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ABSTRACT    
Field Programmable Gate Arrays have long been seen as a 

viable alternative to Application Specific Integrated Circuits 

(ASICs). While ASICs have very sophisticated commercialized 

EDA tools that deliver very fast and power efficient chips, the 

FPGA world has unfortunately not  seen the kind of software 

investment the ASIC world has seen. However, with the ever 

rising demand of  FPGA  based applications and increasing 

semiconductor complexity of late, the techniques and efficient 

algorithms of ASIC software have trickled down to FPGA as 

well, In this paper, we are going to look at some of these 

techniques that have resulted in better performance per watt- a 

key metric in FPGA world.  We will also do a brief comparison 

of ASIC vs FPGA design flow  and FPGA architecture, connect 

the dots and  make user  better  aware of the challenges that are 

faced by FPGA designers in implementing a  certain design 

technique and how the software tries to overcome those 

challenges. This paper would be useful for new ASIC 

developers entering in the FPGA  world, or even experienced 

FPGA developers who can get some ideas from this paper for 

the betterment of the FPGA compilation process. 
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Programmable Logic, Chip Design flow, computer aided design, 

system-on-chip design, performance, software tools, turnaround 

time. 
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Electronic  design automation, physical design, timing. Quality 
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1.  INTRODUCTION 
Field-Programmable Gate Arrays (FPGAs) are becoming 

increasingly important with the  advent of Moore’s law and 

increasing semiconductor complexity. The increased complexity 

of ASICs(application specific integrated circuits)  and 

SoC(System on Chip) design process that includes  

implementation, verification and fabrication of these state-of-the 

art chips  have led to a rise in investment that needs to be done 

to make them and deploy in production scale. Such high cost of 

engineering and manufacturing has led small scale design 

companies to look for  FPGA based design starts and their 

subsequent implementation.  The  obvious disadvantage of  

FPGAs over  ASICs  is low performance(or timing), higher 

power consumption and much bigger  area of the chip that is 

manufactured.  Their  PPA numbers(Power, Performance, Area 

metrices)  are much worse compared to ASIC  because of the 

architectural issues that an FPGA has. However, FPGA’s  

biggest advantage is reconfigurability, i.e. The ability of the  

same chip to be programmed and then re-programmed into 

different functions, unlike the  ASIC that once burnt on a  chip  

retains the same logic function for the entire chip life cycle 

duration. The  flexibility of an FPGA derives itself from the pre-

fabricated nature of the silicon that has  a  fixed architecture of  

cells and wires.  The desired logic can easily be  burnt(and re-

burnt) on this fixed architecture for   various logical functions. 

Also, compared to ASICs, FPGAs are very fast to implement. 

This is very intuitive to understand, if we compare this to a fact 

that any  custom process is much longer and difficult to achieve 

than a  standard(or fixed) process. The same   fastness in 

implementation comes into play while re-programming an 

FPGA and offers very distinct advantage over an ASIC. 

In this paper, we will try to understand  some of  new 

innovations that have  been done in the CAD(computer aided 

design) software  flow to improve upon  various  PPA  targets 

and  even faster compilation process. These innovations  have 

helped bridge the gap between an ASIC performance vs  FPGA  

performance, hence making FPGAs even more  desirable.  

To  better appreciate these innovations,   we would first look at 

the basic  architecture of  an FPGA.  This architecture would 

help in understanding basic FPGA terminology. Also,  we 

would  be having a  brief  overview of the CAD process  of  an 

FPGA compilation design flow with reference to the  

architecture. The  design flow helps in understanding what goes 

on behind the  flat compilation process. In the last section, we 

would  go over some of these innovations that  have helped the  

FPGA design process. 

2.  FPGA Architecture and CAD  
In this section we would  touch on the basics of architecture and 

the  interrelated  flow that would help in understanding how 

FPGA works. 

2.1  Architecture 
Figure 1 refers to a  very basic representation of a  FPGA 

architectural system. This system consists of  the few  major 

components and some minor components.  The major ones 

include a  logic block and routing wires that interconnect 

various elements. Logic blocks contain the core circuits for 

implementing the logic. These  blocks are configurable and 

programmable(implying the logic could  be different).  In  

current  FPGA  systems, there are clusters of  such logic block 

which  are called as LAB(Logic  Array Block). Outside the 

LAB’s run the routing channels that connects the various 

LAB’s. Then there are  minor components like switch blocks 

and connection blocks  through which the interconnect runs and 

gets  switched in state through  various kinds of  switch blocks.  
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Fig 1: FPGA core diagram [4] 

 

Newer FPGAs(Figure 2- pictorial representation) have  a 

complicated fixed array kind of structure that also contains 

embedded components that are  dedicated to perform various 

functions  like memories,  computational elements like 

DSPs(signal processors) and hard processors, clock generating 

elements like PLLs . They are also  surrounded  by  IO  

elements like  transceivers and various  other kind  of  

IPs(Intellectual property) that  serves to implement a  complete 

SoC. 

