
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 14, January 2021

17

Data Warehouse Performance: Optimization by Double

Partitioning of Materialized Views

Mohamed El Emine Abdel
Wedoud

CSSEL, Abdelmalek Essaadi
University, Faculty of Science,

Tetouan, Morocco

Mohamed Larbi Benmaati
CSSEL, Abdelmalek Essaadi
University, Faculty of Science,

Tetouan, Morocco

Emany Sidi
Higher Institute of Accounting and

Business Administration,
Nouakchott, Mauritania

ABSTRACT

Given the evolving volume of data storage in a data

warehouse, partitioning is a very useful optimization option

during the design phase of data warehouse. Materialized

views also improve the execution time of data warehouse

queries.

The primary concern of designers and end users of data

warehouses is always the performance that ensures the

production of the best results in the shortest time.

 In this work, we will demonstrate that if we end up with the

partitioning of materialized views, we can optimize the

functioning of data warehouses.

Keywords

Data Warehouse, optimization, Partitioning, materialized

views, performance.

1. INTRODUCTION
To help decision makers understand and improve the

performance of their businesses, data warehouse is used

which is large databases specifically for data analysis. It is

designed for queries and analysis, not for processing day-to-

day transactions.

The performance of this data warehouse is of great interest to

designers and this is because design is the most important

stage in their life cycle, and this is due to its permanent impact

on its condition and functioning. .

Designers are always looking to optimize the performance of

data warehouses to be able to respond to so-called OLAP

analytical queries. These data analysis queries are performed

in an environment of high volume of data that keeps

increasing day by day.

Given the evolving volume of data storage in a data

warehouse, partitioning is a very useful optimization option

during the design phase of these warehouses. Materialized

views are used to improve the execution time of data

warehouse queries.

To optimize the performance of data warehouses, we will

combine two techniques: vertical and horizontal partitioning

and materialized views.

2. MATERIALIZED VIEWS
We can define a view as a function from a set of base tables to

a derived table and the function is recited each time the view

is referenced; this is almost similar to the principle of the

cache, it offers a quick access to a selected copy of data.

Materialized views are views, the data of which is

materialized, that is, stored. Materialized views are quite

useful objects, allowing a relatively large performance gain

when used properly. In the data warehouse environment,

materialized views can be called "summaries" because they

are used to store aggregated and pre-calculated data. A

materialized view helps avoid the overhead associated with

expensive joins and aggregations for large analytical queries.

Figure 1: Materialized view

3. PARTITIONING
Partitioning a table is defined by dividing the table into

several disjoint partitions. Recall that a partitioning scheme is

the result of the process of fragmentation [1].

Two types of partitioning are possible: horizontal partitioning

and vertical partitioning. In vertical partitioning, a relation is

divided into sub relations called vertical fragments which are

projections applied to the relation. Vertical partitioning

naturally favors the processing of projection requests on the

attributes used in the process of fragmentation, by limiting the

number of fragments to access.

Figure 2: Horizontal Partitioning

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 14, January 2021

18

Figure 3: Vertical Partitioning

4. HYPOTHESIS
Materialized views speed up responses to analytical queries.

We propose to create a materialized view from our model

shown in figure 5. We will partition our materialized view

horizontally by date, and vertically by store.

Our materialized view is used to store aggregated data relating

to sales operations on dimensions: customers, stores and

products.

The queries used in this experiment are star join queries, and

the DBMS used is Oracle with its Enterprise edition.

5. ANALYSIS AND RESULTS
In this study, we used a data warehouse with:

- One fact table (Sales).

- Four dimension tables (Customers, Products, Time, Stores).

- Then we inserted 3 million rows of data to overload the fact

table.

- For the dimension tables, the contents of the fact table have

been respected for their loading.

Below is the design schema of the data warehouse used in our

study.

Figure 1 : data warehouse used in experimentation

5.1 Technical characteristics of the study

environment
The following table presents the technical characteristics of

the environment in which our study has been realized. We

used great resources to find the best results.

Table 1. Technical characteristics of the study

environment

Physical

Memory

Storage

Disk

Operation

System
RDBMS

8 Gb 2.5 TB
Windows

Server 2019

Oracle Entreprise

Edition

5.2 Star join query used
This star join query is used to stress the data warehouse

because of the aggregation it contains. Our goal is to compare

the results found after running this query.

We are interested in the behavior of the data warehouse before

and after the double partitioning that we will apply on

materialized view.

