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ABSTRACT 
When transmitting the data in digital communication, it is well 

desired that the transmitting data bits should be as minimal as 

possible, so many techniques are used to compress the data. In 

this paper, a Lempel-Ziv algorithm for data compression was 

implemented through VHDL coding. The Lempel-Ziv algorithm 

is one of the most widely used among lossless data compression 

algorithms for hardware implementation. The work in this paper 

is devoted to improve the compression rate, space-saving, and 

utilization of the Lempel-Ziv algorithm using a systolic array 

approach. The developed design is validated with VHDL 

simulations using Xilinx ISE 14.5 and synthesized on Virtex-6 

FPGA chip. The results show that our design is efficient in 

providing high compression rates as well as improved 

utilization. The Throughput is increased by 50% and the design 

area is decreased by more than 23% with a high compression 

ratio compared to comparable previous designs. 
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1. INTRODUCTION 
Computers can handle many kinds of information some of which 

require a huge amount of data and may take a long time to 

transfer across a network. For this reason, it is interesting to see 

if the information can somehow be rewritten in such a way that it 

takes up less space. There are two general classes of methods, 

those that do not change the information, so that the original file 

can be reconstructed exactly, and those that allow small changes 

in the data. Data compression is used in audio compression, 

video compression, image processing, data transfer, digital 

telecommunication network[1][2]. Compression methods in the 

first class are called lossless compression methods while those in 

the second class are called lossy compression methods. Lossy 

methods may sound risky since they will change the information, 

but for data like sound and images, small alterations do not 

usually matter. On the other hand, kinds of information like for 

example, a text that cannot tolerate any change so lossless 

compression methods must be used [3] [4]. Some of the lossless 

data compression techniques have been proposed and widely 

used [5][4], e.g., Huffman code[6], [7], run-length code [8], 

arithmetic code [9], and Lempel–Ziv (LZ) compression 

algorithms [10]. Among them, the LZ algorithms are the most 

popular scheme when no prior knowledge or statistical 

characteristics of the data being compressed are available. The 

idea behind the LZ algorithms is to find the longest match length 

in the buffer containing a recently received data string with the 

incoming string and represent it with the position and length of 

the longest match in the buffer. Since the repeated data is linked 

to an older one, a more concise representation is achieved and 

compression is done. 

Hardware implementation is required for on-the-fly compression 

and decompression. Many hardware Implementation has been 

proposed in the past, either statistical or dictionary-based. On 

one hand, statistical lossless data compressors are more 

expensive than dictionary-based implementations, essentially in 

area requirements, although they provide better compression 

ratios [11]. On the other hand, three approaches are distinguished 

in the hardware implementation of dictionary-based methods: the 

microprocessor approach [12], CAM (Content Addressable 

Memory) approach [13], and the systolic array approach [14] 

[15] [16]. The first approach does not fully explore parallelism 

and is not attractive for real-time applications. The second one is 

very fast but it is costly in terms of hardware requirements and 

power consumption. The systolic array approach is not as fast as 

the CAM approach, but its hardware requirements are lower and 

testability is better. The CAM approach performs a string match 

by full parallel searching, while the systolic-array approach does 

it by pipeline. The main advantage of the Systolic array approach 

is that it can achieve a higher clock rate and it is easily 

implemented [14]. 

This paper is organized as follows: the related work is explained 

in Section II. Section III is addressed to LZ77 compression 

algorithm and its Improvements. Section IV describes the 

proposed based systolic array design. Section V contains the 

simulation and implementation results of our design. Finally, 

conclusions are given in Section VI. 

2. RELATED WORK  
There are two major compression categories of data, the lossy 

and lossless compression [9]. Since lossy compression allows a 

loss of accuracy to an appropriate level, it is typically used in 

multimedia applications where errors can be tolerated [10]. 

Lossless compression can compress and then recover data from 

compressed data without any information loss and it is used for 

applications where it is difficult to accept even a single bit 

difference between the original and reconstructed data [17]. LZ 

compression is a dictionary method based on replacing text 

substrings by previous occurrences thereof. The dictionary of LZ 

compression starts in some predetermined state but the contents 

change during the encoding process, based on the data that has 

already been encoded. LZ methods are popular for their speed 

and economy of memory, the two most famous algorithms of 

this family are called LZ77[10] and LZ78 [18]. One of the most 

popular versions of LZ77 is LZSS [19][20][21]. 

