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ABSTRACT 

This paper systematically examines the response to Quasi-

Moment-Method (QMM) calibration, of the basic COST231-

Walfisch-Ikegami, ITUR-Walfisch-Ikegami, and Walfisch-

Bertoni models. First, it is demonstrated that the component 

parameters of the models are suitable candidates for use as 

expansion/testing functions with QMM pathloss model 

calibration schemes; and thereafter, the basic models are 

subjected to calibration, using measurement data available in 

the open literature. Computational results reveal that the 

COST231-Walfisch-Ikegami and ITU-Walfisch-Ikegami 

models have virtually identical QMM-calibration root mean 

square error (RMSE) responses; and that the Walfisch-Bertoni 

model has better RMSE responses than both of them. A 

particular attribute revealed by the simulation results is that all 

QMM-calibrated ‘Walfisch-type’ basic models have excellent 

mean prediction error (MPE) metrics (in general, less than 

0.001dB). In addition to pathloss prediction profiles, the paper 

also presents profiles of disaggregated net pathloss, in terms 

of contributions by component parameters, including ‘roof-

top-to-street’ diffraction and scatter loss and multiscreen 

diffraction loss.       
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1. INTRODUCTION 
Models developed and utilized for the predictions of energy 

lost along the propagation path, by propagation radiowaves 

are generally classifiable as either empirical (or statistical) or 

site-specific (deterministic/semi-deterministic) models, [1]. Of 

the existing site-specific models, the Walfisch-Bertoni [2] and 

the Walfisch-Ikegami models [3] are arguably the best known, 

and have, in recent times, been the subject of quite a few 

studies, [4]-[11].  Although a significant number of the 

investigations (for example, [9], [10]) merely evaluated the 

performance of the basic model in various propagation 

environments and scenarios, many others involved statistical 

‘tuning’ of the basic model (as in [11], [13]), least-square 

regression optimization [7], and meta-heuristics-based 

optimization, [4], for the purposes of improving model 

prediction accuracy. In the cases concerning evaluation 

limited only to the basic Walfisch-Ikegami models, outcomes 

typically indicate that some other basic model (usually the 

COST231-Hata model) provides better prediction metrics, and 

consequently selected for further processing, in most cases, 

least-square-regression, for performance optimization. As 

example, Mohammed and Jaafer, [10], reported that the basic 

COST231-Walfisch Ikegami model gave an average (0ver 

four sites) prediction RMSE of 12.4dB compared with a 

corresponding value of 10.8dB by the COST231-Hata model, 

to inform the choice of the latter for least square regression 

optimization. In a similar contribution concerning two LTE 

networks, Imoize et al, [15] reported simulation results, one 

set for a sub-urban environment, and for which the basic 

Ericsson model with a prediction RMSE of 7.0797dB 

compared to 13.8738dB recorded for the corresponding 

COST231-Walfisch-Ikegaimi model, was selected for 

optimization. The other set of results reported in [15] for a 

metropolitan area, had the basic COST231-Hata model 

recording 5.1343dB (as against 5.2496 dB for the COST231-

Walfisch-Ikegami) to emerge as candidate for least square 

regression optimization. Omer et al. [7], also presented 

results, which, in terms of ‘pathloss exponents’ (3.7191 and 

3.8004 for the Hata and Walfisch-Ikegami models, 

respectively) suggested that for large urban environments, and 

at ‘LTE frequencies, performances of the basic COST231-

Hata and Walfisch-Ikegami models are comparable.. On the 

other hand, some other investigations focused on ‘tuning’ the 

basic COST231-Walfisch-Ikegami, for improved prediction 

accuracy. Examples of these include the contribution by 

Alqudah, [8], whose use of a MATLAB curve fitting routine 

resulted in an improvement of RMSE from 6.78dB for the 

basic model to 4.46dB, in a Non-Line-of-Sight (NLOS) case: 

and from 22.6dB to 6.38dB for a Line-of-Sight (LOS) 

example. ‘Statistical tuning’ of the basic COST231-Walfisch-

Ikegami model is one approach that has received the attention 

of many researchers. Ambawade et al. [6] reported a statistical 

tuning approach based on multiple regression, in which 

building height, building separation, and street orientation 

component parameters of the basic model, were prescribed as 

Gaussian random variables. RMSE metrics recorded for the 

tuned models ranged between 3.1354dB and 8.1373dB. A 

similar approach was adopted by Rozal and Pelaes, [13], 

whose model assigned Gaussian random variable distributions 

to building height and building separation. Although the paper 

did not provide RMSE metrics for the tuned model, the 

‘average error’ values of between 0.0195dB and 4.1825dB 

reported in the paper, as well as the profiles displayed in the 

associated graphical illustrations suggest that the tuned model 

provided very good prediction results. In addition to a 

statistical tuning technique involving multiple linear 

regression with building height, street width, and street 

orientation specified as Gaussian random variables, Tahat and 

Taha, [11], also utilized a Particle Swarm Optimization (PSO) 

