
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

38

Design and Implementation of Lempel-Ziv Data

Compression using FPGA

Gehad Mohey
Electronics and Communication

Department,
El-Madina Higher Institute for

Engineering and Technology, Giza,
Egypt

Abdelhalim Zekry
Electronics and communications

department, Faculty of Engineering,
Ain shams University, Egypt

Hatem Zakaria
Electrical Engineering Department,

Benha Faculty of Engineering,
Benha University, Egypt

ABSTRACT
When transmitting the data in digital communication, it is well

desired that the transmitting data bits should be as minimal as

possible, so many techniques are used to compress the data. In

this paper, a Lempel-Ziv algorithm for data compression was

implemented through VHDL coding. The Lempel-Ziv algorithm

is one of the most widely used among lossless data compression

algorithms for hardware implementation. The work in this paper

is devoted to improve the compression rate, space-saving, and

utilization of the Lempel-Ziv algorithm using a systolic array

approach. The developed design is validated with VHDL

simulations using Xilinx ISE 14.5 and synthesized on Virtex-6

FPGA chip. The results show that our design is efficient in

providing high compression rates as well as improved

utilization. The Throughput is increased by 50% and the design

area is decreased by more than 23% with a high compression

ratio compared to comparable previous designs.

Keywords
Data Compression, Lossless compression, VHDL, FPGA,

Design, Utilization, CODEC, LZSS, LZ77, Systolic array design

1. INTRODUCTION
Computers can handle many kinds of information some of which

require a huge amount of data and may take a long time to

transfer across a network. For this reason, it is interesting to see

if the information can somehow be rewritten in such a way that it

takes up less space. There are two general classes of methods,

those that do not change the information, so that the original file

can be reconstructed exactly, and those that allow small changes

in the data. Data compression is used in audio compression,

video compression, image processing, data transfer, digital

telecommunication network[1][2]. Compression methods in the

first class are called lossless compression methods while those in

the second class are called lossy compression methods. Lossy

methods may sound risky since they will change the information,

but for data like sound and images, small alterations do not

usually matter. On the other hand, kinds of information like for

example, a text that cannot tolerate any change so lossless

compression methods must be used [3] [4]. Some of the lossless

data compression techniques have been proposed and widely

used [5][4], e.g., Huffman code[6], [7], run-length code [8],

arithmetic code [9], and Lempel–Ziv (LZ) compression

algorithms [10]. Among them, the LZ algorithms are the most

popular scheme when no prior knowledge or statistical

characteristics of the data being compressed are available. The

idea behind the LZ algorithms is to find the longest match length

in the buffer containing a recently received data string with the

incoming string and represent it with the position and length of

the longest match in the buffer. Since the repeated data is linked

to an older one, a more concise representation is achieved and

compression is done.

Hardware implementation is required for on-the-fly compression

and decompression. Many hardware Implementation has been

proposed in the past, either statistical or dictionary-based. On

one hand, statistical lossless data compressors are more

expensive than dictionary-based implementations, essentially in

area requirements, although they provide better compression

ratios [11]. On the other hand, three approaches are distinguished

in the hardware implementation of dictionary-based methods: the

microprocessor approach [12], CAM (Content Addressable

Memory) approach [13], and the systolic array approach [14]

[15] [16]. The first approach does not fully explore parallelism

and is not attractive for real-time applications. The second one is

very fast but it is costly in terms of hardware requirements and

power consumption. The systolic array approach is not as fast as

the CAM approach, but its hardware requirements are lower and

testability is better. The CAM approach performs a string match

by full parallel searching, while the systolic-array approach does

it by pipeline. The main advantage of the Systolic array approach

is that it can achieve a higher clock rate and it is easily

implemented [14].

This paper is organized as follows: the related work is explained

in Section II. Section III is addressed to LZ77 compression

algorithm and its Improvements. Section IV describes the

proposed based systolic array design. Section V contains the

simulation and implementation results of our design. Finally,

conclusions are given in Section VI.

2. RELATED WORK
There are two major compression categories of data, the lossy

and lossless compression [9]. Since lossy compression allows a

loss of accuracy to an appropriate level, it is typically used in

multimedia applications where errors can be tolerated [10].