In [22], Marsh and Knapp presented a detailed analysis of how 

the size of the buffers in the LZ77 algorithm affected the 

throughput and compression ratio. By choosing a specific buffer 

size, the required area can be evaluated, the compression ratio, 
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and the throughput that achieved by the compressor. A prototype 

of the compressor was implemented in a Xilinx XC2V1000 

FPGA device using a 512-byte search buffer and a 15-byte 

coding buffer. Based on post-layout simulations, architecture 

achieved an 11 Mbps throughput while occupying 90% of the 

FPGA resources. 

In [16], Mohamed A. Abd El Ghany described a parallel 

algorithm for LZ based data compression by transforming a data-

dependent algorithm to a data-independent regular algorithm. He 

used a control variable to indicate early completion to further 

improve the latency. The proposed implementation was area and 

speed efficient. The compression rate was increased by more 

than 40% and the design area is decreased by more than 30%. 

His compression rate was about 13Mbps. 

3. LZ77 COMPRESSION ALGORITHM 
The LZ77 algorithm was proposed by Jacob Ziv and Abraham 

Lempel in 1977, [10]. It is a dictionary-based algorithm for 

lossless data compression that can achieve an average 

compression ratio and is considered universal, such that is, it 

does not depend on the type of data being compressed. LZ77 

algorithm was the first proposal of data compression based on a 

string dictionary instead of a symbol's statistics. Since the buffer 

size (n) and match length (Ls) determine the compression 

efficiency, the relationship between n and Ls for optimal 

compression performance was briefly examined, [16]. 

The Principle of the LZ77 algorithm is accomplished by using a 

sliding window that moves along with the cursor. Replacing a 

symbol string by a pointer or position in a dictionary where such 

strings occur. The window can be divided into two parts, the part 

before the cursor, called the dictionary, and the part starting at 

the cursor, called the look-ahead buffer. The sizes of these two 

parts are input parameters to the compression algorithm. Data 

compression can be achieved by performing the following 

simple steps and loops executable:  

 Find the longest match of a string starting at the cursor 

and completely contained in the look-ahead buffer to a 

string starting in the dictionary. 

 Output a triple (Ip, Lmax, S) containing the position Ip of 

the occurrence in the window, the length Lmax of the 

match and, the next symbol S past the match. 

 Move the cursor Lmax + 1 symbols forward. 

 Note that LZSS variant doesn't include the next symbol in 

the triple output. 

 

Consider an example with a window size of (n = 9) shown in 

Fig. 1 and look-ahead buffer size (Ls = 3). Assume that the 

content of the window be represented as Xi, i = 0, 1, , n1 and 

that of the look-ahead buffer be Yj, j = 0, 1, , Ls1 (i.e., Yj = 

Xi+n-Ls). According to the LZ algorithm, the content of the look-

ahead buffer is compared with the dictionary content starting 

from X0 to Xn-Ls-1 to find the longest match length. If the best 

match in the window is found to start from position Ip and the 

match length is Lmax. Then Lmax symbols will represent by a 

codeword (Ip, Lmax). The code word length Lc is given by: 

Lc = log2(nLs) + Log2(Ls) + 1 bits               (1) 

Lc is fixed. Assume w bits are needed to represent a symbol in 

the window, l = log2(Ls) bits are required to represent Lmax, and p 

= log2(nLs) bits are needed to represent Ip. Then the 

compression ratio is (l+p)/(Lmaxw), where 0 ≤ Lmax ≤ Ls. Then the 

compression ratio depends on the match situation.  

 
Fig.1. Window of the LZ compressor example. 

 

The choice of window size and the code word design is crucial 

in achieving maximum compression. The LZ technique involves 

converting variable-length substrings into fixed-length code 

words that represent the pointer and the length of the match. 

Hence, the selection of values of n and Ls can greatly influence 

the compression efficiency of the LZ algorithm. 

 

The LZ77 algorithm has a major advantage among the known 

lossless data compressor algorithms, it does not need previous 

knowledge or statistical characteristics of the symbols. This fact 

lets faster compression because a second pass over the data is not 

required as occurs in some statistical methods. For this reason, 

LZ77 is main concern for this paper to be implemented with a 

deep study of its competitive lossless data compressor. 

