
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 13, January 2021

45

FPGA Architectural Flow: CAD Improvements

Vivek Bhardwaj
Intel Corporation
Penang, Malaysia

ABSTRACT
Field Programmable Gate Arrays have long been seen as a

viable alternative to Application Specific Integrated Circuits

(ASICs). While ASICs have very sophisticated commercialized

EDA tools that deliver very fast and power efficient chips, the

FPGA world has unfortunately not seen the kind of software

investment the ASIC world has seen. However, with the ever

rising demand of FPGA based applications and increasing

semiconductor complexity of late, the techniques and efficient

algorithms of ASIC software have trickled down to FPGA as

well, In this paper, we are going to look at some of these

techniques that have resulted in better performance per watt- a

key metric in FPGA world. We will also do a brief comparison

of ASIC vs FPGA design flow and FPGA architecture, connect

the dots and make user better aware of the challenges that are

faced by FPGA designers in implementing a certain design

technique and how the software tries to overcome those

challenges. This paper would be useful for new ASIC

developers entering in the FPGA world, or even experienced

FPGA developers who can get some ideas from this paper for

the betterment of the FPGA compilation process.

General Terms
Programmable Logic, Chip Design flow, computer aided design,

system-on-chip design, performance, software tools, turnaround

time.

Keywords
 FPGA, SOC, VLSI CMOS integrated circuits, Moore’s law,

Electronic design automation, physical design, timing. Quality

of results

1. INTRODUCTION
Field-Programmable Gate Arrays (FPGAs) are becoming

increasingly important with the advent of Moore’s law and

increasing semiconductor complexity. The increased complexity

of ASICs(application specific integrated circuits) and

SoC(System on Chip) design process that includes

implementation, verification and fabrication of these state-of-the

art chips have led to a rise in investment that needs to be done

to make them and deploy in production scale. Such high cost of

engineering and manufacturing has led small scale design

companies to look for FPGA based design starts and their

subsequent implementation. The obvious disadvantage of

FPGAs over ASICs is low performance(or timing), higher

power consumption and much bigger area of the chip that is

manufactured. Their PPA numbers(Power, Performance, Area

metrices) are much worse compared to ASIC because of the

architectural issues that an FPGA has. However, FPGA’s

biggest advantage is reconfigurability, i.e. The ability of the

same chip to be programmed and then re-programmed into

different functions, unlike the ASIC that once burnt on a chip

retains the same logic function for the entire chip life cycle

duration. The flexibility of an FPGA derives itself from the pre-

fabricated nature of the silicon that has a fixed architecture of

cells and wires. The desired logic can easily be burnt(and re-

burnt) on this fixed architecture for various logical functions.

Also, compared to ASICs, FPGAs are very fast to implement.

This is very intuitive to understand, if we compare this to a fact

that any custom process is much longer and difficult to achieve

than a standard(or fixed) process. The same fastness in

implementation comes into play while re-programming an

FPGA and offers very distinct advantage over an ASIC.

In this paper, we will try to understand some of new

innovations that have been done in the CAD(computer aided

design) software flow to improve upon various PPA targets

and even faster compilation process. These innovations have

helped bridge the gap between an ASIC performance vs FPGA

performance, hence making FPGAs even more desirable.

To better appreciate these innovations, we would first look at

the basic architecture of an FPGA. This architecture would

help in understanding basic FPGA terminology. Also, we

would be having a brief overview of the CAD process of an

FPGA compilation design flow with reference to the

architecture. The design flow helps in understanding what goes

on behind the flat compilation process. In the last section, we

would go over some of these innovations that have helped the

FPGA design process.

2. FPGA Architecture and CAD
In this section we would touch on the basics of architecture and

the interrelated flow that would help in understanding how

FPGA works.