algorithm towards improving the performance of the basic 

model. Bhuvaneshwari et al. [4], presented the use of three 

different meta-heuristic algorithms (Genetic Algorithm (GA), 

PSO, and Grey-Wolf Optimization (GWO)) for tuning the 
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basic COST-231 Walfisch-Ikegami prediction model. The 

optimization processes each had four model parameters 

(‘distance’, ‘transmitter antenna-building heights’, ‘building 

separation’, and ‘street orientation angle’) as the candidates 

for optimization, and three parameters were prescribed by the 

authors as ‘normalized random variables’, characterized by 

Gaussian probability distributions. Optimization was effected 

with the use of ‘real time’ (instantaneous) measurements of 

received power from a deployed 900MHz transmitter, and 

RMSE metrics were recorded as 0.4251dB, 0.2939dB, and 

0.2248dB for the GA, PSO, and GWO optimized models, 

respectively.       

   This paper investigates the response of five basic (nominal) 

‘Walfisch-type’ models to calibration with the use of the 

Quasi-Moment-Method (QMM) technique, described in a 

recent publication by Adelabu et al. [19]. The basic models 

are the (NLOS) COST231-Walfisch-Ikegami for Metropolitan 

centers and sub-urban regions [3]; a variant of these models 

including a correction pointed out by Jeong and Lee [5], as 

implemented by ITU-R [16], and the Walfisch-Bertoni model, 

[2]. Measurement data utilized for calibration were obtained 

from the open literature, [4], [10], and [15], using the 

commercial graph digitizer software, ‘getdata’. A number of 

interesting features emerged from the simulation results: first, 

the two QMM-calibrated COST231 (metropolitan and sub-

urban) and their ITU-R counterparts, with only a few 

exceptions, recorded identical RMSE metrics. Second, all the 

QMM-calibrated ‘Walfisch-type’ models recorded remarkably 

low mean prediction error (MPE) metrics, suggesting that 

they are particularly suitable for cases where MPE is the 

metric of choice. And third, the QMM-calibrated Walfisch-

Bertoni models recorded better metrics than the Walfisch-

Ikegami models, matching (and even surpassing, in some 

cases) the metrics due to the ECC33 models, utilized as 

benchmark. The computational results also suggest that choice 

of basic model as candidate for linear regression optimization 

need not be be informed by the relative RMSE performance of 

the basic models.                   

2. THEORY 
As noted by Harrington [17], one very important 

consideration for the successful implementation of Method of 

Moments (and hence, QMM) schemes, concerns choice of 

expansion and testing functions. In particular, [17], expansion 

functions should be linearly independent, and should be such 

that some superposition of the functions provides a reasonable 

approximation to the desired function. Testing functions are 

also required to be linearly independent, and be such that the 

evaluation of the inner product quantities involving the testing 

function and field measurement data is essentially determined 

by the relatively independent properties of the field 

measurement data. And according to theorem 4.2.5 of [18], 

linear independence of the expansion and testing functions 

guarantees uniqueness of the solution. Because the basic 

models evidently satisfy the requirement of providing 

‘reasonable approximations’ it only remains to establish linear 

independence for the basic models of interest to this paper.  

   In that connection, the COST231 Walfisch-Ikegami models 

of interest here are first identified as given by  [3], [17],  

                               ,loss fsp rts msdP L L L                       (1) 

where the free-space loss denoted by  Lfsp  admits description 

according to  

                10 1032.4 20log 20logfspL d f                 (1a) 

and the roof-top-to-street diffraction and scatter loss, Lrts , for 

the cases of interest is either given by  

10 10 1016.9 10log 10log 20log 0.354 10,rts rxL w f h        

                                                                                             (1c) 

when 00 35  : or  

 0

10 10 1016.9 10log 10log 20log 2.5 0.075 35 ,rts rxL w f h         

                                                                                             (1d) 

for 0 035 55   . A third possibility for Lrts owes to a 

correction pointed out by Jeong and Lee, [5], and 

implemented in the ITUR-R model, such that the leading 

terms of the right hand members of Eqn. (1c) and 1(d) become 

-8.2 rather than -16.9. The multiscreen diffraction loss, Lmsd, is 

also, for this paper’s purposes, described by two possible 

expressions; the first, applicable for metropolitan centers, is  

 

