International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

A Novel Approach towards Rating Free-Text Responses
in Job Recruitment

Sarvesh Relekar
Data Analytics
Shortlist Professionals Pvt. Ltd.
Mumbai, India

ABSTRACT

The use of chatbots has become mainstream in the field of staffing
and recruitment. It has been observed that candidates tend to be
much more at ease when interacting with chatbots. The responses
provided by the candidates to the questions posed to them via chat-
bots are evaluated on the basis of various parameters by human
evaluators who may have a subjective bias towards what defines a
good response. This is especially the case, when it comes to eval-
uating free-text responses to open-ended questions that have little
to no domain constraints. To overcome this hurdle involving hu-
man bias, we propose an alternate approach that utilizes modern
techniques in the fields of Natural Language Processing and Deep
Learning to develop an algorithm that rates free text responses in
an impartial manner on the basis of the mood/sentiment expressed
by the candidate, the grammatical accuracy of the answer and the
relevance of the response w.r.t. the question asked while penalizing
it for the presence of any negation or grammatical error, thus acting
as a baseline model that aims to achieve the stated task. This algo-
rithm thus sets a common standard towards what can be considered
a good response thereby overcoming the hurdle arising from hu-
man perspective and establishing a criterion for evaluating free text
responses.

Keywords

Automated Free-Text Grading, Natural Language Processing, Deep
Learning, Data Science

1. INTRODUCTION

Shortlist as an organization has been trying to address the challenge
of rating answers provided by potential candidates on the propri-
etary platform with respect to:

(1) The mood of the candidate while answering questions.

(2) The grammatical correctness and the sentence structures of the
answer.

(3) The relevance of the answer w.r.t the question asked.

This helps Shortlist create acting guidelines for the Operations
Team to reduce bias while reviewing answers, and make their job
easier. Also, for Connect”™™ jobs, this acts as a nice offering to
clients while they review the profiles themselves.

Sayak Ray

Data Analytics
Shortlist Professionals Pvt. Ltd.

Kolkata, India

1.1 Candidate Mood

When a potential candidate answers the questions relevant to the
job for which they are applying for on the platform, the recruitment
team is unaware of the prevailing environment that the candidate is
in. For eg. the candidate may be tentative while answering certain
questions, confident while answering some others. Some questions
might bring them joy, while for answering some others, they have
to put on their analytical hats.In order to give the recruitment team
an additional flavor of how the candidate mentally perceives certain
questions while answering, a technique to capture the mood of the
candidate has been incorporated within the evaluation process.

1.2 Grammatical Correctness and Sentence Structure

When it comes to attending a job assessment, clear written com-
munication skills are a necessary quality for all candidates. Written
communication for Shortlist is a two-way process and the success
of a candidate depends a lot on their abilities to effectively com-
municate their points to the evaluator. A grammar rating score will
help the team choose the right candidate fit for the role.

1.3 Answer Relevance and Quality of Content

The strongest indicator for good fit for a particular role that the re-
cruitment team aims for is how relevant the answers provided by
the candidate are w.r.t the question asked. Generic answers might
not help the team understand if the candidate has the requisite expe-
rience or not. A relevance checking algorithm sorts the answers of
candidate to help avoid any bias from the Recruitment Operations
team while reviewing answers while a content rating algorithm can
help the reviewer gain an idea about how expressive the content is.

2. RELATED WORK
2.1 Text Similarity Calculation Methods

A variety of approaches have been tried and tested for the task
of short answer or essay scoring. A majority of these approaches
involved testing for similarity. One such case is discussed in [1]
where a system is proposed that compares the input answer with
several answers provided beforehand for reference and computes
a similarity score on the basis of weights obtained from common
words between the input answer and the reference answer. A sim-
ilar approach is taken in [2] which uses a modified version of the
BLEU algorithm for evaluation w.r.t the reference answers and gen-

erates a similarity score. An alternate method could be developing
a Knowledge Base, as suggested in [3] that allows one to compute
the various correlation measures between words. However, this ap-
proach lacks coverage of synonyms and may be inadequate for free
text responses. A combination of two topic modelling algorithms
for similarity, namely ERB, a modified version of the BLEU algo-
rithm and Latent Semantic Analysis are used in unison and their
combined results are used to evaluate students’ free-text answers
in [4]. Another comparative approach is discussed in [5] that in-
volves the usage of knowledge based similarity measures utilising
the WordNet implementation for word-to-word similarity metrics
and their comparison against corpus-based measures such as LSA
and Explicit Semantic Analysis (ESA) in which the dimensions of
the vector are directly equivalent to abstract concepts.

