, the average 

values of each colour channel were computed from their 

respective centroids. After which the conversion coefficients 

were computed from the mean intensity values. The resulting 

image is presented in Figure 3. There was a well-

differentiated shade of gray on the colour map on the output 
image. 

 

Fig 3: Image output after adaptive RGB to grayscale was 

applied to the transformer temperature profile  

The contrast stretching using Adaptive Histogram 

equalization (AHE) with a region tile of 200x200 pixels 

yielded the image in Figure 4. The fuse box and transformer 

tanks were well contrasted from the background. 

 

Fig 4: AHE with a window size of 200x200 output image 

With a Gaussian mask of 7x7 and variance at 1.96, the edges 

on the transformer thermogram are visible. The variance was 

selected as recommended by Gui and Qiwei [11]. At this 

variance the distorted edges were detected. The image output 

in Figure 5 shows the edges that are clear and smooth. The 

transformer and fuse box edges were also visible.  

 

Fig 5: Canny edge detection output 

The image segmentation based on Otsu thresholding was 

performed and the ROIs identified included both the upper 

and lower parts of the transformer tank and the low voltage 

fuse section as shown in Figure 6. The low voltage fuse 

section comprised of several fuse boxes that isolated the 3 

voltage phases supplied to the consumers. This fuse 

arrangement did not follow any order in terms of the phases 

and varied from transformer to transformer. The temperature 

data from the ROIs were extracted from 48 thermograms 

captured for a period of two weeks. 

 

Fig 6: ROIs on transformer Image 

4.2 Performance Measures  
The processed images were subjectively rated by 10 observers 

in terms of sharpness, contrast and image distortion based on 

an ordinal score scale of 0 to 5. For sharpness, a score of zero 

was awarded to a blurred image while 5 represented an image 

with clear and visible pixels in comparison with the input 

image. A score of zero, in image contrast, was set to represent 

an image whose adjusted pixel values could not be resolved 

with ease in terms of brightness. A score of five on image 
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distortion represented the minimal difference between objects 

in an output image, relative to the input image.   The results of 

Table 1 show the Otsu thresholding algorithm with the 

maximum subjective scores for all the image parameters 

tested. The image distortion was more in the edge detection 

techniques since only the edges could be visible to the 

observer. The lowest contrast was recorded on the output of 

both the adaptive conversion of RGB to grayscale and the 

adaptive histogram equalization algorithm since the image 

was smooth.  

Table 1: Subjective measurement scores 

Image 

Parameter 

Adaptive 

RGB to 

grayscale 

conversion 

AHE Canny 

edge 

detection  

Otsu Image 

indexing 

Sharpness 3.4 3.0 3.7 4.2 3.7 

Contrast 2.6 2.6 3.2 4.1 3.2 

Image 

distortion  

3.6 3.1 3.0 4.1 3.8 

 

The objective measures were evaluated using the signal to 

noise ratio (PNSR) comparisons. Table 2 compares four 

image enhancement techniques using PNSR. The PNSR has a 

higher value whenever the image is enhanced and thus, more 

noise removed. The maximum value of the PNSR was 13.0 

dB in the transformer fuse section when the image indexing 

algorithm was applied. 

Table 2: PNSR for image techniques 

 PNSR (dB) 

ROIs AHE Canny 

edge 

detection  

Otsu Image 

indexing 

Transformer tank 5.3 5.3 5.3 9.3 

Blue phase terminal 5.9 5.9 5.9 7.7 

Yellow Phase terminal 6.1 6.1 6.1 7.7 

Red phase terminal 5.6 5.6 5.6 9.7 

Fuse section  6.7 6.7 6.7 13.0 

 

4.3 Temperature Data Extraction and 

Analysis  
The maximum and average temperatures at the low voltage 

(LV) connection were plotted in Figure 7. The yellow phase 

terminal showed the highest temperatures, above 80 oC, 

during the period of data collection. Unlike the temperatures 

at the blue and red phase terminals, the termination at the 

yellow phase had minimal variation. The average 

temperatures at the terminals for both blue and yellow phase 

connections were above the acceptable limit of 40 oC [5].  

 
Fig 7: Maximum and average temperatures at LV 

terminals 

The correlation on temperature data from the three phases low 

voltage termination of the transformer was performed and 

their plot is shown in Figure 8.  There was a moderate 

correlation between the blue and red phase temperature data 

as shown in Figure 8 (a) and its correlation coefficient was 

0.5591.  On the other hand, the yellow phase temperature data 

phase had a weak correlation with the data from the red and 

blue phases, as shown in Figure 8 (b). The correlation 

coefficients were -0.1009 and -0.411 respectively. These low 

correlation values indicated that temperatures at the yellow 

phase terminal were all caused by different factors compared 

to that for both blue and red phase terminations.  