 

 
1010

10 10

18log 1 54 18log

1.5 1 4 log 9log
925

msd txL h d

f
f b

      
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 

 ,                (1e) 

whilst in the case of suburban cities,                
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                 (1f) 

It should also be noted that for eqn. (1f), when operating 

frequency is greater than 2GHz, the second term on the right 

hand side (54) is replaced by 71.4, [16]. In Eqns. (1), ‘d’ in 

km, stands for radial distance from transmitting antenna, ‘f’, 

operating frequency in MHz, ' ',rxh (m), difference between 

roof top height and mobile station height,  ' 'txh , (m) 

difference between transmitter antenna height and roof top 

height; ‘w’(m) represents street width, whilst ‘b’ (m) stands 

for the separation of buildings. The symbol ' ' appearing in 

Eqns. (1c) and (1d) represents ‘the angle of incidence’, in 

degrees, of the propagating wave with respect to the location 

of measurements, and defines ‘street orientation’.    

       Finally, the basic Walfisch-Bertoni model is given [2], by  

                                  loss fsp exsP L L  ,                          (2) 

for which the ‘free space’ loss remains as defined by Eqn. 

(1b), and the ‘excess pathloss’ is given by  

10 10 10

2

10

57.1 log 18log 18log

18log 1
17

exs tx

tx

L f d h

d
A

h

    

 
   

 

   ,          (2a) 

provided  that ’A’, which in [2], is described as accounting for 

the influence of the building geometry, is given by  

   
2

2

10 10

1

10

5log 9log
2

2
20log tan

rx

rx

bA h b

h
b



 
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  
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  .                 (2b) 

All the terms in Eqns. (2a) and 2(b) remain as earlier defined, 

with the argument af the arc-tangent function specified in 

degrees. The proposal in this paper is to utilize the component 

parameters of the pathloss expressions of Eqns. (1) and (2) as 

expansion and testing functions in QMM-model-calibrations. 
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And as earlier explained, one fundamental requirement is to 

establish that the set prescribed in the case of the Walfisch-

Ikegami models, as represented, for  example, by  

     
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f
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                                                                                             (3) 

represent a set of linearly independent functions. Now, for a 

given transmitter, mobile station, and terrain, any linear 

combination of these functions will assume the form  

                               1 1 2 10logg d c c d  ,                           (4) 

whose Wronskian is readily evaluated as  

                            

          1 2 10 1 2
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Because  1W g  is non-zero for all finite values of ‘d’, (c1 

and c2 being constants) the functions satisfy the requirement 

of linear independence, [20]. In the case of the basic 

Walfisch-Bertoni model, the indicated expansion (and testing) 

functions are  
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                                                                                              (6) 

Any linear combination of the functions in Eqn. (6) will be of 

the form  

           2

1 2 10 3 42 10
log log 1 ,g d k k d k k d                 (7) 

and it is a straightforward matter to show that  
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(8) 

Again, it is seen that the functions prescribed by Eqn. (6) are 

according to Eqn. (8), linearly independent. With these 

functions available for use therefore, the QMM-calibration 

process reduces to the solution of the approximation problems 

defined by  

   0 0 1 1 12 12. . .+ ,L QMM WI mea
P d f f f P d              (9) 

for the Walfisch-Ikegami models, and  

   0 0 1 1 7 7. . .+ ,L QMM WB mea
P d f f f P d               (10) 

for the Walfisch-Bertoni models. The solutions to the 

problems emerge, when, in each case, the desired unknown 

calibration coefficients are, as explained in [19], obtained as  
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                                                                                             (11) 

3. COMPUTATONAL RESULTS  

3.1 Calibration with Measurements from 

[10] 
Using measurements and associated terrain parameters 

available from [10] for a 900MHz deployed network in  

Karada district of Baghdad, all the five models described in 

§2 were subjected to QMM-calibration. As can be seen from 

Table I of [10], three of the four ‘sectors’ considered in [10] 

share identical terrain parameters, though profiles of measured 

pathloss differ. 