2.2 Regression-based Evaluation Methods

A linear regression based approach is explained in [6] where vari-
ous modules for syntactic, discourse and topic analyses provide a
holistic score that focuses on the marking the writing skills of the
author instead of the content. An enhanced version of this approach
is explained in [[7] by the name of C-rater that builds a canoni-
cal representation of a given response by extracting the underlying
structure of the response, resolving pronoun reference, normalizing
across inflected words and finally, recognizing the use of similar
terms and synonyms.

2.3 Classification-based Evaluation Methods

A unique method is implemented in [8]] where a Bayesian Network
classifies a sample essay on the basis of Information Gain. The text
itself has been subjected to basic preprocessing techniques such as
stemming and stopword removal into three categories, namely In-
appropriate, Partial and Appropriate. A similar ordinal scheme of
classification of free text responses into three rating classes, namely
low, medium and high has ben used for rating the content of a
response in this paper. Another usage of Bayesian classifiers and
their comparison with K-Nearest Neighbors classifiers was studied
in [9]]. These classifiers were combined with a variety of other text
similarity measures and were observed toperform well. However,
the KNN algorithm proved to be vastly inferior to Bayesian Clas-
sifiers unless it was paired with some other corpus based measure
such as Latent Semantic Indexing.

2.4 Previously Attempted Approaches at Shortlist

Using previously shortlisted candidates’ information (such as as-
sessment score, question answers, boost count, job status and ex-
clude count) against employers information (such as budget for the
role, required experience, job title, industry, and sector) A Random
Forest Model was developed that predicts the probability of a can-
didate to be shortlisted. The Random Forest model learns patterns
from the data. Given the task to predict whether a candidate must
be shortlisted or not, the model learns two major sets of patterns
to meet the objective. A similarity based approach was also tested
wherein a score between 0-1 is assigned for the relevance between
the question posed to the employer and the candidate’s response.
The distance metrics used to quantify relevance included Euclidean
distance (shortest distance between two points), Levenshtein dis-
tance (number of insertions and deletions required to change one
text to another) and Cosine Similarity. The predominant challenges
faced while using these approaches were:

(1) The lack of annotations to define a good answer.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

(2) The distance metrics were bidirectional, but were not robust
enough to account for open ended free flowing english text.

3. PROPOSED APPROACH
3.1 Candidate Mood Analysis

The mood of the candidate expressed from the answer can tell us
about their thought process. It can be used to infer the:

(1) Level of confidence a candidate has while writing an answer.

(2) Level of knowledge they have about that field. (job description
in this case)

(3) Analytical skills of the candidate.

The IBM Watson Tone Analyzer [10]], a third party API has been
used to detect the various tones present within the response. It is a
service that analyses the tone of the input content. The IBM Wat-
son Tone Analyzer is a part of IBM Watson, IBM’s own platform
to provide cloud based services to users. It helps in accelerating
businesses using Al based solutions. It allows the user, a monthly
quota of 2,500 API calls at no cost and has separate pricing lists
for premium user plans. Any tone that gets a score of 0.5 or greater
within a text document is considered within the final output by the
tone analyzer. The final output is a JSON file that comprises both
the tones reflected from the document as well as the tones deduced
from each of the individual sentences.

The Tone Analyzer leverages cognitive linguistic analysis to iden-
tify a variety of tones at both the sentence and document level. It
detects 3 types of tones, namely:

(1) emotion (anger, disgust, fear, joy and sadness)

(2) social propensities (openness, conscientiousness, extrover-
sion, agreeableness, and emotional range)

(3) language styles (analytical, confident and tentative)

3.2 Grammatical Correctness & Sentence Structure

Grammatical accuracy is evaluated in two phases; In the first phase,
each sentence in the response is split into tokens (words) and ev-
ery token is evaluated for the accuracy of its spelling and a count of
incorrectly spelled words is maintained. In the second phase, Gram-
mar Bot [[11]], a third-party APl is used to evaluate the grammatical
accuracy of a response.

3.2.1 Spelling Checker Module

A spelling checker algorithm that utilises Peter Norvig’s Spell
Checker [12] is used to check the accuracy of spellings. This al-
gorithm, based on the Levenshtein Distance metric is used to find
permutations within a minimum Edit distance of 1 and maximum of
2 from the original word. It then compares all permutations (inser-
tions, deletions, replacements, and transpositions) to known words
in a word frequency list. Those words that are found more often in
the frequency list are more likely the correct results.