2.1 Architecture
Figure 1 refers to a very basic representation of a FPGA

architectural system. This system consists of the few major

components and some minor components. The major ones

include a logic block and routing wires that interconnect

various elements. Logic blocks contain the core circuits for

implementing the logic. These blocks are configurable and

programmable(implying the logic could be different). In

current FPGA systems, there are clusters of such logic block

which are called as LAB(Logic Array Block). Outside the

LAB’s run the routing channels that connects the various

LAB’s. Then there are minor components like switch blocks

and connection blocks through which the interconnect runs and

gets switched in state through various kinds of switch blocks.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 13, January 2021

46

Fig 1: FPGA core diagram [4]

Newer FPGAs(Figure 2- pictorial representation) have a

complicated fixed array kind of structure that also contains

embedded components that are dedicated to perform various

functions like memories, computational elements like

DSPs(signal processors) and hard processors, clock generating

elements like PLLs . They are also surrounded by IO

elements like transceivers and various other kind of

IPs(Intellectual property) that serves to implement a complete

SoC.

The figure below is one such simple representation. However,

this perfect symmetry will always be not true in case of all

FPGA systems.

Fig 2: FPGA IO and embedded functions [2]

The architecture of the entire chip is such that it felicitates

direct communication between the LABs through dedicated

channels in either a one-one connection or through a hex

line that runs across the FLGA and all inter-LAB

communication are data transfer that happen through these lines

rather than classical Manhattan type of routing done in various

ASIC style routers. To calculate routing distances and hence

timing delays present a challenge in FPGAs compared to

ASICs.

A LAB itself is composed of multiple LE’s(Logic elements) .

The number of LE’s could be 4, 16, 32 etc depending on

complexity of FPGA). This is shown in Figure 3. Each LE

consists of a LUT(Look Up Table) and a register. In the

figure, the LE takes I inputs and N outputs. We don’t have to

go into the details of the LE circuit implementation for the scope

of this paper.

Fig 3: Basic LE representation including a LUT. [1]

So, as we have noted above, an FPGA consists of fixed routing

structures and is much more constrained in shapes compared to

an ASIC router that can shape as much as possible to meet

desired routing metrices.

Another big difference between the ASIC and FPGA

architecture is the clock network. While the clock network in

an ASIC is primarily free floating and have many degrees of

freedom in clock cells placements and routing, the clock

architecture of an FPGA is primarily fixed. The clock travels

from a predefined location of PLLs and boundary clock

signals, through a fixed path of clock network and then

bifurcates in an H fashion to the clock root cells(LABs and

LE’s). Figure 4 shows this pictorially. Hence the problem of

clock distribution in an FPGA is essentially of clock

assignment rather than a true clock synthesis in an ASIC where

the clock is optimized for performance, skew and power. Hence

the performance in an FPGA is somewhat limited by this huge

architectural constraint. If it is difficult to envision this

limitation, one should refer back to the initial statement that

FPGAs are more or less fixed in architecture since they need to

maintain the idea of re-programmability. However, the newer

versions of FPGAs are modified to the best extent possible so

that clock tree can be tuned at the last stages of the distribution

in order to improve performance.

Fig 4: Basic FPGA clock structure [5]

2.2 CAD
The CAD flow or also called as EDA flow(Electronic Design

Automation) is the physical design flow that is used to

implement or program an FPGA chip. FPGA design flow is

somewhat similar to an ASIC flow. Figure 5 illustrates the

overall flow that starts with an RTL(Register Transfer Level) .

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 13, January 2021

47

RTL is nothing but an abstraction of a digital circuit consisting

of combinational and sequential elements. RTL is specified in a

standard language which is also known as HDL(hardware

description language) like Verilog . RTL has always been

designed at a functional level . Generally, RTL designers write

RTL for their sub-systems by providing optimal logic for

functionality and let downstream synthesis and physical

design tools manage the performance and power.

Fig 5: Flat FPGA design flow. [1]

We will not go into details for each step in this paper, but would

point out to differences when compared to an ASIC flow,

wherever applicable.