 

Before describing the hardware architecture, an overview of the 

LZSS algorithm implementation that has been used will be  

presented [19]. It has minor differences from the original LZ77 

[10]. The mandatory inclusion of the following non-matching 

symbol into every code word will cause situations in which the 

symbol is being explicitly coded despite the possibility of it 

being part of the subsequent match. 

Example: In "abbca|caabb", the first match is a reference to "ca" 

(with the first non-matching symbol being "a") and then the next 

match is "bb" while it could have been "abb" if there were no 

necessity to explicitly code the first non-matching symbol. The 

popular modification by Storer and Szymanski (1982) removes 

this requirement. Their algorithm uses fixed-length code words 

consisting of offset (into the search buffer) and length (of the 

match) to denote references. Only symbols for which no match 

can be found or where the references would take up more space 

than the codes for the symbols are still explicitly coded. 

 

In general, the maximum parallelism in an algorithm can be 

realized by studying the data dependencies in computations. As 

described in [14] dependence graph (DG) is a graph that shows 

the dependence of the computations that happen in an algorithm. 

In Fig. 2 the global DG of the LZ algorithm is depicted. In the 

DG, L (match length) and E (match signal) are propagated from 

cell to cell. X (the content of the window) and Y (the content of 

the look-ahead buffer) are broadcast horizontally and diagonally 

to all cells, respectively. The processor assignment can be done 

by a projection of the DG into the surface normal to the 

projection vector selected. After the processor assignment, the 

events are scheduled using a schedule vector. 

4. SYSTOLIC ARRAY DESIGN FOR LZ 

DATA COMPRESSION 
The hardware architectures of LZ data compression prove that 

systolic array compressors are better in testability and hardware 

cost (due to regularity and homogeneity) and it can achieve a 

higher clock rate (due to nearest-neighbor communication). This 

section explains the most recent designs of a systolic array 

architecture for efficient implementation of the LZ77 

compression technique, [15].  
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Fig. 2. Dependence graph of the LZ compression algorithm 

 

 
Fig.3. Lempel-Ziv compression chip 

 

 

Fig. 4. SALZC module block diagram 

 

The compression design of LZ is shown in Fig. 3. The systolic 

array design architecture consists of three major components: the 

SALZC compressor module, the RAM block, and the host 

controller. SALZC module doesn't include block RAM. Thereby 

the dictionary size can be increased by directly replacing the 

block RAM with a larger one. Also, the host controller is not 

combined into the SALZC module, to be able to modify when 

the dictionary size is changed. In our implementation, the 

window size n is of length 1K, and the look-ahead buffer is of 

length Ls = 16. 

4.1 SALZC Module  
SALZC module contains 16 processor elements (PES), one L-

encoder, 16 bytes shift register, and 4 bits counter. The block 

diagram of the SALZC module is depicted in Fig. 4. 

From the DG shown in Fig. 2, all the nodes in a specific row are 

integrated into a single processor element (PE). This produces a 

linear array of length Ls; the layout is easy since the array is very 

regular. Only a single cell (PE) was hand – laid out. The other 15 

PEs are just its copies. Since the array is systolic, routing also is 

simplified. The resulting array of Design-P and the space-time 

diagram are given in Fig. 5. 

 

In Fig. 5 the architecture consists of 16 Ls processing elements 

used for comparison, and L-encoder used for matching length 

output. Thus, the look-ahead buffer symbols Yj that do not 

change during the encoding step remain in PEs. The Xi 

dictionary variable moves systolically from left to right, with 1 

clock cycle delay. The processing element's match signal Ei 

moves into the L-encoder. The encoder's output Li is the 

matching longitude resulting from the i1 comparison. After one 

clock cycle, the first Li will be obtained and each clock cycle 

will be obtained for the following ones. The Yj is preloaded in 

order to be processed before the encoding process and this will 

take Ls extra cycles. The time to preload new source symbols 

during the encoding process depends on how many source 

symbols were compressed in the preceding compression step, 

Lmax. 

 

 
Fig.5. Space-time diagram and an array of Design-P.  