This module takes a preprocessed free text response as input. The
steps involved in preprocessing include:

(1) Tokenization on whitespaces.

(2) Punctuation removal from list of tokens.

(3) Removal of tokens that begin with capital letters.

A variable that stores the count of incorrect spellings is initialized

to zero is maintained to store the count of incorrectly spelled words.
Each word is passed to the module for spell checking and the

counter is incremented for each incorrect spelling. A list of sugges-
tions is generated if the word is incorrect. If the list of suggestions
has a positive number of items, then the counter is incremented by
one. Once every word has been evaluated, a percentage value of
spelling accuracy is calculated using the following formula:

tof K
Percentage = 100 x (1 Count of Errors > o

~ Number of Tokens

Check for suggestions by
the spell checker
algarthm for each token

Preprocess Spiittextinto @

l TextResponse || stof okens

Posiive

Number of

suggestions
1

Retum The Calculate the
End Calculated percentage of
Percentage accurate spellings

Count+1

Fig. 1. Flowchart for the Spelling Checker Module

3.2.2 Gramatical Correctness Module

The task involving the evaluation of the grammatical accuracy of
a response is performed using the GrammarBot API, another third
party API that evaluates the sentence for its grammatical accuracy
by returning a number of matches in terms of the grammatical mis-
takes occurring in the sentence. The GrammarBot API allows a
quota of 4,500 API calls per month and has a variety of other pric-
ing plans available for users as per their requirements. It is currently
hosted on the RapidAPI Platform as a semi-premium API service.
The module takes a raw free text response as input. No preprocess-
ing is required. Similar to the Spelling Checker Module, a counter
initialized to zero is maintained to store the count of matches gener-
ated by the GrammarBot API for each response. Upon making the
API call, A JSON response containing the matches of grammatical
errors within the given text is generated and their count is stored.
This count is used to generate the percentage of grammatical accu-
racy of the response calculated using the formula given below:

Count of Errors
Percentage = 100 x (1 —)

3.3 Relevance of the Answer & Quality of Content

The relevance of a response w.r.t the job details and the question
asked as well as the quality of the content within the response
are among the most important parameters evaluated by this sys-
tem. The task of calculating the relevance of the response w.r.t the
question asked and the quality of the content is split into two major
modules that perform both the tasks independently. Another minor
module named as the Positivity Factor Generation Module is used
to generate a value that offsets some erroneous ratings assigned by
the Content Rating Module.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

Inout: Text Make Request Retrieve and
Rnpu i 6 to GrammarBot Parse JSON
EvpaNze API Response
Return The Calculate the Count the
End Calculated percentage of number of
Percentage grammatical matches
accuracy

Fig. 2. Flowchart for Grammatical Correctness Module

3.4 Relevance Checking Module

The Relevance Checking Module calculates the Cosine Similarity
between the concatenation of the question text & relevant job de-
tails w.r.t the free text response provided for the given question by
a particular candidate.

3.4.1 Data Set

The data set used for this task is Shortlist’s own private data com-
prising of fields such as Job description & Job Summary and
the Must-haves for the given job. Each job has a flow of open
ended questions associated with them. There is also another feature
named Job Card (Body) that dictates the essential skills or quali-
ties required from a candidate that is associated with each job. The
data set contains 65,926 unique responses from 28,467 candidates.
This data set is also used as our Test data set for the Content Rating
Module explained further in the paper. Another data set containing
92 responses annotated by the Operations Team is used for calcu-
lating the relevance of the answer as well as the quality of content
expressed in it.

3.4.2 Data Preprocessing

Data preprocessing for this module involves the execution of the
following steps in the specified order:

(1) Replacement of UTF-8 encodings with corresponding punctu-
ation or miscellaneous characters.

(2) Removal of any UTF-8 encoded characters that cannot be re-
placed.

(3) Separation of camelcased words into separate words at the cap-
ital letters within such words.

(4) Replacement of certain punctuation marks (’.”,’!”,’,”,’?”) with
whitespaces.
(5) Removal of extra whitespaces.

(6) Tokenization and removal of any garbage characters from the
list of tokens

(7) Lemmatization of each token.

