
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

15

Performance Evaluation of Open Source Web Applica-

tion Vulnerability Scanners based on OWASP Bench-

mark

Pious Akwasi Sarpong
S.D.A Coll. Of Educ

Asokore-Koforidua, Ghana

Lawrence Sakyi Larbi
Presby Coll. Of Educ
Akropong-Akuapem

Daniel Paa Korsah
Komenda Col.l of Educ

Komenda, Ghana

Issah Bala Abdulai
Kibi Presby Coll. of Educ

Kibi, Ghana

Richard Amankwah
Presby Coll. Of Educ

 Akropong-Akuapem, Akropong,
Ghana

Akwasi Amponsah
Mamp. Tech Coll. of Educ.
Asante Mampong, Ghana

ABSTRACT
The use of web application has become a critical component in

our daily routine work due to its enormous benefits. Unfortu-

nately, most of the web application deployed are not totally de-

void of bugs which makes them vulnerable to attacks. Web ap-

plication scanners are tools that detect security vulnerability in

web application. Although there are several commercial and

open-source web application vulnerability scanners proposed in

literature, the performance of these scanners varies in relation to

their detection capabilities. The aim of this paper is to assess

and compare the vulnerability detection capabilities of five

open-source web application vulnerability scanners (WAVS),

namely, ZAP, Skipfish, Arachni, IronWASP and Vega by exe-

cuting them against two vulnerable web applications, damn vul-

nerable web application (DVWA) and WebGoat. Furthermore,

we evaluate the performance of the scanner results using the

OWASP benchmark metric. The experimental results show that

ZAP, Skipfish and Vega are very efficient for detecting the most

common web vulnerabilities, such as Command Execution

Cross-Site Scripting and SQL injection. The findings further

show Skipfish obtained the highest Youden index of 0.7 and 0.6

in DVWA and WebGoat, which makes the scanner superior than

all the studied tools. Based on our evaluation results, we make

some valuable recommendations since software security is a

very fast-growing domain.

General Terms
Software security, web security, software engineering

Keywords

Web vulnerability scanner, web application, damn vulnerable

web application, open-source scanners

1. INTRODUCTION
The use of web application has become inevitable in our daily

life because it is widely applied in diverse domains such as

banking, transportation, manufacturing, business and education.

Due to a geometrical increase in the use of web application it has

consequently resulted in an equally geometrical increase in its

web attack. Software vulnerability according to Sagar et al. [1]

are the weaknesses, flaws and errors in software systems. Com-

mand injection, buffer overflow, data manipulation, path manip-

ulation, authentication, session hijacking, cookie misinterpreta-

tion are some of the categorize of security vulnerabilities [2].

These vulnerabilities normally cause data breaches and have

serious security implications when exploited. For this purpose, a

number of web application vulnerability scanners (WAVS) such

as (W3af) [3] OWASP Zed Attack Proxy (OWASP ZAP) [4],

Skipfish [5], Arachni, Vega, [6], Stalker and Iron WASP [7]

emerged to address this phenomenon. Tung et al. [8] defined

these WAVS as tools used to test and detect common security

breaches in web application.

These tools are automated and provide an easy way of detecting

security vulnerability in web applications in order develop miti-

gation strategies. Investigation, conducted in two annual vulner-

ability reports namely Open Web Application Security Project

(OWASP) and the National Institute of Standard and Technolo-

gy (NIST), shows that there are several web application vulnera-

bility scanners with varied efficiency and detection capabilities.

Similarly, previous studies such as the work of Antunes and

Vieira [9], Makino and Kleve [10] and Parvez [11] affirmed the

fact that there are several open source web vulnerability tools

with diverse efficiency level and user friendliness [12]. But the

question is which one of these open source web application vul-

nerability scanners are most suited for detecting a particular type

of security vulnerability, have a high detection and a low false

rate? In attempt to answer these questions there have been sever-

al comparative studies such as the ones proposed by Antunes

[13], Fonseca et al. [14] and Suto [3] to investigate the perfor-

mance of the tools. For example, Fonseca et al. [15] performed

a comparative study by investigating the vulnerability detection

capabilities of three web application vulnerability scanners. The

authors assessed the effectiveness of the tools using evaluation

metrics such as coverage and false positive. The finding shows

that the three web scanners studied can effectively detect the two

topmost web vulnerability, namely SQL injection and Cross Site

Scripting (XSS).

 In another study, Makino and Kleve [16] evaluated the detec-

tion effectiveness of two open source scanners, namely OWASP

ZAP and Skipfish using Damn Vulnerable Web Application

(DVWA) and Web Application Vulnerability Scanner Evalua-

tion Project. The experimental result indicates that ZAP is supe-

rior to Skipfish.

Although there are several comparative studies on web applica-

tion vulnerability scanners (i.e. Commercial and open source),

we observe that the focus is mainly on the commercial scanners.

Hence the aim of this study is to focus on the free/open source

web application vulnerability scanners following a similar pro-

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

16

cedure by Makino and Kleve [16] to propose other alternative

and easy to use web vulnerability detection scanner for vendors.

As a result, we evaluate five open source web vulnerability

scanner, namely OWASP Zed Attack Proxy (OWASP ZAP)

[17], Skipfish [5], Arachni [6], Iron WASP [7] and Vega [6] by

running them against two vulnerable web applications, damn

vulnerable web application (DVWA) and WebGoat, which is a

free and open test suite developed to evaluate the coverage,

speed and accuracy of automated software vulnerability detec-

tion tools [18].