 

The functional block of the PE is shown in Fig. 6. The 

comparison of Yj and incoming Xi requires only one equality 

comparator. The Ei (match signal) result for the comparator 

propagates to the L-encoder. The L-encoder block diagram is 

depicted in Fig. 7. L-Encoder computes the match-length Li 

corresponding to position i according to Ei (match signals). 

4.2  Host Controller 
The Host controller includes match results block (MRB), code 

word generator, and end of processing block (EOPB), as shown 

in Fig. 8 
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Fig. 6. Functional Block of a processing element. 

 

 
Fig. 7. L-encoder block diagram 

 
Fig.8. Host controller block diagram  

 

 
 Fig.9. Match results block  

 

From Fig. 5, it is clear that the L-encoder doesn't generate the 

maximum matching length. So, to determine Lmax among the 

serially generated Lis', a match results block (MRB) is needed, 

as shown in Fig. 9. The PEs also don't need to store their ids to 

record the Lis' (Ip) location. Since p =log2(nLs) bits are 

required to represent Ip, the position i associated with each Li 

requires only a p-bit counter, since Li is produced corresponds to 

its position MRB uses a comparator to compare the current Li 

input to the current longest Lmax match length stored in the 

register If the current input Li is greater than Lmax, then Li will 

be loaded into the register and the location counter information 

will also be loaded into another register that will be used to store 

the present Ip. Another comparator is used to check that the 

whole window is completely scanned. It compares the content of 

the position counter with nLs, whose output is used as the 

codeword ready signal. When i <(nLs), i.e., Li could be equal 

to Ls during the search process. The content in the Look-ahead 

buffer can be fully matched to the dictionary sub-set, so it is not 

always necessary to search the entire window. An additional 

comparator is used to decide whether Lmax is equal to Ls, and 

then the string-matching cycle is completed. So, encoding a new 

collection of data can be started straight away. This will reduce 

the average compression time. The number of clock cycles 

required to produce a code word is (nLs) +1 clock cycles, so 

each PE's utilization rate is (nLs) / [(nLs) +1], nearly equal to 

one. This result is consistent since the PE is busy once Li is 

determined until the time at which the code word is produced.  

 
Fig.10. End of processing Block (EOPB) 

 

 
Fig.11. Determination Block (DB) 

 

The end of processing block as shown in Fig. 10 includes a 4-bit 

counter and Determination Block (DB). This counter is needed 

to successfully handle the last part of the data stream. The end of 

stream signal does not mean the end of the compression 

operation, but once the end of stream signal is generated using 

the 4-bit counter it is used to trigger the encoding process of the 

unprocessed data in the look-ahead buffer. After receiving the 

enable signal the counter will count the number of shift 

operations. DB determines the number of process elements that 

will operate during the encoding step according to the counter 

output and generates the end signal after the compression 

operation is complete. 

DB is shown in Fig 11. Without the DB the last part will be 

compressed incorrectly. The number of PEs in the forward 

buffer should be equal to the number of unprocessed data. 
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Comparator and Subtractor are the principal components of DB. 

If the counter output (the number of data processed in the look-

ahead buffer) is less than the number of PEs, they can be 

subtracted by the Subtractor. The number of PEs is created 

which will operate during the encoding stage. If the counter 

output is equal to the PES number, it means the entire look-

ahead buffer data is processed. Hence the end signal (finish) will 

generate. 

4.3  Block RAM 
Block RAM is used as a data buffer. The dictionary size is a 

parameter for a wide range of applications, from text 

compression to lossless images compression. 

The block RAM is used as first-in-first-out (FIFO), so two 

counters need to be used, as illustrated in Fig. 12. The first one is 

to generate a write address. At first, it is loaded by the look-

ahead buffer's first address, then it counts to initialize the look-

ahead, buffer. Afterward, it will point to where an input symbol 

should be inserted. The second one is to generate the address for 

reading. It will point to the FIFO's first location (equal to the 

address written + 1). Upon reaching the maximum value one of 

two counters. In the next step, it'll immediately go down to 0. 

 
Fig.12. First-in-first-out (FIFO) 

5. RESULTS  

5.1 Software Simulations  
The RTL architecture of SALZC module depicted in Fig. 4 is 

VHDL modeled with its simulation result as shown in Fig. 13. 