(8) Concatenate tokens with whitespaces for separation

Shortlist has a unique method of maintaining job details. Job details
comprise of four main components namely:

(1) Job Description

(2) Job Summary

(3) Job Card (Body) Text

International Journal of Computer Applications (0975 - 8887)

Volume 174 - No.14, January 2021

l Start ,

Y

l Select Job |

¥

v

|

Select Question

Text

y
Input: Job
Details
Y

Preprocess
Question Text

Preprocess Job
Details Text

Y

Input: ;
Preprocessed

Job Details

v
Input:
Preprocessed

Question
Details

Select
Response

flnput: Response ;

A4

Preprocess Text
Response

Input:
Preprocessed

Y
Merge Preprocessed
Job & Question
Details

Text Response

v

Input: Preprocessed
Job & Question
Details

Execute Doc2Vec
Model

!

—_—

Generate
Similarity Score

!

Quantize Score
——— as
High/Medium/Low

Return Final
Rating

Fig. 3. Flowchart for the Relevance Checking Module

(4) Job Must-Haves

Job Description, Job Summary and Job Card (Body) Text de-
scribe the details about the company under which the job is enlisted
and provide the details of the job position and other details such as
roles and responsibilities, salary offered, working hours, etc.
Must-haves are the skills and requirements for that particular job.
These are usually keywords that occur on the job pages displayed
to the candidates so as to imply the skills which the employer is
looking for to perform a certain job. These four components as a
group will be further referred to as Job Details.

Unique Job Details are extracted and tagged separately, since sev-
eral responses are provided for the same job description by different
candidates. Since all the responses are unique, there is no need to
perform any kind of extraction and can be assigned unique tags di-
rectly. The tagging procedure is performed for the Doc2Vec model
that requires each unique document to be tagged or assigned with
a unique identification number before the training process. An ad-
ditional data set containing 92 annotated responses is used for the

purpose of validation in the Relevance Checking Module and as a
part of the training data in the Content Rating Module.

3.4.3 Evaluating Relevance using Doc2Vec

Doc2Vec [13]] aims to create a numeric representation of a docu-
ment, regardless of its length. But unlike words, documents do not
come in logical structures such as words, hence, the need to use an-
other method arises. The solution implemented was to use the basic
Word2Vec [14] model and an additional Paragraph ID Vector that
remains unique for each document. The Distributed Memory ver-
sion of Paragraph Vector (PV-DM) has been used to perform this
task. It acts as a temporary memory that remembers missing fe-
tures from the current context, or in brief, serves as the topic for the
given text. While the word vectors are used to represent the concept
of a word, the document vector is used to represent the concept of
a document.

A Doc2Vec model is trained on these preprocessed Job Details and
responses. Once the model training is complete, similarity scores
are generated by calculating the cosine similarity between each

response and its corresponding job detail. Further, the Box Cox
transformation is applied to standardize the similarity scores gen-
erated. These standardized similarity scores are mapped into bins
(low, medium and high) and the boundary scores used to define
each bin are recorded.

3.5 Content Rating Module

A Deep Learning based approach has been developed in this mod-
ule to classify responses as low, medium or high. The techniques
used for this purpose include Recurrent Neural Networks combined
with pre-trained word embeddings such as GLoVe[l5] (Global
Vectors for Word Representation).

3.5.1 Data Set

The data set provided for the Kaggle competition Hewlett Foun-
dation: Automated Essay Scoring [16] that comprises of 12,976
essays rated with a score between 1 to 100 is used to classify re-
sponses. Shortlist’s own annnotated data set comprising of 92 re-
sponses was appended to this data, increasing the total to 13,068
tuples. The data set of 65,926 responses introduced previously in
the Relevance Checking Module is used as our Test data set. Pre-
trained GLoVe Embeddings (840 Billion Words, 300 Dimensions)
are used as the word embeddings for this task.

3.5.2 Data Preprocessing

Data preprocessing involved in this module is slightly diferent
than that of the Relevance Checking Module. In this case, one
major difference involves the inclusion of punctuation. Other
changes include the expansion of contractions and the correction
of wrongly spelled words. The free text responses are not sub-
jected to stemming and lemmatization as the data set used in this
module is not domain-specific [17]. The steps followed for data
preprocessing in the prescribed order include:

(1) Replacement of UTF-8 encoded characters with their corre-
sponding punctuation marks or miscellaneous characters.

(2) Removal of any UTF-8 encoded characters that cannot be re-
placed.

(3) Expansion of contractions.(for eg. hasn’t expanded as has not)

(4) Replacement of multiple instances of same punctuation mark
with only a single one of the same type.

(5) Insertion of single whitespace between words and certain types
of punctuation.

(6) Removal of extra whitespaces.