Once an RTL is elaborated and synthesized to a gate level

netlist, it is converted to an FPGA primitive netlist. One must

remember that an FPGA is made up of LE’s as fundamental

elements and hence the entire netlist is transformed to FPGA

understandable one.

The placement and routing steps are conceptually similar to the

ASIC flow. However, the placement problem in FPGA is

fundamentally different as the locations of LAB’s(and all

other design elements) are predefined on the FPGA. So, the

placement problem is virtually of mapping the netlist to the best

possible pre-defined location in order to get the best

performance. In ASIC, the gates are free to be placed anywhere

on the die as long as it adhering to a legal location. The

routing problem also is conceptually same with the difference

of pre defined architecture for both data and clock network,

unlike an ASIC. Also, in an ASIC flow, the physical

optimization is spread across the flow with varying degrees of

freedom.

We already have discussed about similar constraints in clock

architecture of an FPGA . One additional thing to note is that an

FPGA additionally offers multiple type of clock routing

resources- E.g. Global network for wide impact clocks but

with bigger insertion delay, while regional or local clock

networks are offered for last mile clock distribution with

smaller insertion delay and is better suited for localized clocks.

Modern FPGA CAD flows are getting seemingly closer to the

ASIC flow with the intention of better flexibility and

performance.

The flow ends with the generation of bitstream that is nothing

a structured combination of 0’s and 1’s that is programmed

onto an FPGA. This part is again specific to an FPGA flow

and in integrated in the software CAD flow with various

modes of operation. In an ASIC flow, the analogous is the GDS

but it is not so tightly integrated into the design flow as it is one

time thing only. In FPGA however, if the design change, the

bitstream can be regenerated for a brand new FPGA logic.

Another important thing to note is that there are various

families of FPGAs provided by the leading providers(Intel

provides Aria/Stratix® families while AMD(Xilinx) provides

Spartan/Virtex® devices. Each device family has multiple

FPGAs that differ in size, performance and power. Different

device families differ with each other in architecture, IO, speed

etc. A design flow is carried out usually on a specific set of

devices within a family and should be carefully chosen based

on requirements and cost.

For more details on the CAD flow one can refer to [1] and [2]

that describes the flow and architecture in much larger details.

In this section we touched on high level FPGA architecture

and the CAD flow that works on that architecture, while

outlining some high level differences in ASIC vs FPGA flow.

In the next section, we will look at some methodologies and

software innovations used to bridge the gap between an ASIC

and an FPGA performance.

3. FPGA CAD FLOW INNOVATIONS
In this section we will explore few of the many initiatives

FPGA design flow has seen over the past few years to improve

the performance and turnaround time of the FPGA

compilation flow.

3.1 Exploration modes
FPGA placement quality depends on initial conditions of a

design that is determined by various factors like input type and

size, compiler settings, operating system used etc. This initial

factor is also called as seed . Recent changes in software allows

a designer to sweep over various seed values in order to

determine the best possible placement of the design. Once a

best case seed value is arrived at, the design placement could be

locked by various hierarchical flow constraints that we would

visit later. Along with the seed sweeping capabilities that give

best default values, software also can tune up specific

parameters at the cost of other ones. E.g. , the timing effort

could be aggressive where the timing weight is higher than

power/area and vica-versa. Similarly other efforts could be

tuned up as well. This depends largely on the design

requirement- some designs need better frequency operations

than others, if they are numerically intensive workloads or

serve as graphics accelerators. Other operations could be more

power consuming and need to scale down the power

requirements at the cost of frequency.

Modern ASIC EDA tools let the user customize these settings-

and so now the FPGA tools as well.