Lossless compression can compress and then recover data from

compressed data without any information loss and it is used for

applications where it is difficult to accept even a single bit

difference between the original and reconstructed data [17]. LZ

compression is a dictionary method based on replacing text

substrings by previous occurrences thereof. The dictionary of LZ

compression starts in some predetermined state but the contents

change during the encoding process, based on the data that has

already been encoded. LZ methods are popular for their speed

and economy of memory, the two most famous algorithms of

this family are called LZ77[10] and LZ78 [18]. One of the most

popular versions of LZ77 is LZSS [19][20][21].

In [22], Marsh and Knapp presented a detailed analysis of how

the size of the buffers in the LZ77 algorithm affected the

throughput and compression ratio. By choosing a specific buffer

size, the required area can be evaluated, the compression ratio,

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

39

and the throughput that achieved by the compressor. A prototype

of the compressor was implemented in a Xilinx XC2V1000

FPGA device using a 512-byte search buffer and a 15-byte

coding buffer. Based on post-layout simulations, architecture

achieved an 11 Mbps throughput while occupying 90% of the

FPGA resources.

In [16], Mohamed A. Abd El Ghany described a parallel

algorithm for LZ based data compression by transforming a data-

dependent algorithm to a data-independent regular algorithm. He

used a control variable to indicate early completion to further

improve the latency. The proposed implementation was area and

speed efficient. The compression rate was increased by more

than 40% and the design area is decreased by more than 30%.

His compression rate was about 13Mbps.

3. LZ77 COMPRESSION ALGORITHM
The LZ77 algorithm was proposed by Jacob Ziv and Abraham

Lempel in 1977, [10]. It is a dictionary-based algorithm for

lossless data compression that can achieve an average

compression ratio and is considered universal, such that is, it

does not depend on the type of data being compressed. LZ77

algorithm was the first proposal of data compression based on a

string dictionary instead of a symbol's statistics. Since the buffer

size (n) and match length (Ls) determine the compression

efficiency, the relationship between n and Ls for optimal

compression performance was briefly examined, [16].

The Principle of the LZ77 algorithm is accomplished by using a

sliding window that moves along with the cursor. Replacing a

symbol string by a pointer or position in a dictionary where such

strings occur. The window can be divided into two parts, the part

before the cursor, called the dictionary, and the part starting at

the cursor, called the look-ahead buffer. The sizes of these two

parts are input parameters to the compression algorithm. Data

compression can be achieved by performing the following

simple steps and loops executable:

 Find the longest match of a string starting at the cursor

and completely contained in the look-ahead buffer to a

string starting in the dictionary.

 Output a triple (Ip, Lmax, S) containing the position Ip of

the occurrence in the window, the length Lmax of the

match and, the next symbol S past the match.

 Move the cursor Lmax + 1 symbols forward.

 Note that LZSS variant doesn't include the next symbol in

the triple output.

Consider an example with a window size of (n = 9) shown in

Fig. 1 and look-ahead buffer size (Ls = 3). Assume that the

content of the window be represented as Xi, i = 0, 1, , n1 and

that of the look-ahead buffer be Yj, j = 0, 1, , Ls1 (i.e., Yj =

Xi+n-Ls). According to the LZ algorithm, the content of the look-

ahead buffer is compared with the dictionary content starting

from X0 to Xn-Ls-1 to find the longest match length. If the best

match in the window is found to start from position Ip and the

match length is Lmax. Then Lmax symbols will represent by a

codeword (Ip, Lmax). The code word length Lc is given by:

Lc = log2(nLs) + Log2(Ls) + 1 bits (1)

Lc is fixed. Assume w bits are needed to represent a symbol in

the window, l = log2(Ls) bits are required to represent Lmax, and p

= log2(nLs) bits are needed to represent Ip. Then the

compression ratio is (l+p)/(Lmaxw), where 0 ≤ Lmax ≤ Ls. Then the

compression ratio depends on the match situation.

Fig.1. Window of the LZ compressor example.

The choice of window size and the code word design is crucial

in achieving maximum compression. The LZ technique involves

converting variable-length substrings into fixed-length code

words that represent the pointer and the length of the match.

Hence, the selection of values of n and Ls can greatly influence

the compression efficiency of the LZ algorithm.

The LZ77 algorithm has a major advantage among the known

lossless data compressor algorithms, it does not need previous

knowledge or statistical characteristics of the symbols. This fact

lets faster compression because a second pass over the data is not

required as occurs in some statistical methods. For this reason,

LZ77 is main concern for this paper to be implemented with a

deep study of its competitive lossless data compressor.