(7) Tokenization and removal of any garbage characters from the
list of tokens

(8) Replacement of typically misspelled words with their correct
spellings by comparing with the GLoVe word vocabulary.

(9) Replacement of 2-digit or greater numerical values with #’.

(10) Tokenization over whitespaces.

(11) Conversion of each list of tokens into sequence of integers
generated by the Tokenizer.

(12) Post-padding of sequences.

The steps involving the insertion of whitespaces between words
and punctuation, the expansion of contractions, the replacement of
typically misspelled words with their correct spellings and the re-
placement of numbers with *#’ contribute towards improving the
coverage of GLoVe word embeddings for the data set. The step in-
volving the insertion of whitespaces allows the Tokenizer to treat

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

punctuation as separate tokens as certain punctuation marks are in-
cluded in the list of tokens covered within the GLoVe Embeddings.
The Tokenizer generates a set of key value pairs with the word as
the key and the assigned integer as its value. No word is assigned
the index O as it is used for the post-padding step to distinguish
the padded elements from the sequence boundary. Also, for the
post padding step, a maximum sequence length of 171 elements
was chosen, i.e. any sequence having length less than 171 will be
padded with zeros to bring its length to 171 whereas any sequence
that has length greater than 171 will be truncated to 171 elements
in length.

The target scores present in the training and testing data set were
continuous numeric values. So the Box Cox Transformation [[L8]]
was applied to the scores in order to get a distribution that better
resembles the Standard Normal Distribution. Finally these scores
are mapped into low, medium and high bins by setting percentile
boundaries at 50 percentile between low and medium and 70 per-
centile between medium and high classes. This simplified the prob-
lem from regression to classification. The classes (low, medium and
high) represent the three target classes.

3.5.3 Methodology for Content Rating

Initially, A Word2Vec model was trained over the preprocessed text
corpora in the Training and Testing data sets. A longer window
size of 11 was chosen in order to generate embeddings that provide
better topical relation between words [19]. The embeddings gen-
erated by the Word2Vec Model as well as the GLoVe embeddings
are loaded into the memory at the same time to create two separate
embedding matrices that are used in the Embedding layers of the
Recurrent Neural Networks trained for the task of classification in
this module. Two RNNs [20]] that utilize the GLoVe and Custom
Word2Vec embeddings respectively are trained for 10 epochs. The
data set is split into training and validation sets comprising of 75%
(9,801 responses) and 25% (3,267 responses) of the data respec-
tively.

The RNN model architecture comprises of an Embedding layer
followed by a 1-dimensional Spatial Dropout Layer. It was fol-
lowed by a single LSTM layer. The output of layer was normalized
batchwise and excessive parameters were subjected once again to a
Dropout layer. A Dense layer with three output modes to generate
the probabilities of three classes acted as the output layer. Cate-
gorical Crossentropy was used as the loss function and the Adam
optimizer was used to optimize the loss value at each epoch.

3.6 Positivity Factor Evaluation

Detecting negation within a free text response is a complicated task
due to the presence of negation within the text in various forms such
as negative words and contractions. Another issue that arises indi-
rectly in the detection of contractions that suggest negation such as
can’t, hasn’t, etc. is that when the candidates use a variety of elec-
tronic devices such as cellphones, desktops, laptops, tablets, etc.
there is a very high chance of the apostrophe(”””’) not being entered
due to human error that occurs while typing and if there is no au-
tocorrect functionality available in the device to correct the same.
The algorithm proposed to tackle this issue performs the detection
of negative words and original negative contractions as well as their
corresponding erroneous forms of negative contractions with the
missing apostrophe(?). The positivity factor is calculated using the
following formula:

Positivity Factor = 2~ Numberof Penaltics 3)

3.6.1 Data Preprocessing

The steps followed for text preprocessing are:

(1) Text Conversion to lowercase

s 9

(2) Removal of punctuation marks such as ’(’, ’)’,’,” (comma) and
> (period).
(3) Removal of ’-’ from text.

For each
token in the

Splittextinto a
Penalty =0
stofokens list of tokens
For each token in
/| new list of tokens

Calculate the Delete Proper
contractions from
list of tokens

St Input: Text Preprocess
Response Text Response

Penalty = .
Penalty+1 [

rword s
from lst of
negative

If proper
contraction ?