 
Fig 8: Correlation of temperatures at LV terminals 

From the data provided by the local power distributor vendor 

during the month of August 2018 the average per phase 

current for the transformer was: blue phase at 153 A, Yellow 

Phase at 220A and red phase at 92 A. These data shows that 

the temperatures fluctuations were likely to be due to the 

unbalanced loading but more statistical analysis is needed to 

ascertain the claim.  

When the transformer tank surface maximum and average 
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temperatures data over the two weeks were plotted, as shown 

in Figure 9, the upper part of the tank exhibited slightly high 

temperatures compared to its lower part. The temperatures 

were between 15 oC and 70 oC, with the peak values around 

the weekends.  

 

Fig 9: Maximum and average Temperatures on the 

transformer tank surface 

The correlation plot of the temperatures of the upper and 

lower surface of the transformer tank showed a strong 

correlation as illustrated in Figure 10. The strong correlation 

implied that similar factors contributed to the temperature 

variations. During the month of August 2018, this transformer 

recorded a loading capacity of 58% based on data provided by 

the power utility company. 

 
Fig 10: Correlation plot of the transformer tank surface 

temperatures 

As noted from the thermogram in Figure 4, the low voltage 

cables to the fuse section criss-crossed the transformer tank 

surface. The was no clear way to distinguish the fuses to a 

single phase. Three fuse box boxes could be identified from 

the output image of the edge detection algorithm and they 

were labeled as fuse 1, and 3 starting from the left.  

The temperature data from all the thermograms from these 

fused regions were plotted in Figure 11. Fuse box 2 had the 

highest temperatures persistent for the two weeks. Fuse box 3 

had lower temperatures for the first week of data collection 

but experienced fluctuation during the second week of data 

collection. The fluctuation could be attributed to a change in 

the load at the consumer side.  

 

Fig 11: Maximum and average temperatures at 

transformer fuse section 

To establish the relationship between the maximum 

temperature variations at both the fuse section and the low 

voltage terminals, the six variables were correlated and their 

correlation coefficients tabulated in Table 3. There were 

strong correlations between temperatures of the blue phase 

termination and the fuse 2; and red phase termination and the 

fuse 2. The correlation among the fuse box temperatures were 

weak. The weak correlations show that the temperature 

variation at the fuse section was not linked to any unique 

factor.  

Table 3 Correlation coefficients of temperatures at the 

fuse section and LV terminals 

Phase 

Terminal 

/ Fuse  

Blue  Yellow Red    Fuse 

1 

Fuse 

2 

Fuse 

3 

Blue 1.00 -0.41 0.56 0.14 0.80 -0.18 

Yellow -0.41 1.00 -0.10 0.13 -0.41 0.07 

Red 0.56 -0.10 1.00 -0.25 0.54 0.13 

Fuse 1 0.14 0.13 -0.25 1.00 0.05 -0.31 

Fuse 2 0.80 -0.41 0.54 0.05 1.00 0.20 

Fuse 3 -0.18 0.07 0.13 -0.31 0.22 1.00 

5. CONCLUSION 
The proposed method provides temperature data, that can be 

correlated to identify both incipient and inherent types of 

transformer faults to inform preventive maintenance. The 
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method employed image enhancement techniques to convert 

thermograms to a grayscale image, improve the contrast, 

detect the edges, segment the image and extract data from the 

low voltage terminals, transformer tank surface and 

transformer fuse section.  

The temperature variations in the selected three phase 

distribution transformers were determined from a series of 

thermograms collected over a period of two weeks. The 

thermograms were obtained from on-line transformers using 

the Testo 875-2i imager. The temperature data needed for 

analysis were extracted from the thermal images at the low 

voltage terminals, transformer tank surface and transformer 

fuse section using MATLAB software. Using the correlation, 

it was established that the loads on the three phases were 

unbalanced. This was further verified by the loading currents 

from the utility company during the study. During the period 

of data collection, the load current for  blue, yellow and red 

phase on transformer G28159 were 153 A, 220 A and 92 A 

respectively. The termination for the blue and red phase on 

transformer G28159 exhibited irregular temperature 

variations. From the table 3, it can be concluded that the 

temperature variation at the ROIs is as a result of both an 

unbalanced load for fuse 2 and low voltage terminal for Blue 

and Red connections. However, the temperatures at the yellow 

phase low voltage terminal, fuse 1 and fuse 3 must have been 

as a result of loose connection at the terminals.   

Further investigation is recommended to improve on the 

image enhancement techniques utilized in the proposed 

method to improve on object recognition in infrared images to 

positively identify transformer fuse boxes whose 

arrangements vary from one transformer to another. Also, 

research on 3D image reconstruction for the infrared image 

would reach a more conclusive maintenance recommendation 

on transformers. 
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