The figure below is one such simple representation. However, 

this perfect symmetry will always be not true in case of all 

FPGA systems. 

 

 
 

Fig 2: FPGA IO and embedded functions [2] 

The  architecture of the entire chip is such that it felicitates 

direct  communication between the LABs through dedicated  

channels  in  either  a  one-one   connection or  through a hex 

line that runs across the  FLGA and  all  inter-LAB 

communication are data  transfer that happen through these lines  

rather than classical Manhattan type of  routing  done in  various  

ASIC style routers.  To calculate routing  distances  and hence  

timing delays  present a challenge in FPGAs  compared to 

ASICs.   

A LAB itself is composed of multiple  LE’s(Logic elements) . 

The number of  LE’s could  be 4, 16, 32 etc depending on 

complexity of  FPGA). This is shown in Figure 3.  Each LE  

consists of a LUT(Look  Up Table)  and  a  register. In the 

figure, the LE  takes I inputs and N outputs. We don’t have  to 

go into the details of the LE circuit implementation for the scope 

of this paper. 

 

Fig 3: Basic LE representation including a LUT. [1] 

So, as we have noted  above, an FPGA consists of  fixed routing 

structures and is much more  constrained in shapes compared to 

an ASIC router that can shape as much as possible to meet 

desired routing metrices. 

Another  big difference between the  ASIC and  FPGA 

architecture is the  clock network. While the clock  network in 

an  ASIC is primarily free floating and  have many degrees of  

freedom in clock cells  placements and routing, the clock  

architecture of an FPGA is  primarily  fixed.  The clock  travels 

from a predefined location of  PLLs and  boundary clock 

signals, through a  fixed path of  clock network  and  then 

bifurcates in an  H fashion to the clock  root cells(LABs and 

LE’s).  Figure 4 shows this pictorially. Hence the problem  of 

clock distribution in an FPGA is  essentially of  clock 

assignment rather than a  true  clock synthesis in an ASIC where 

the clock is optimized for performance, skew and power.  Hence 

the  performance in an FPGA is  somewhat limited by this  huge  

architectural constraint. If it is  difficult to envision this 

limitation, one should refer  back to the initial statement that 

FPGAs are more or less fixed in architecture since they need to 

maintain the idea of re-programmability.   However, the  newer  

versions of  FPGAs are  modified to the best extent possible so 

that clock tree can be tuned at the last  stages of the distribution 

in order to  improve performance. 

 

Fig 4:  Basic FPGA clock structure [5] 

2.2 CAD 
The  CAD  flow  or also called as EDA flow(Electronic Design 

Automation) is the  physical design flow that is used to 

implement or  program an FPGA chip.   FPGA design   flow is  

somewhat similar to an ASIC flow.  Figure 5 illustrates the 

overall  flow that starts  with  an RTL(Register Transfer Level) . 
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RTL is nothing but an abstraction of  a digital circuit consisting 

of combinational and sequential elements. RTL is  specified in a  

standard language which is also known as HDL(hardware 

description language) like Verilog . RTL has always been 

designed at a  functional level  .  Generally, RTL designers write  

RTL for their sub-systems  by providing optimal logic for 

functionality and let downstream    synthesis and physical 

design tools manage the performance and power. 

 

Fig 5: Flat FPGA design flow. [1] 

We will not go into details for each step in this paper, but would 

point out to differences  when compared to an ASIC flow, 

wherever applicable. 

Once  an RTL  is elaborated  and synthesized to a gate level 

netlist, it is converted to an FPGA primitive netlist. One must 

remember that an  FPGA is made up of  LE’s  as fundamental 

elements and hence the entire netlist is transformed to FPGA 

understandable one.  

The placement and routing steps are conceptually similar to the  

ASIC  flow. However, the placement problem in FPGA  is 

fundamentally different  as  the  locations  of  LAB’s(and all 

other  design elements) are predefined on the FPGA. So, the 

placement problem is virtually of mapping the netlist to the best 

possible pre-defined location in order to get the best 

performance. In ASIC, the  gates are free to be placed anywhere 

on the die as  long as  it adhering to a legal location. The  

routing problem also is  conceptually same  with the difference 

of  pre defined  architecture  for both data and clock network, 

unlike an ASIC. Also, in an ASIC flow, the  physical 

optimization is  spread  across the flow  with varying degrees of  

freedom.   