Penalty =
Penaly + 1

Penalty =
Y penalty + 1

word is

an improper

contraction
?

postiity factor

Retum The
Calculated End
Value

Fig. 4. Flowchart for Positivity Factor Module

4. RESULTS AND EVALUATION
4.1 Candidate Mood Analysis

The tone of the candidate was evaluated over each of the responses
as well as over the aggregate of all the responses provided by a
particular candidate. It was observed that a majority of candidates’
responses displayed a Joyous tone and Analytical, Tentative lan-
guage styles. Few responses that clearly displayed negation, for eg.
responses stating that the candidate did not have any experience in
some field were tagged with a Sadness emotion.

Table 1. Tone Analysis of Responses for a single Job Detail

Sr. Question Response | Document Sentence
No. Text ID ID Tones Tones
1 1 1 Joy - | Empty -0
0.550785,
Analytical -
0.546148
2 1 2 Analytical - | Analytical -
0.694442 0.73677
3 2 1 Analytical - | Analytical
0.639296 - 0.687768,
Analytical
- 0.560098,
Tentative
- 0.5538,
Analytical -
0.636458
4 2 2 Analytical Analytical
- 0.699597, | - 0.802152,
Confident - | Confident -
0.774455 0.874372

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

4.2 Grammatical Correctness & Sentence Structure

It was observed that a majority of the responses had correctly
spelled words and were devoid of major grammatical mistakes. The
range of gramatical accuracy of the responses varied from 90% to
100%. Spelling accuracy had a slightly better overall range, vary-
ing from 92% to 100% per response with a select few responses
having accuracy as low as 85%.

Table 2. Grammatical Correctness & Sentence Structure
Analysis of Responses for a single Job Detail

Sr. Question Response Grammatical | Spelling
No. Text ID ID Accuracy Accuracy
1 1 1 98.13% 87.88%

2 1 2 100% 92.6%

3 2 1 95.42% 95.24%

4 2 2 94.88% 95.21%

4.3 Relevance Checking using Doc2Vec

Cosine Similarity was chosen as the initial metric to evaluate the
relevance of the response w.r.t the job details and question text. It
was observed that the resulting distribution was negatively skewed
and thus, converted to a form resembling the standard normal dis-
tribution.

3.5 4

3.0

Density

1.5 A

104

0.5

0.0 T T T T
-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

original Relevance Score

Fig. 5. Distribution of Relevance Scores

The Box Cox Transformation was applied in the next step to this
distribution in order to standardize the scores.

’ fol
Ty = Y

Upon applying the Box Cox transformation on the raw distribu-
tion, it was observed to resemble the standard normal distribution
more closely. At this point, the distribution scores are mapped into
three bins/classes namely low, medium and high by selecting cer-
tain threshold values.

A similar procedure was then performed on the validation data
set comprising of 92 responses to obtain the classes for those re-
sponses. The effectiveness of the module was judged on the basis of

“

0.8

0.6

Density

0.2 4

0.0 T T T T
0.0 0.5 10 15 2.0

Box Cox Transformed Relevance Score

Fig. 6. Distribution of Relevance Scores after Box Cox Transformation

medium
Bins for Relevance Score

Fig. 7. Mapping of Transformed Scores into Bins

two metrics, the first of which was accuracy. An accuracy of 48 %
was obtained upon comparing the classes. The second metric used
was a custom metric called Maximum Relevance Factor (MRF)
that checks if the class of the response predicted by the model is
greater than or equal to the class of the annotated response. This
was in accordance to the business case wherein the possibility of
the inclusion of a false positive, the case in which a mediocre re-
sponse being assigned a higher relevance rating by the model is
accepted but the main aim of minimizing the cases involving false
negatives that result in a highly relevant response being rejected is
achieved.

Count of Responses Rated Equal or Higher

MRF =
R Total Number of Responses

(&)
An MRF of 0.75 is observed for the given responses which indi-
cates a higher acceptance rate of the candidates’ responses by the
model.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

4.4 Content Rating using Deep Learning

The RNN that utilises GLoVe Embeddings delivers an accuracy of
93.85% on the training data set and 91.26% on the validation data
set. The other RNN that makes use of the embeddings generated
by the Word2Vec model trained on our corpora results in an accu-
racy of 97.36% on the Training data set and 91.09% on the Val-
idation data set. It was observed that the first RNN using GLoVe
embeddings demonstrated higher accuracy when rating responses
belonging to the low class whereas the one using the embeddings
from the Word2Vec model rated responses belonging to the remain-
ing classes (high, medium) more efficiently. Upon observing the re-
sponses, their original ratings and their corresponding ratings pre-
dicted by both the models, it was decided to take an ensemble of the
ratings generated by both the models by selecting the highest possi-
ble class among the predictions made by both for each response, for
eg. if one model predicts a low class and the other predicts medium
for a given response, the medium rating is chosen as the final class
for that particular response. This ensemble of outputs results in an
increased accuracy of 92.39% on the Validation data, nearly a 1%
increase in comparison to both the models.