3.2 Hierarchical flow improvements
Hierarchical flow has reached to a very advanced stage in ASIC

CAD flow. There are multiple ways to partition the design and

implement block and top portion separately and then assemble

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 13, January 2021

48

back everything together[9][10]. This is basically due to

unrestricted way of handling shapes and locations in an ASIC

flow(there are some limitations but not as hard as in FPGAs). In

FPGAs however, the flow has been under developed for

quite some time. But recently there have been multiple software

flows introduced and various new use models provided for the

customer to implement a complex SoC on an FPGA in a

hierarchical fashion. The design flow mentioned in the previous

section is basically a flat flow where small designs are

implemented by single designer. However, when it comes to

very large and complex SoC where there are many complex core

and peripheral logic and functionalities, then a hierarchical

flow becomes a must. Lack of an adequate flow hurts the

overall turnaround time for a chip or impacts the final timing

performance or can lead to both of these issues.

The flow starts in an FPGA starts with the concept of

floorplanning the design in a correct fashion. For an FPGA, it

is critical to get the locations of the various IPs(like peripheral

clocks, transceivers, or core logic memory elements and DSPs)

correct in first place. In an ASIC, IPs such as these are hand

placed through manual floorplanning. But in FPGA they have

pre-defined locations on the chip and a FPGA designer or the

CAD tool has to select the best possible location. The design is

first divided into partitions and then these partitions are

physically locked to a certain area of the chip encompassing

certain number of memories or DSPs that need to be used by

that partition. Incorrect floorplanning can lead to fatal issues in

timing closure and hence it is the first correct step in overall

closure and performance. Once the partitions are assigned to the

chip, there are various constructs available to implement the

chip. The chip can be either implemented in a team based

distributed fashion or a single environment fashion. In a team

based methodology (which is most close to the true ASIC

hierarchical flow), the full design snapshot is available to

various teams responsible for implementation of a different

portion of the design after budgeting[6][7] including clock and

delay budgets[8][11]. Typically, the periphery and various core

partitions are implemented by separate teams. As each team

comes up with their implementations, they are plugged in

another team’s version of the design through models or

database files. Note that in this flow, true partitioning and

subsystem generation[9] is not followed- however it is still a

good representation of the hierarchical model.

In a non-team based model, a single user/environment is

responsible for timing closure for the entire chip. For a large

chip, it is not possible to complete the timing closure of a full

design as a single flat flow as it is subject to both runtime

bottlenecks and availability of RTL for various sub-blocks.

Hence these sub-blocks are partitioned(and floorplanned) just

like one does in a team based model. User in most such cases,

would like to focus on their most timing critical blocks before

closing the other blocks. For exercising this use mode, the

software provides the user the option of emptying the entire

design except the timing critical block. This is only a virtual

empty state as the physical RTL is still present for those

blocks. Once the sub-block gets timing closed, its design state

can then be locked so that its timing is not impacted by other

partitions implementation.

Multiple instantiated modules are not handled by FPGA flows

so far. These are modules that have the same logic in multiple

partitions. In ASIC flow, these modules are handled in a similar

fashion (one block replicating other), but in FPGA all such

blocks have to be independently implemented. The software

flows are now providing some basic capabilities to implement

such modules.

3.3 Register retiming
Register retiming(Figure 6) is a technique used in ASIC flows

whereby back-to-back registers are physically shifted in a

pipeline kind of design, in such a manner that the timing

slacks(delay margins) for each individual stage becomes

positive. In other words, excess positive slack is redistributed

across the entire pipeline stages, if possible. This technique

though common in ASIC flows, finds it difficult to be

implemented in FPGA flow because in ASIC, there is very less

constraint on the physical movement, while it may be recalled

that an FPGA has only fixed locations a new LE(that contains

the register) can be mapped to. This was a big bottleneck in

FPGA unless recently the architecture of new devices has been

changed to accommodate retiming flows. One such

architecture is hyperflex® used in Intel family of FPGAs.

Introduction of retiming has been very useful in increasing the

frequency of operation.