Representative examples of outcomes of the calibration 

process are displayed in Fig. (1) for ‘sector 1’, and Fig. (2), 

for sector 2. The illustrations also include pathloss profiles for 

ECC33 (large and medium cities) calibrated as described in 

[19]; with the same sets of measurements and utilized here as 

benchmark, on account of established excellent response to 

QMM-calibration, [19].  It is apparent from the illustrations 

that the Walfisch-Ikegami models are characterized by good 

responses to QMM-calibration, and that the response of the 

Walfisch-Bertoni model is significantly better than those of 

the other Walfisch-type models.  
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Fig 1: Profiles of pathloss predicted by Models QMM-calibrated with measurement data for sector 1 of [10] 

 

Fig 2: Profiles of pathloss predicted by Models QMM-calibrated with measurement data for sector 2 of [10] 
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Table 1.RMSE and MPE Metrics for the Pathloss Profiles of Fig. 1 

Calibrated 

Models Sector1 Sector2 Sectir3 Sector4 

RMSE MPE RMSE MPE RMSE MPR RMSE MPE 

CWI-M 
5.6818 -0.0043 2.3558 0.0020 4.8261 0.0023 5.5087 -0.0071 

CWI-SU 
5.6818 0.0011 2.3558 0.0003 4.8261 0.0011 5.5087 0.0027 

ITWI-M 
5.6818 0.0005 2.4036 0.4768 4.8261 0.0014 5.5087 0.0008 

ITWI-SU 
5.6818 0.0003 2.3558 0.0040 4.8261 0.0009 5.5087 0.0004 

W-BERT 
3.5611 0.5441 2.3394 0.0018 4.6644 0.0029 3.4090 0.0002 

ECC33-L 
2.0613 0.0050 2.3337 0.0041 4.8241 0.0006 2.4467 1.3368 

ECC33-M 
2.0613 0.0000 2.3338 0.0044 4.8241 0.0014 2.0388 0.0021 

 

These observations are supported by the statistical metrics 

displayed in Table 1 for all four sectors considered in this 

case. 

The metrics in Table 1 reveal that with the exception of one 

instance, all the Walfisch-Ikegami models (COST231-

Metropolitan and Suburban (CWI-M/CWI-SU) as well as the 

corresponding ITU-R models (ITWI-M/ITWI-SU) have  

 

identical RMSE responses, ranging between 2.3558dB (for 

sector2) and 5.6818dB, for sector 1. As good as these metrics 

are, the MPE metrics are remarkably better, as can be seen 

from the table. The worst value of MPE = 0.0071dB recorded 

by CWI-M, for sector 4 is clearly an excellent outcome. 

 

Fig 3: Contributions to net predicted pathloss by component parameters of basic and QMM –calibrated Walfisch-Ikegami 

models for sector 2 of  [10] 
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The QMM-calibrated Walfisch Bertoni models can be seen to 

have better RMSE metrics (comparable with those for the 

ECC33 models) than the corresponding Walfisch-Ikegami 

models; though the MPE performances are in general, 

comparable, for both model types. Computational results 

show that the RMSE metrics represent significant 

improvements over corresponding values for the basic 

models. In the case of sector 1, for example, the percentages 

improvements are 32.63, 32.29, 64.04, 62.34, and 92.26 for 

the COST231-Walfisch Ikegami (Metropolitan and suburban), 

ITU-R-Walfisch-Ikegami (Metropolitan and suburban) and 

Walfisch-Bertoni models, respectively. The illustrations of 

Fig. (3) describe the profiles of the net pathloss predicted by 

the calibrated and corresponding basic Walfisch-Ikegami 

models, when disaggregated into its component parts, in the 

case of ‘sector 2’, as an illustrative example.. It is clear from 

the profiles that whereas the QMM-calibrated COST231 and 

ITU-R models, on the aggregate, have virtually identical 

RMSE responses, the responses of their component 

parameters (particularly multiscreen diffraction) to QMM-

calibration differ considerably.   

3.2 Calibration with Measurements from 

[4] 
All five ‘Walfisch-type’ models were QMM-calibrated with 

measurements available from [4], also concerning a 900MHz 

network, but in which the field measurements are real-time 

(instantaneous) pathloss quantities, rather than averaged 

values. 