Before describing the hardware architecture, an overview of the

LZSS algorithm implementation that has been used will be

presented [19]. It has minor differences from the original LZ77

[10]. The mandatory inclusion of the following non-matching

symbol into every code word will cause situations in which the

symbol is being explicitly coded despite the possibility of it

being part of the subsequent match.

Example: In "abbca|caabb", the first match is a reference to "ca"

(with the first non-matching symbol being "a") and then the next

match is "bb" while it could have been "abb" if there were no

necessity to explicitly code the first non-matching symbol. The

popular modification by Storer and Szymanski (1982) removes

this requirement. Their algorithm uses fixed-length code words

consisting of offset (into the search buffer) and length (of the

match) to denote references. Only symbols for which no match

can be found or where the references would take up more space

than the codes for the symbols are still explicitly coded.

In general, the maximum parallelism in an algorithm can be

realized by studying the data dependencies in computations. As

described in [14] dependence graph (DG) is a graph that shows

the dependence of the computations that happen in an algorithm.

In Fig. 2 the global DG of the LZ algorithm is depicted. In the

DG, L (match length) and E (match signal) are propagated from

cell to cell. X (the content of the window) and Y (the content of

the look-ahead buffer) are broadcast horizontally and diagonally

to all cells, respectively. The processor assignment can be done

by a projection of the DG into the surface normal to the

projection vector selected. After the processor assignment, the

events are scheduled using a schedule vector.

4. SYSTOLIC ARRAY DESIGN FOR LZ

DATA COMPRESSION
The hardware architectures of LZ data compression prove that

systolic array compressors are better in testability and hardware

cost (due to regularity and homogeneity) and it can achieve a

higher clock rate (due to nearest-neighbor communication). This

section explains the most recent designs of a systolic array

architecture for efficient implementation of the LZ77

compression technique, [15].

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

40

Fig. 2. Dependence graph of the LZ compression algorithm

Fig.3. Lempel-Ziv compression chip

Fig. 4. SALZC module block diagram

The compression design of LZ is shown in Fig. 3. The systolic

array design architecture consists of three major components: the

SALZC compressor module, the RAM block, and the host

controller. SALZC module doesn't include block RAM. Thereby

the dictionary size can be increased by directly replacing the

block RAM with a larger one. Also, the host controller is not

combined into the SALZC module, to be able to modify when

the dictionary size is changed. In our implementation, the

window size n is of length 1K, and the look-ahead buffer is of

length Ls = 16.

4.1 SALZC Module
SALZC module contains 16 processor elements (PES), one L-

encoder, 16 bytes shift register, and 4 bits counter. The block

diagram of the SALZC module is depicted in Fig. 4.

From the DG shown in Fig. 2, all the nodes in a specific row are

integrated into a single processor element (PE). This produces a

linear array of length Ls; the layout is easy since the array is very

regular. Only a single cell (PE) was hand – laid out. The other 15

PEs are just its copies. Since the array is systolic, routing also is

simplified. The resulting array of Design-P and the space-time

diagram are given in Fig. 5.

In Fig. 5 the architecture consists of 16 Ls processing elements

used for comparison, and L-encoder used for matching length

output. Thus, the look-ahead buffer symbols Yj that do not

change during the encoding step remain in PEs. The Xi

dictionary variable moves systolically from left to right, with 1

clock cycle delay. The processing element's match signal Ei

moves into the L-encoder. The encoder's output Li is the

matching longitude resulting from the i1 comparison. After one

clock cycle, the first Li will be obtained and each clock cycle

will be obtained for the following ones. The Yj is preloaded in

order to be processed before the encoding process and this will

take Ls extra cycles. The time to preload new source symbols

during the encoding process depends on how many source

symbols were compressed in the preceding compression step,

Lmax.

Fig.5. Space-time diagram and an array of Design-P.

The functional block of the PE is shown in Fig. 6. The

comparison of Yj and incoming Xi requires only one equality

comparator. The Ei (match signal) result for the comparator

propagates to the L-encoder. The L-encoder block diagram is

depicted in Fig. 7. L-Encoder computes the match-length Li

corresponding to position i according to Ei (match signals).

4.2 Host Controller
The Host controller includes match results block (MRB), code

word generator, and end of processing block (EOPB), as shown

in Fig. 8

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

41

Fig. 6. Functional Block of a processing element.