We already have discussed  about similar constraints in  clock 

architecture of an FPGA . One additional thing to note is that an 

FPGA  additionally offers multiple type of clock routing 

resources- E.g.   Global network for  wide impact clocks but  

with bigger insertion delay, while  regional or  local clock 

networks are offered  for  last mile  clock  distribution with 

smaller insertion delay and is better suited for  localized clocks. 

Modern FPGA CAD flows  are getting  seemingly closer to the 

ASIC flow with the intention of better flexibility and  

performance. 

The  flow  ends  with the generation of bitstream that is  nothing  

a  structured combination of  0’s and 1’s that is  programmed 

onto an  FPGA.  This  part is  again  specific to an FPGA flow 

and in integrated in the  software CAD flow  with  various  

modes of operation. In an ASIC flow, the analogous is the GDS 

but it is not so tightly integrated into the design flow as it is one 

time thing only. In FPGA however, if the  design change, the 

bitstream can be regenerated  for a  brand new FPGA logic. 

Another important thing to note is that  there are  various  

families of FPGAs provided by the leading providers(Intel 

provides Aria/Stratix® families  while AMD(Xilinx) provides 

Spartan/Virtex® devices.  Each device family has multiple 

FPGAs that differ in size, performance and power. Different 

device families  differ with each other in architecture, IO, speed 

etc.  A   design  flow is carried out usually on a specific set of  

devices within a  family and should be  carefully chosen based 

on requirements and cost. 

For more details on the  CAD flow  one can refer to [1] and [2] 

that describes the flow and architecture in much larger details. 

In this  section we  touched on high level  FPGA architecture  

and the  CAD flow that works on that  architecture,  while 

outlining some high level differences in ASIC vs FPGA flow.  

In the next section, we will look at some methodologies and 

software innovations used to bridge the gap between an ASIC 

and  an FPGA performance. 

3.  FPGA CAD FLOW INNOVATIONS  
In this  section we will explore  few of the  many  initiatives 

FPGA design flow has seen over the past few years to improve 

the  performance and  turnaround time of the FPGA  

compilation flow. 

3.1 Exploration modes 
FPGA  placement quality depends on  initial conditions of a  

design that is  determined by various factors like input type and 

size, compiler settings,   operating system used etc. This  initial 

factor is also called as seed .  Recent changes in software allows 

a  designer to sweep over various seed values in order to 

determine the best possible placement of the design. Once  a   

best case seed value is arrived at, the  design placement could be 

locked by various hierarchical flow constraints that we would 

visit later.   Along with the seed sweeping capabilities that  give  

best default values, software also  can tune up specific  

parameters at the cost of other ones.  E.g.  , the timing effort 

could be aggressive where the timing weight is higher than 

power/area  and  vica-versa.  Similarly other  efforts could be 

tuned up as well. This  depends largely on the design 

requirement- some designs need better frequency operations 

than others, if they are numerically intensive workloads or  

serve as graphics  accelerators.  Other operations could be more 

power consuming and need to scale down the power 

requirements at the cost of  frequency. 

Modern ASIC EDA tools  let the  user customize these settings- 

and so now the FPGA tools  as well. 

3.2 Hierarchical flow improvements 
Hierarchical flow has reached to a very advanced  stage in ASIC 

CAD flow. There are multiple ways to partition the design and 

implement block and top portion separately and  then assemble  
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back everything together[9][10].  This is   basically  due to 

unrestricted way of handling shapes  and locations in an ASIC 

flow(there are some limitations but not as hard as in FPGAs).  In 

FPGAs however, the  flow  has  been  under developed  for 

quite some  time. But recently there have been multiple software 

flows introduced and various new use models provided for the 

customer to implement a complex SoC on an FPGA in a 

hierarchical fashion. The  design flow mentioned in the previous 

section is basically a  flat flow where small designs are 

implemented by single designer. However, when it comes to 

very large and complex SoC where there are many complex core 

and peripheral logic and functionalities, then  a  hierarchical 

flow becomes a  must.  Lack of  an adequate  flow  hurts the 

overall turnaround time for a  chip or  impacts the final timing 

performance or  can lead to both of these issues.  