Fig 6: Register retiming in FPGA’s

3.4 Other improvements
Other similar architectural changes have been done in other

parts of an FPGA E.g redefining the dedicated clock network

that distributes the clock in a skew aware fashion. Recent

advancements in the FPGA architecture have enabled

distribution of clock in a more balanced fashion till the leaf

level [3]. For this purpose an entire FPGA has to be divided in

sub-regions and clock structure has to be propagated till the

sub-region level before arriving at the final root elements.

FPGA flows have borrowed also from the ASIC flows many

fancy optimization transforms like register duplication, cloning

and declining which gives better performance with the cost of

area/power . These transforms have traditionally played a key

role in getting optimal QoR(Quality of Results) for ASIC flows.

4. CONCLUSION
Through this paper we have seen and understood basic FPGA

architecture and provided references to understand them in

detail. We also have gone through the physical flow that helps

in generating a bitstream for an FPGA. Finally we have seen

some innovations that are being done in the FPGA flow that

bridges the gap with the ASIC flow performance, while

comparing with the ASIC flow to give a better understanding

for people with background of ASIC design. New engineers

can get a good perspective of the FPGA flow as well. Through

this paper, academia would also benefit by observing the trends

seen in the design and automation industry for FPGA design and

could provide a pathway for further innovation and research.

5. ACKNOWLEDGMENTS
The author would like to acknowledge various publicly

available user guides and reference manuals from Intel detailing

about their main FPGA CAD tool- Quartus®

https://www.intel.com/content/www/us/en/programmable/produ

cts/design-software/fpga-design/quartus-prime/user-

guides.html?wapkw=quartus%20user%20guide

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 13, January 2021

49

The author would like to also acknowledge the hierarchical and

quartus® software development team- specially Levitsky O.

and Maryan C.

6. REFERENCES
[1] Deming Chen, Jason Cong and Peichen Pan. 2006. FPGA

Design Automation: A Survey. Foundations and Trends®

in Electronic Design Automation: Vol. 1: No. 3, pp 195-

330. http://dx.doi.org/10.1561/1000000003

[2] Ian Kuon, Russell Tessier and Jonathan Rose. 2006. FPGA

Architecture: Survey and Challenges. Foundations and

Trends® in Electronic Design Automation: Vol. 2: No. 2,

pp 135-253. http://dx.doi.org/10.1561/1000000005

[3] Carl Ebeling, Dana How, David Lewis, and Herman

Schmit. 2016. Stratix™ 10 High Performance Routable

Clock Networks. In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable Gate

Arrays. Association for Computing Machinery, New York,

NY,, 64–73. DOI:https://doi.org/10.1145/2847263.2847279

[4] V. Betz, J. Rose, and A. Marquardt. 1999. Architecture and

CAD for Deep- Submicron FPGAs. Kluwer Academic

Publishers.

[5] F. Li, D. Chen, L. He, and J. Cong. 2003. Architecture

evaluation for power- efficient FPGAs. In ACM

International Symposium on Field Programmable Gate

Arrays, pages 175–184, Monterey, California.

[6] V. Bhardwaj, O. Levitsky, D. Gupta. 2015. Machine

readable products for single pass parallel hierarchical

timing closure of integrated circuit designs. US patent

9165098.

[7] V. Bhardwaj, O. Levitsky, D. Gupta. 2013. Flow

methodology for single pass parallel hierarchical timing

closure of integrated circuit designs. US patent 8365113.

[8] V. Bhardwaj, O. Levitsky, D. Gupta. 2013. Systems for

single pass parallel hierarchical timing closure of integrated

circuit designs. US patent 8539402.

[9] Vivek Bhardwaj. 2020. Hierarchical Methodology

Approach to SOC Design- A comprehensive look.

[10] Vivek Bhardwaj. 2020. Shift Left Trends for Design

Convergence in SOC: An EDA Perspective .

[11] V. Bhardwaj, O. Levitsky, D. Gupta. 2015. Methods for

single pass parallel hierarchical timing closure of integrated

circuit designs. US patent 8935642.

IJCATM : www.ijcaonline.org