Fig. 7. L-encoder block diagram

Fig.8. Host controller block diagram

 Fig.9. Match results block

From Fig. 5, it is clear that the L-encoder doesn't generate the

maximum matching length. So, to determine Lmax among the

serially generated Lis', a match results block (MRB) is needed,

as shown in Fig. 9. The PEs also don't need to store their ids to

record the Lis' (Ip) location. Since p =log2(nLs) bits are

required to represent Ip, the position i associated with each Li

requires only a p-bit counter, since Li is produced corresponds to

its position MRB uses a comparator to compare the current Li

input to the current longest Lmax match length stored in the

register If the current input Li is greater than Lmax, then Li will

be loaded into the register and the location counter information

will also be loaded into another register that will be used to store

the present Ip. Another comparator is used to check that the

whole window is completely scanned. It compares the content of

the position counter with nLs, whose output is used as the

codeword ready signal. When i <(nLs), i.e., Li could be equal

to Ls during the search process. The content in the Look-ahead

buffer can be fully matched to the dictionary sub-set, so it is not

always necessary to search the entire window. An additional

comparator is used to decide whether Lmax is equal to Ls, and

then the string-matching cycle is completed. So, encoding a new

collection of data can be started straight away. This will reduce

the average compression time. The number of clock cycles

required to produce a code word is (nLs) +1 clock cycles, so

each PE's utilization rate is (nLs) / [(nLs) +1], nearly equal to

one. This result is consistent since the PE is busy once Li is

determined until the time at which the code word is produced.

Fig.10. End of processing Block (EOPB)

Fig.11. Determination Block (DB)

The end of processing block as shown in Fig. 10 includes a 4-bit

counter and Determination Block (DB). This counter is needed

to successfully handle the last part of the data stream. The end of

stream signal does not mean the end of the compression

operation, but once the end of stream signal is generated using

the 4-bit counter it is used to trigger the encoding process of the

unprocessed data in the look-ahead buffer. After receiving the

enable signal the counter will count the number of shift

operations. DB determines the number of process elements that

will operate during the encoding step according to the counter

output and generates the end signal after the compression

operation is complete.

DB is shown in Fig 11. Without the DB the last part will be

compressed incorrectly. The number of PEs in the forward

buffer should be equal to the number of unprocessed data.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

42

Comparator and Subtractor are the principal components of DB.

If the counter output (the number of data processed in the look-

ahead buffer) is less than the number of PEs, they can be

subtracted by the Subtractor. The number of PEs is created

which will operate during the encoding stage. If the counter

output is equal to the PES number, it means the entire look-

ahead buffer data is processed. Hence the end signal (finish) will

generate.

4.3 Block RAM
Block RAM is used as a data buffer. The dictionary size is a

parameter for a wide range of applications, from text

compression to lossless images compression.

The block RAM is used as first-in-first-out (FIFO), so two

counters need to be used, as illustrated in Fig. 12. The first one is

to generate a write address. At first, it is loaded by the look-

ahead buffer's first address, then it counts to initialize the look-

ahead, buffer. Afterward, it will point to where an input symbol

should be inserted. The second one is to generate the address for

reading. It will point to the FIFO's first location (equal to the

address written + 1). Upon reaching the maximum value one of

two counters. In the next step, it'll immediately go down to 0.

Fig.12. First-in-first-out (FIFO)

5. RESULTS

5.1 Software Simulations
The RTL architecture of SALZC module depicted in Fig. 4 is

VHDL modeled with its simulation result as shown in Fig. 13.

The SALZC receives a sequence of 16 bytes of data from a text

vector file. Thus, the first 16-bytes of data stored in Yj then it

reads Xi and then it compared Yj with Xi and the result is in Li

and Y0-out since Li = 1111 and this is due to the first 16-byte of

Xi equal the first 16-bytes of Yj and Y0-out = 01110011 and this

is due to the first byte of file = 01110011.

Fig.13. Simulation results of SALZC module.

The simulation result of the Host controller is shown in Fig. 14.

The code will output the code word due to the received signal

from SALZC since if there is no match it will output codeword

that contains M0 if there is a match it will output the code word

that contains Length of the match and its pointer. The first bit in

the codeword specifies that if there is a match or not.