This query will be used three times:

a - In the initial state of the warehouse, ie with a simple design

without partitioning or materialized view.

b - Secondly, we will create a materialized view

c - In the third iteration, we partition the materialized view

After each step, the results are retrieved for comparison.

Table 2 : Star join query

SELECT Temps.Annee, Produit.Taille_Prod,

Temps.Mois, SUM(Ventes.quantite)

FROM Ventes INNER JOIN Date ON

Ventes.ID_Temps = Temps.ID_Temps INNER

JOIN Ventes.ID_Prod = Produit.ID_Prod

GROUP BY Temps.Annee

5.3 Results

Step 1: Simple design

We executed our request on the data warehouse, designed

with without partitioning or materialized view. The results

found are:

Memory

Occupied by

process

execution

time

Size

compression

processor

cores

76% 60 s 1.53 TB 70%

Step 2: Materialized view

Memory

Occupied by

process

execution

time

Size

compression

processor

cores

65 % 38 s 1.11 TB 77%

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 14, January 2021

19

Figure 6: Memory and time curve (STEP 2)

Step 3: Partition the materialized view

Memory

Occupied by

process

execution

time

Size

compression

processor

cores

32% 26s 1.02 TB 92%

Figure 7: Memory and time curve (STEP 3)

5.4 Results analysis
After double partitioning the materialized views vertically and

horizontally based on time and stores, we saw a remarkable

optimization of the performance of our data warehouse.

Our method has given results on a logical and physical level

such as reducing memory occupancy by 44%, minimizing

query execution time by more than 50% and increasing

processor cores allocated to this operation.

The comparison curves between the second and third step

clearly show the effects of partitioning the materialized views.

6. CONCLUSION AND PERSPECTIVES
To conclude, we have approved by our experimental approach

that the double partitioning of materialized views is a suitable

solution for optimizing the performance of data warehouses.

Partitioning vertically based on stores and the horizontal

based on time allows materialized views of data to perform

sufficiently large for queries over large volumes of data.

As perspectives, we will work on several diversified

techniques based on double partitioning and materialized

views to have further results of optimizing the performance of

data warehouses.

7. REFERENCES
[1] Double Partitioning with global and local Indexing:

Effect on Data Warehouse Performance" (Volume

180/Number 44 (ISBN: 973-93-80898-72-9) Authors:

Mohamed El Emine Abdel Wedoud, Mohamed Larbi

Benmaati, Emany Sidi.

[2] R. Kimball, L. Reeves, M. Ross, The Data Warehouse

Toolkit. John Wiley Sons, NEW YORK, 2nd edition,

2002.

[3] Selection Of Materialized View Using Query

Optimization In Database Management : An Efficient

Methodology., International Journal of Database

Management Systems 2(4). 2010 . Authors : V. M.

Thakare, KArde.

[4] W. Inmon, Building the Data Warehouse., John Wiley

Sons, fourth edition, 2005.

[5] Patrick and Quass, Dallan O'Neil, "Improved Query

Performance with Variant Indexes," vol. 26, no. 2, 1997.

[6] Impact of using Snowflake Schema and Bitmap Index on

Data Warehouse Querying (Volume 180/Number 15

(ISBN: 973-93-80898-08-9)) Authors: Mohammed

Benjelloun, Mohamed El Merouani, El Amin A.

Abdelouarit.

[7] Using Snowflake Schema and Bitmap Index for Big Data

Warehouse Volume (Volume 180/Number 8 (ISBN: 973-

93-80897-91-9)) Authors: Mohammed Benjelloun,

Mohamed El Merouani, El Amin A. Abdelouarit.

[8] The Impact of Partitioned Fact Tables and Bitmap Index

on Data Warehouse Performance (Volume 135/Number

13 (ISBN: 973-93-80891-16-1)) Authors: Emany Sidi,

Mohamed El Merouani, El Amin A. Abdelouarit.

[9] Star Schema Advantages on Data Warehouse: Using

Bitmap Index and Partitioned Fact Tables (Volume

134/Number 13 (ISBN: 973-93-80890-95-3)) Authors:

Emany Sidi, Mohamed El Merouani, El Amin A.

Abdelouarit.

76 65

40
60
80

1 2

Memory
Occupied by
process (%) 60

38

0

100

1 2

execution time
(S)

76 65
32

0

100

1 2 3

Memory Occupied
by process (%)

60 38 26

0

100

1 2 3

execution time
(S)

IJCATM : www.ijcaonline.org