The  flow  starts in an FPGA  starts with the concept of 

floorplanning the design in a  correct fashion.  For an FPGA, it 

is critical to get the locations of the various IPs(like peripheral 

clocks, transceivers, or  core logic  memory elements and DSPs) 

correct in first place. In  an ASIC,  IPs such  as these  are hand 

placed  through manual floorplanning.  But in FPGA  they have 

pre-defined  locations on the chip and a FPGA designer or the 

CAD tool has to select the best possible location.  The  design is  

first divided into partitions and then these partitions are 

physically locked to a  certain area of the chip encompassing 

certain number of memories or  DSPs  that  need to be  used by 

that partition. Incorrect floorplanning can lead to  fatal issues in 

timing closure and hence it is the  first correct step in overall 

closure and performance.  Once the partitions are assigned to the 

chip, there are various  constructs available to implement the  

chip. The  chip can be either implemented in a team based 

distributed fashion or  a  single  environment  fashion. In a  team 

based  methodology (which is most close to the  true  ASIC  

hierarchical flow), the  full design snapshot is  available to  

various teams responsible for implementation of  a different 

portion of the  design after budgeting[6][7] including clock and 

delay budgets[8][11]. Typically, the periphery and various core 

partitions are implemented by separate teams. As  each team  

comes up with their  implementations, they are plugged in  

another team’s version of the design through models or  

database files. Note that in this  flow, true partitioning and 

subsystem generation[9] is not followed- however it is  still  a  

good representation of the hierarchical model. 

In a  non-team based model,  a  single user/environment  is 

responsible for timing closure for the entire  chip. For  a large 

chip, it is not possible to complete the timing closure of  a  full 

design as a  single flat flow  as  it is  subject to both  runtime  

bottlenecks and availability of RTL for various  sub-blocks.  

Hence these  sub-blocks are partitioned(and floorplanned) just 

like one does in a  team based model. User in most  such cases, 

would like to focus on their most timing critical blocks  before 

closing the other blocks. For  exercising this use mode, the  

software provides the user  the option of  emptying the entire  

design except the  timing critical block. This is only a  virtual 

empty state  as  the physical RTL is still present for those 

blocks. Once the sub-block gets timing closed, its design state  

can then be locked so that its  timing is  not impacted by other 

partitions implementation. 

Multiple  instantiated modules  are not handled by  FPGA  flows 

so far. These are modules that have the same logic in multiple 

partitions. In ASIC flow, these modules are handled in a similar 

fashion (one  block replicating other), but in FPGA all such 

blocks  have to be independently implemented.  The  software 

flows are now providing some  basic capabilities to implement 

such modules. 

3.3 Register retiming 
Register retiming(Figure 6) is a  technique used in  ASIC flows  

whereby back-to-back registers are  physically shifted  in a 

pipeline kind of  design, in  such a  manner that the timing 

slacks(delay margins) for  each individual stage becomes 

positive. In other words, excess positive slack is redistributed  

across the  entire pipeline stages, if possible.   This technique 

though common in ASIC flows,  finds  it difficult to be 

implemented in FPGA flow because in ASIC, there is  very less 

constraint on the physical movement, while it may be recalled 

that an FPGA  has  only fixed locations  a  new LE(that contains 

the register) can be mapped to.  This was  a  big bottleneck in 

FPGA unless recently the architecture of  new  devices has been 

changed to accommodate retiming flows.  One  such 

architecture is hyperflex® used in Intel family of FPGAs.  

Introduction of retiming has  been very useful in increasing the 

frequency of operation. 

 

 

Fig 6: Register retiming in FPGA’s 

3.4  Other improvements 
Other  similar architectural changes have been done  in other 

parts of an FPGA E.g redefining the dedicated clock network 

that distributes the clock in a  skew aware fashion. Recent 

advancements in the FPGA architecture have enabled 

distribution of  clock in a more balanced fashion till the leaf 

level [3]. For this purpose an entire FPGA  has to be  divided in 

sub-regions and clock structure has to be  propagated till the 

sub-region level before arriving at the final root elements. 

FPGA flows have borrowed also from the ASIC flows many 

fancy optimization transforms like register duplication, cloning 

and  declining  which  gives  better performance with the cost of 

area/power .  These transforms have traditionally played a key 

role in getting optimal QoR(Quality of Results) for  ASIC flows. 

4.  CONCLUSION 
Through this paper  we have  seen and understood basic FPGA 

architecture and provided references to understand them in 

detail.  We also have gone through the  physical flow that helps 

in generating a  bitstream for an FPGA. Finally  we have seen 

some innovations that are  being done in the FPGA flow that 

bridges the gap with the ASIC flow performance, while 

comparing with the ASIC flow to give a  better understanding 

for people with background of ASIC design. New  engineers  

can get  a good perspective of the FPGA  flow as well.  Through 

this paper, academia would also benefit by observing the  trends 

seen in the design and automation industry for FPGA design and 

could  provide  a pathway for  further innovation and research. 
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