The code also will do shift if en-shift = 1 or if load =1 since en-

shift is a control signal to do 16 shifts initially then if load =1 it

will load a new byte. The Host controller output also depends on

L-ready, which shows that the match is ready or not. Li shows

the length of the match and according to this length, the code

will do shift Ready = 1 then shift-left = 1 for 6 clock cycle then

shift left return to zero waiting for a new condition of Li or load

if there is no match.

After verifying the VHDL code of all the component Window,

SALZC and Host controller, the match-length of comparison

and the first byte stored in the first PE is fed to Host

controller then it decides if it was a match-length then it

compares it with the maximum length stored previously then it

outputs the codeword that consists of (16-bits) contain match-

length of compression and the pointer of this length, then it does

several shifts equal to the match-length and load a new number

of byte to the shift register and compare again. If it wasn't a

successful comparison it output the first byte that was stored in

the first PE and it does one shift (load one new byte) and do the

comparison again. If it has a match-length after the comparison,

SALZC module has a signal that shows that the code has a

match-length as shown in Fig. 16 (Q_ready) signal = 1 at the

time the output has a length and pointer and the first bit of the

codeword equal one this is another verify for the output, but if

the output has zero length it will out a signal (load) = 1 that

verify there is no correct comparison.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

43

Fig.14. The Host controller simulation result.

Fig.15. Window Simulation Result

Fig.16. The LZ compression chip simulation result.

5.2 Performance Parameters of the Proposed

Design
In this section, the achieved design is presented lossless

compression efficiency. The implementation of our design is

carried out using Xilinx Virtex-6 FPGA, for n = 1k, Ls = 16, and

w = 8. FPGA utilization summary is shown in Fig. 17.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

44

Fig.17. Implementation result of the proposed Design

The chip FPGA verification has been done by using the chips-

cope pro analyzer Xilinx tool to verify that the SALZC works

successfully as demonstrated in Fig.15.

A compressor's compression rate is defined as the number of

input bits that can be compressed in just one second. The

compression rate Rc can be estimated as follows:

Rc = clk × [(Ls*W)/(nLs+1)] (2)

 where clk is the clock rate. Note that only estimated Rc can

be obtained, as it depends on the input data. The number of

needed words that will be compressed can't be predicted exactly

(Ls at most) and how many clock cycles will be required (n–

Ls+1) at most) for every compression step. In our

implementation, window size (n) 1K is used, Ls = 16, w = 8, and

clk = 175.408, The Rc is about 22.25 Mbps. Our module does

space-saving about 55% and on average compression rate up to

25.75Mbps. Saving percentage in our FPGA implementation is

55% and the compression ratio is 67.8%. The total on-chip

power is 3.422W.

Fig.18. waveform window of analyzed Results using Chipscope

6. CONCLUSIONS
In this paper, the design and implementation of lossless data

compression was described using the LZ algorithm. Xilinx ISE

14.5 tool is used. The programming is done in VHDL language

and the whole algorithm is described in that language. Our

systolic array LZ compression (SALZC) module provides space-

saving about 55% and on average compression rate up to 25.75

Mbps. Compared to the results in [16] the throughput is

increased by 50% and the design area is decreased by more than

23% that provides an excellent platform for Real-time

compression applications. As future work, one may modify the

host controller since it can be used for other string-matching

based LZ algorithms, such as LZ78 and LZW.

7. REFERENCES
[1] J. Latif and Z. Ali, ‘An Efficient Data Compression

Algorithm for Real-Time Monitoring Applications in

Healthcare’, pp. 71–75, 2020.

[2] J. Uthayakumar and T. Vengattaraman, ‘Performance

Evaluation of Lossless Compression Techniques : An

Application of Satellite Images’, 2018 Second Int. Conf.

Electron. Commun. Aerosp. Technol., no. Iceca, pp. 750–

754, 2018.

[3] H. D. Kotha, M. Tummanapally, and V. K. Upadhyay,

‘Review on Lossless Compression Techniques’, J. Phys.

Conf. Ser., vol. 1228, no. 1, 2019, doi: 10.1088/1742-

6596/1228/1/012007.

[4] A. Gopinath, ‘Comparison of Lossless Data Compression

Techniques’, pp. 628–633, 2020.

[5] J. Uthayakumar, T. Vengattaraman, and P. Dhavachelvan,

‘A survey on data compression techniques: From the

perspective of data quality, coding schemes, data type and

applications’, J. King Saud Univ. - Comput. Inf. Sci., 2018,

doi: 10.1016/j.jksuci.2018.05.006.