 

Fig 4: Profiles of pathloss predicted by Models QMM-calibrated with measurement data from [4] 

Table 2. RMSE and MPE Metrics for the Pathloss Profiles of Fig. 3 

 QMM-CALIBRATED BASIC 

Model RMSE MPE RMSE MPE 

CWI-M 10.3246 0.0056 17.5622 -12.8903 

CWI-SU 10.3246 -0.0023 17.5197 -12.8324 

ITWI-M 10.3246 -0.0006 24.5785 -21.4903 

ITWI-SU 10.3246 -0.0013 24.5891 -21.5024 

W-BERT 10.1082 -0.0006 51.7160 -50.3217 

ECC33-L 9.6150 -0.0032 N/A N/A 

ECC33-M 9.6150 0.0001 N/A N/A 
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It is apparent from the profiles of Fig. (4) that the QMM-

calibrated Walfisch-Bertoni models have better responses than 

the corresponding Walfisch-Ikegami (COST-231 and ITU-R, 

metropolitan and suburban) models. And the statistical 

performance metrics of Table (2) confirm this observation.  

 

  

Fig 5: Contributions to net predicted pathloss by component parameters of basic and QMM–calibrated Walfisch-Bertoni 

models 

  

 

Fig 6: Profiles of pathloss predicted by the Walfisch-type models, calibrated with measurements for the metropolitan area of 

[15] 
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Again, the four Walfisch-Ikegami models recorded identical 

RMSE metrics of 10.3246, which for the QMM-COST231 

metropolitan model, represents a 41.11% improvement over 

that for the corresponding basic model. Percentage 

improvements for the other QMM-calibrated models 

(COST231-subsurban; ITU-R-metropolitan, ITU-R-suburban, 

and Walfisch-Bertoni) are readily verified as being 40.98%, 

57.9%, 58%, and 80.45%, respectively. Although the RMSE 

metrics in excess of 10dB may ordinarily be regarded as not 

particularly satisfactory, the fact that the field measurements 

with which calibration was effected are ‘real-time’ quantities 

characterized by sharp spikes suggest that the RMSE results 

should be considered very good.  

 

Table 3. RMSE and MPE Metrics for the Pathloss Profiles of the basic models calibrated with measurements from [15] 

 

Model 
Metropolitan Sub-Urban 

RMSE MPE RMSE MPE 

CWI-M 2.7142 -0.2018 5.4478 0.6260 

CWI-SU 2.9219 1.1277 5.4047 -0.0016 

ITWI-M 6.2886 5.6810 5.4047 -0.0023 

ITWI-SU 2.6954 0.0007 5.4047 0.0029 

W-BERT 1.1941 0.0018 2.6036 0.0025 

ECC33-L 1.6598 0.0021 3.0728 -0.0043 

ECC33-M 1.6598 0.0018 3.0727 0.0019 

 

Fig 7: Profiles of pathloss predicted by the Walfisch-type models, calibrated with measurements for the suburban area of [15] 
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Indeed, the excellent MPE values recorded in all cases very 

strongly support this foregoing observation.  

Figure (5) displays the distributions of disaggregated net-

pathloss due to component parameters of the QMM-calibrated 

and basic Walfisch-Bertoni models concerning Fig. (4). A 

comparison of the contributions due to the basic model and 

the QMM-calibrated model shows that the biggest effect of 

QMM-calibration are manifested in the ‘influence of the 

building geometry’, [2]. The profiles of Fig. (5) reveal that 

close to the transmitter, and up to about 1.5km away from it, 

contributions due to the ‘effects of the curvature of the Earth’ 

[2], are about the same for the basic and QMM-calibrated 

models; thereafter, the QMM-calibrated model increasingly 

contributes significantly more than the basic model. The free-

space component of the basic model contributes less to its 

corresponding net pathloss than does that of the QMM-

calibrated model, for distances less than 1km away from the 

transmitter. Further away than this, its contributions to the net 

pathloss becomes larger, compared with those by the QMM-

calibrated model.   

3.3 Calibration with Measurements from 

[15] 
The QMM-calibrations in this case, utilized field 

measurements reported by Imoize et al. [15], for a deployed 

LTE network, operating at 3.4GHz. Measurements were taken 

at two sites, one described [15], as ‘metropolitan’, and the 

other, ‘suburban’, with site parameters of interest to the 

QMM-calibration of interest here, displayed in Table (1) of 

[15].  

 

Fig 8: Profiles of contributions to net pathloss predicted by the Walfisch-Ikegami models, calibrated with measurements for 

the metropolitan area of [15] 
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Fig 9: Profiles of contributions to net pathloss predicted by the Walfisch-Bertoni model, calibrated with measurements for the 

metropolitan area of [15]   

Statistical performance metrics of RMSE and MPE 

corresponding to the profiles of figure (6) are shown in Table 

3 below.  