Table 3. Model Accuracy Values

Sr. No. Word Embedding Training Validation
1 GLoVe 93.85% 91.86%
2 Custom Word2Vec 97.36% 91.09%

4.5 Positivity Factor Generation

It was observed that a few well formed responses with high gramat-
ical and spelling accuracy, but with the obvious presence of nega-
tive words or phrases were classifed to the medium class instead
of the low class by the Content Rating Module. In order to prevent
this from heavily influencing any future evaluation, the Positivity
Factor Generation Module detects the presence of negative words,
properly framed contractions and even improper or misspelled con-
tractions and returns a positivity factor that can be used to gauge the
overall quality of the content of the response.

Table 4. Relevance Checking, Content Rating and PF Evaluation

Sr. | Question| Response| OPS Relevance | Content | PF
No.| TextID | ID Rating | Class Rating

1 1 1 medium | medium medium | 1

2 1 2 medium | high medium | 0.07
3 2 1 high medium high 1

4 2 2 high high high 1

5. CONCLUSION & FUTURE SCOPE

In this paper, a distinct approach has been proposed to evaluate can-
didates for the purpose of recruitment on the basis of the free text
answers provided by them for open-ended questions on the Short-
list Portal. A third party Tone Analyzer API was used to understand
the candidate’s mood while responding to the questions asked dur-
ing the evaluation and can thus be used to develop an idea of the
candidate’s psych profile. Each of the candidates’ responses was
also evaluated on the basis of their grammatical accuracy and the
structure of the framed sentences. The responses were also checked
for their relevance w.r.t the job description that was associated with
the question asked using Doc2Vec. Lastly, a Deep Learning model

in the form of a Recurrent Neural Network was used to classify
the content of the responses to be of low, medium or high qual-
ity. The overall quality of evaluation by the Content Rating mod-
ule was improved by introducing a Positivity Factor that penalizes
well formed responses with presence of negation in their context.
This system establishes a baseline towards what can be defined as
a recommendation system that recommends candidates to compa-
nies based upon the parameters of assessment specified in this pa-
per. This system can be improved by optimizing the spell checking
algorithm used currently or implementing a spell checking and cor-
rection algorithm with better time complexity. The model architec-
ture can also be redefined to include Convolution layers that may
help to provide a better result by analysing the text sequence for
bigrams and trigrams. The autonomous modules within this system
can also be improved further by implementing multiple variations
in the data preprocessing techniques used and choosing the best
possible combinations among those that are tested.

6. REFERENCES

[1] Rodrigues, F., Arajo, L. (2012). Automatic Assessment of
Short Free Text Answers. 4th International Conference on
Computer Supported Education. 2.

[2] Noorbehbahani, F., Kardan, A. (2011). The automatic
assessment of free text answers using a modified
BLEU algorithm. Computers & Education. 56. 337-345.
10.1016/j.compedu.2010.07.013.

[3] Chakraborty, U., Das, S. (2015). Automatic Free Text An-
swer Evaluation using Knowledge Network. IJCA. 117.
10.5120/20532-2876.

[4] Perez, D., Gliozzo, A., Strapparava, C., Alfonseca, E., Ro-
driguez, P., Magnini, B. (2005). In automatic assessment of
students? free-text answers underpinned by the combination
of a BLEU-inspired algorithm and latent semantic analysis.
In: Proceedings of the 18th international Florida artificial
intelligence research society conference (FLAIRS?05) (pp.
3587362).

[5] Mohler, M., Mihalcea, R., (2009). Text-to-Text Semantic
Similarity for Automatic Short Answer Grading. Proceedings
of the 12th Conference of the European Chapter of the ACL
(EACL 2009)

[6] Burstein, J., Leacock, C., Swartz, R. (2001) Automated Eval-
uation Of Essays And Short Answers. Fifth International
Computer Assisted Assessment Conference Loughborough
University 2nd and 3rd July 2001.

[7] Leacock, C., Chodorow, M. C-rater: Automated Scoring of
Short-Answer Questions. Computers and the Humanities 37,
389?405 (2003). https://doi.org/10.1023/A:1025779619903

[8] Rudner, L.M., Liang, T. (2002). Automated essay scoring us-
ing Bayes? Theorem. The Journal of Technology, Learning
and Assessment, 1(2), pp. 3-21.