The SALZC receives a sequence of 16 bytes of data from a text 

vector file. Thus, the first 16-bytes of data stored in Yj then it 

reads Xi and then it compared Yj with Xi and the result is in Li 

and Y0-out since Li = 1111 and this is due to the first 16-byte of 

Xi equal the first 16-bytes of Yj and Y0-out = 01110011 and this 

is due to the first byte of file = 01110011. 

Fig.13. Simulation results of SALZC module. 
  

The simulation result of the Host controller is shown in Fig. 14. 

The code will output the code word due to the received signal 

from SALZC since if there is no match it will output codeword 

that contains M0 if there is a match it will output the code word 

that contains Length of the match and its pointer. The first bit in 

the codeword specifies that if there is a match or not.  

The code also will do shift if en-shift = 1 or if load =1 since en-

shift is a control signal to do 16 shifts initially then if load =1 it 

will load a new byte. The Host controller output also depends on 

L-ready, which shows that the match is ready or not. Li shows 

the length of the match and according to this length, the code 

will do shift Ready = 1 then shift-left = 1 for 6 clock cycle then 

shift left return to zero waiting for a new condition of Li or load 

if there is no match. 

After verifying the VHDL code of all the component Window, 

SALZC and Host controller, the match-length of comparison 

and the first byte stored in the first PE is fed to Host 

controller then it decides if it was a match-length then it 

compares it with the maximum length stored previously then it 

outputs the codeword that consists of (16-bits) contain match-

length of compression and the pointer of this length, then it does 

several shifts equal to the match-length and load a new number 

of byte to the shift register and compare again. If it wasn't a 

successful comparison it output the first byte that was stored in 

the first PE and it does one shift (load one new byte) and do the 

comparison again. If it has a match-length after the comparison, 

SALZC module has a signal that shows that the code has a 

match-length as shown in Fig. 16 (Q_ready) signal = 1 at the 

time the output has a length and pointer and the first bit of the 

codeword equal one this is another verify for the output, but if 

the output has zero length it will out a signal (load) = 1 that 

verify there is no correct comparison.    
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Fig.14. The Host controller simulation result. 

 

Fig.15. Window Simulation Result 

 
Fig.16. The LZ compression chip simulation result. 

5.2 Performance Parameters of the Proposed 

Design 
In this section, the achieved design is presented lossless 

compression efficiency. The implementation of our design is 

carried out using Xilinx Virtex-6 FPGA, for n = 1k, Ls = 16, and 

w = 8. FPGA utilization summary is shown in Fig. 17.  
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Fig.17. Implementation result of the proposed Design 

The chip FPGA verification has been done by using the chips-

cope pro analyzer Xilinx tool to verify that the SALZC works 

successfully as demonstrated in Fig.15. 

 

A compressor's compression rate is defined as the number of 

input bits that can be compressed in just one second. The 

compression rate Rc can be estimated as follows: 

Rc = clk × [(Ls*W)/(nLs+1)]                                                (2) 

     where clk is the clock rate. Note that only estimated Rc can 

be obtained, as it depends on the input data. The number of 

needed words that will be compressed can't be predicted exactly 

(Ls at most) and how many clock cycles will be required (n–

Ls+1) at most) for every compression step. In our 

implementation, window size (n) 1K is used, Ls = 16, w = 8, and 

clk = 175.408, The Rc is about 22.25 Mbps. Our module does 

space-saving about 55% and on average compression rate up to 

25.75Mbps. Saving percentage in our FPGA implementation is 

55% and the compression ratio is 67.8%. The total on-chip 

power is 3.422W. 

 

 

Fig.18. waveform window of analyzed Results using Chipscope 

6. CONCLUSIONS  
In this paper, the design and implementation of lossless data 

compression was described using the LZ algorithm. Xilinx ISE 

14.5 tool is used. The programming is done in VHDL language 

and the whole algorithm is described in that language. Our 

systolic array LZ compression (SALZC) module provides space-

saving about 55% and on average compression rate up to 25.75 

Mbps. Compared to the results in [16]  the throughput is 

increased by 50% and the design area is decreased by more than 

23% that provides an excellent platform for Real-time 

compression applications. As future work, one may modify the 

host controller since it can be used for other string-matching 

based LZ algorithms, such as LZ78 and LZW. 
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