And pathloss profiles for models calibrated with measurement 

data for the suburban site are as shown in Fig. (7). 

  It is important to note that for this case of operating 

frequency greater than 2GHz, the expression for the 

multiscreen diffraction component of the basic Walfisch-

Ikegami model differs for the COST231 and ITU-R models, 

in cases where operating frequency is less than 2GHz. In 

particular, the term ' 'ak , which accounts for how pathloss 

depends on the relative height of the base station antenna, 

becomes 71.4, as  against 54; and ' 'fk , which determines 

how multiscreen diffraction loss depends on frequency and 

distance from transmitter, becomes -8, instead of the 

expression for 
11' 'f in Eqn. (3).  It is not surprising therefore, 

to find that the statistical performance metrics for the case of 

the ‘metropolitan area’ differ in pattern from those earlier 

described for the 900MHz networks 

As seen from Table (3), the RMSE and MPE metrics (for the 

‘metropolitan area) of the calibrated ITU-R (metropolitan) 

Walfisch-Ikegami differ from corresponding metrics for the 

other Walfisch-Ikegami models, with that of its calibrated 

‘suburban’ version recording the best metrics of the lot. On 

the other hand, for the Walfisch-Ikegami models (COST231 

and ITU-R) calibrated with measurement data for the 

suburban site have virtually identical RMSE metrics, with that 

of the COST231-Metropolitan model being slightly different, 

in this case. One interesting feature of these computational 

results is that the calibrated Walfisch-Bertoni model recorded 

the best RMSE metrics, even better than those for the 

benchmark ECC33 models. 

Contributions to net pathloss by component parameters are 

described by the profiles of the disaggregated predictions of 

Fig. (8) and (9) for the QMM-calibrated (using data for 

metropolitan area of [15]) Walfisch-Ikegami, and Walfisch-

Bertoni   models, respectively. 

The profiles of Fig. (9) follow the same general pattern 

described earlier for Fig. (3). However, for the profiles of Fig. 

(9) , unlike corresponding profiles of Fig. (5), it is readily 

observed that contributions to net pathloss concerning 

‘influence of building geometry’ are higher for the basic 

model than for the QMM-calibrated model. Also, 

contributions due to the free-space component are in this case, 

generally higher than corresponding contributions for the 

calibrated model, whilst the contributions accounting for the 

curvature of the Earth are about the same, in both cases.
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4. CONCLUDING REMARKS 
This concludes this paper’s investigation of the response to 

Quasi-Moment-Method calibration (QMM) by the COST-231 

Walfisch-Ikegami, ITU-R Walfisch-Ikegami, and Walfisch-

Bertoni models. First, the paper analytically established that 

the component parameters of the models satisfy the 

requirements for use as expansion and testing functions in 

Moment-Method schemes. And then, using these parameters, 

the paper developed QMM-calibrated models corresponding 

to the ‘metropolitan’ and ‘suburban’ varieties of the 

COST231- and ITU-R- Walfisch-Ikegami models, as well as 

the Walfisch-Bertoni model. Three different sets of 

measurement data available (through the use of a commercial 

graph digitizer solution) from the open literature were utilized 

for the calibration. One from [4], concerning a deployed 

900MHz network, for which ‘real-time’ pathloss 

measurements were taken; another, also a 900MHz network, 

with field measurement data (average pathloss measurements) 

for four different sites, and a third, an LTE (3.4GHz) network, 

which provided pathloss measurement data for two sites. 

Computational results suggest that in general, the calibrated 

Walfisch-Ikegami models can be expected to respond to 

QMM-calibration with virtually identical RMSE metrics. The 

results also indicate that whereas all the ‘Walfisch-type’ 

models considered have comparable, and generally excellent 

MPE responses, the basic Walfisch-Bertoni model, in terms of 

RMSE,  responds better to QMM-calibration than the 

Walfisch-Ikegami models. Net pathloss predicted by the 

QMM-calibrated models were disaggregated, in the case of 

Walfisch-Ikegami models into components associated with 

free-space, roof-top-to-screen diffraction and scatter loss, 

multiscreen diffraction; and loss due to effects of building 

geometry and effects of the Earth’s curvature, in the case of 

the Walfisch-Bertoni models. The contributions due to these 

components were compared, in a few representative cases, 

with contributions by components of corresponding basic 

models. 

One notable conclusion arising from these investigations is 

that in selecting models for pathloss prediction optimization, 

RMSE performance of the basic model may not represent the 

best criterion.     
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