[9] Larkey, L.S. (1998). Automatic essay grading using text cat-
egorization techniques. In: Proceedings of the 21st annual in-
ternational ACM SIGIR conference on research and develop-
ment in information retrieval (pp. 90795).

[10] IBM Watson Platform, “https://www.ibm.com/watson/”

[11] GrammarBot: Grammar Check API,
“https://www.grammarbot.io/”

[12] How to Write a Spelling Corrector by Peter Norvig,
“https://morvig.com/spell-correct.html”

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.14, January 2021

[13] Quoc, L., Mikolov, T. (2014). Distributed Representations of
Sentences and Documents. 31st International Conference on
Machine Learning, ICML 2014. 4.

[14] Mikolov, T., Sutskever, 1., Chen, K., Corrado, G.S., Dean, J.
(2013). Distributed Representations of Words and Phrases and
their Compositionality. Advances in Neural Information Pro-
cessing Systems. 26.

[15] Pennington, J., Socher, R., Manning, C. (2014). GloVe:
Global Vectors for Word Representation.

[16] Hewlett Foundation: Automated Essay
“https://www.kaggle.com/c/asap-aes”

[17] Camacho-Collados, J., Pilevar, L.M. (2017). On the Role
of Text Preprocessing in Neural Network Architectures: An
Evaluation Study on Text Categorization and Sentiment Anal-
ysis.

[18] Bickel, P., Doksum, K. (1981). An Analysis of Transforma-
tion Revisited. Journal of the American Statistical Associa-
tion. 76. 10.2307/2287831.

[19] Jurafsky, D, Martin, J.H., (2009), Speech and Language Pro-
cessing (2nd Edition). Prentice-Hall, Inc., USA.

[20] Sherstinsky, Alex. (2020). Fundamentals of Recurrent Neu-
ral Network (RNN) and Long Short-Term Memory (LSTM)
network. Physica D: Nonlinear Phenomena. 404. 132306.
10.1016/j.physd.2019.132306.

[21] Glasgow, B., Mandell, A., Binney D., Lila, G., Fisher, D.
(1997). MITA : An Information Extraction Approach to Anal-
ysis of Free-Form Text in Life Insurance Applications. Inno-
vative Applications of Artificial Intelligence, Providence, RI,
USA, July 27-31, 1997.

[22] Contreras, J.O., Hilles S., Abubakar, Z. B. (2018). Auto-
mated Essay Scoring with Ontology based on Text Mining
and NLTK tools, International Conference on Smart Comput-
ing and Electronic Enterprise (ICSCEE), Shah Alam, pp. 1-6,
doi: 10.1109/ICSCEE.2018.8538399.

[23] Shah, C., Pomerantz J., (2010). Evaluating and Pre-
dicting Answer Quality in Community QA. 411-418.
10.1145/1835449.1835518.

[24] Mitchell, T., Russell, P., Broomhead, Aldridge, N. (2002). To-
wards robust computerised marking of free-text responses.

[25] Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N.,
Chenaghlu, M., Gao, J. (2020). Deep Learning Based
Text Classification: A Comprehensive Review. ArXiv,
abs/2004.03705.

Scoring,

	Introduction
	Candidate Mood
	Grammatical Correctness and Sentence Structure
	Answer Relevance and Quality of Content

	Related Work
	Text Similarity Calculation Methods
	Regression-based Evaluation Methods
	Classification-based Evaluation Methods
	Previously Attempted Approaches at Shortlist

	Proposed Approach
	Candidate Mood Analysis
	Grammatical Correctness & Sentence Structure
	Spelling Checker Module 0.2cm
	Gramatical Correctness Module 0.2cm

	Relevance of the Answer & Quality of Content
	Relevance Checking Module
	Data Set 0.2cm
	Data Preprocessing 0.2cm
	Evaluating Relevance using Doc2Vec 0.2cm

	Content Rating Module
	Data Set 0.2cm
	Data Preprocessing 0.2cm
	Methodology for Content Rating 0.2cm

	Positivity Factor Evaluation
	Data Preprocessing 0.2cm

	Results and Evaluation
	Candidate Mood Analysis
	Grammatical Correctness & Sentence Structure
	Relevance Checking using Doc2Vec
	Content Rating using Deep Learning
	Positivity Factor Generation

	Conclusion & Future Scope
	References