[6] A. Moffat, ‘Huffman Coding’, vol. 52, no. 4, 2019.

[7] S. T. Klein, S. Saadia, and D. Shapira, ‘Forward Looking

Huffman Coding’, 2020.

[8] M. Pandey, S. Shrivastava, and S. Pandey, ‘An Enhanced

Data Compression Algorithm’, pp. 1–4, 2020, doi:

10.1109/ic-ETITE47903.2020.223.

[9] C. W. Huang and J. J. Ding, ‘Efficient EEG Signal

Compression Algorithm with Long Length Improved

Adaptive Arithmetic Coding and Advanced Division and

Encoding Techniques’, Int. Conf. Digit. Signal Process.

DSP, vol. 2018-Novem, no. 1, pp. 1–5, 2019, doi:

10.1109/ICDSP.2018.8631886.

[10] J. Ziv and A. Lempel, ‘A Universal Algorithm for

Sequential Data Compression’, IEEE Trans. Inf. Theory,

vol. 23, no. 3, pp. 337–343, 1977, doi:

10.1109/TIT.1977.1055714.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 12, January 2021

45

[11] A. Gupta, A. Bansal, and V. Khanduja, ‘Modern lossless

compression techniques: Review, comparison and analysis’,

Proc. 2017 2nd IEEE Int. Conf. Electr. Comput. Commun.

Technol. ICECCT 2017, vol. XI, no. Xii, pp. 44–51, 2017,

doi: 10.1109/ICECCT.2017.8117850.

[12] U. K. H, ‘Design and Implementation of Lossless Data

Compression Coprocessor using FPGA’, vol. 4, no. 05, pp.

818–822, 2015.

[13] K. Pagiamtzis and A. Sheikholeslami, ‘Content-addressable

memory (CAM) circuits and architectures: A tutorial and

survey’, IEEE J. Solid-State Circuits, vol. 41, no. 3, pp.

712–727, 2006, doi: 10.1109/JSSC.2005.864128.

[14] S. A. Hwang and C. W. Wu, ‘Unified VLSI systolic array

design for LZ data compression’, IEEE Trans. Very Large

Scale Integr. Syst., vol. 9, no. 4, pp. 489–499, 2001, doi:

10.1109/92.931226.

[15] N. Ranganathan and S. Henriques, ‘A systolic chip for LZ

based data compression’, Proc. IEEE Int. Conf. VLSI Des.,

pp. 310–311, 1991, doi: 10.1109/ISVD.1991.185144.

[16] M. A. Abd El Ghany, A. E. Salama, and A. H. Khalil,

‘Design and implementation of FPGA- Based systolic array

for LZ data compression’, Proc. - IEEE Int. Symp. Circuits

Syst., pp. 3691–3695, 2007, doi: 10.5772/8872.

[17] B. Jaysree, D. Harshith, P. Deekshith, and I. B. Mahapatra,

‘Design and implementation of a reconfigurable hardware

for data compression techniques : a Survey’, vol. 10, no. 03,

pp. 33–40, 2020, doi: 10.9790/9622-1003023340.

[18] J. Ziv and A. Lempel, ‘Compression of Individual

Sequences via Variable-Rate Coding’, IEEE Trans. Inf.

Theory, vol. 24, no. 5, pp. 530–536, 1978, doi:

10.1109/TIT.1978.1055934.

[19] J. A. Storer and T. G. Szymanski, ‘Data Compression via

Textual Substitution’, J. ACM, vol. 29, no. 4, pp. 928–951,

1982, doi: 10.1145/322344.322346.

[20] S. Belu and D. Coltuc, ‘RoLZ-The reduced offset LZ data

compression algorithm’, ISSCS 2019 - Int. Symp. Signals,

Circuits Syst., pp. 1–4, 2019, doi:

10.1109/ISSCS.2019.8801741.

[21] G. Wang, H. U. A. Peng, and Y. Tang, ‘Repair and

Restoration of Corrupted LZSS Files’, IEEE Access, vol. 7,

pp. 9558–9565, 2019, doi:

10.1109/ACCESS.2019.2891764.

[22] E. R. Marsh and B. R. Knapp, ‘On the design and

implementation of an instrumented grinding testbed’, Sens.

Rev., vol. 25, no. 1996, pp. 155–161, 2005, doi:

10.1108/02602280510585754.

IJCATM : www.ijcaonline.org