 We further measure the performance of the scanners using

OWASP benchmark metric which evaluate the performance and

effectiveness of tools based on True Positive Rate (TPR), False

Positive Rate (FPR), True Negative Rate (TNR) and False Nega-

tive Rate (FNR) [19], [10], [20]. Thus, this study makes the

following contributions:

1. To evaluate the performance of five open source

WAVS, namely ZAP, Skipfish, Arachni, IronWASP

and Vega in identifying security vulnerability in web

service environment using the DVWA and WebGoat.

2. To study the various limitations of the various open

source scanners evaluated in this study.

3. Suggest possible measures that can be used to improve

these open source web scanners.

The remaining sections of the paper are structured as follows:

Section II presents a review of related works. Section III pre-

sents background of the study. Section IV discusses experi-

mental setup. Section V details the methodology employed in

the study. The results and discussion are presented in Section VI.

Section VII conclude the study and provides lessons learned and

recommendation for the future.

2. RELATED WORK
There have been a number of studies conducted to evaluate the

performance of open-source web application vulnerability scan-

ners to ascertain the most effective and recommend for vendors

or serve as an alternative to the commercial scanners. For exam-

ple, Sagar et al. [1] evaluated the detection capability of three

open source web vulnerability scanner namely w3af, Skipfish

and OWASP Zed Attack Proxy (ZAP). The authors assessed the

performance of the web scanners using the Damn Vulnerable

Web Application (DVWA). Parvez [11] conducted a compara-

tive study by evaluating the effectiveness of three web applica-

tion vulnerability scanners, namely Acunetix, AppScan and

ZAP. The results show improved detection rate. Alsaleh et al.

[21] assess the performance of four open source scanners, name-

ly Arachni v0.4.3, Arachni v0.4.3, Wapiti, Skipfish. The result

showed similar detection rate for the four scanners evaluated in

the study. Similarly, Vieira et al. [4] evaluated four commercial

vulnerability scanners, namely WebInspect, AppScan,

WSDigger and Wsfuzzer to detect security flaws in web applica-

tion.

The authors conducted an experiment using 300 well known

web application. The findings show that the selected scanner

generates a number of false positives between 35% and 40%.

Although, there is a large number of studies on this domain, we

observe that most of the evaluations are based on the commer-

cial web application vulnerability scanners. Again, most of these

studies are focused on only SQL injection and cross site script-

ing. Lastly, we observe that most studies do not examine and

compare the performance scanners based on the Damn Vulnera-

ble Web Application and WebGoat. Hence, the current study

evaluates and assess the performance of five web scanners based

on the aforementioned vulnerable web application and suggest

possible recommendation for future research direction in this

domain of stud. To the best of our knowledge our study is novel

and we contribute new knowledge to the research domain

3. OVERVIEW OF WEB APPLICATION

SCANNERS AND VULNERABILITIES
This section of the paper is divided into two sub-section. The

first section presents brief overview of web application vulnera-

bility scanners (WVS). The second section discusses web appli-

cation vulnerabilities that is examined in this study.

3.1 Overview of Web Application Vulnerabil-

ity Scanners (WAVS)
Web application vulnerability scanner (WAVS) examines an

application by going through its web pages and performs pene-

tration testing. Most WAVS consist of three main components:

(1) a crawling component, an attacker component, and an analy-

sis component [22]. The crawling component identifies all relat-

ed and input pages of the web application, after the user enters

the Uniform Resource Locator (URL) of the web application in

the scanner. The attacker component breakdown discovered

information from the various webpage for each of the input vec-

tor, vulnerability type and send content to the web server. The

analysis component evaluates and interpret the response from

the server, if a given attack was successful or not. Basically

there are two main techniques used to test web application for

available vulnerability [23]: White box testing: This involves

analysis the source code of the web application either manually

or using a code analysis tools. The black box testing on the hand

executes the application in order to detect and locate security

vulnerabilities. This techniques is normally referred to as pene-

tration testing [24]. Ashcan [25], Web King [26], Web Inspect

[27] Topsider [28] are some of the most widely applied com-

mercial web application scanners: Other web application scan-

ners can also be accessed in the following studies [29], [30],

[31].

3.2 Overview of Web Application Vulnerabil-

ities Tested
We used web application vulnerabilities listed by the National

Vulnerability Database in partnership with the National Institute

of Standards and Technology (NIST).

Currently, the database contains over 9900 security vulnerabili-

ties in diverse software product. Several empirical studies, [32],

[33], [34] have successfully applied/evaluated this vulnerabili-

ties. The current study focuses on identifying the existence of

these vulnerabilities in DVWA and WebGoat.

4. METHODOLOGY AND EXPERIMENT
In this section of the study, we present the methodology and the

experimental setup.

4.1 Methodology
We conducted an investigative study to identify and review the

most widely applied open source web vulnerability scanner

based on predefine criteria offered by Web Application Security

Consortium. We then scanned for vulnerabilities using the se-

lected scanners randomly in WebGoat and DVWA by configur-

ing our browser and the selected scanners to work with DVWA

and WebGoat.

We further perform a detailed analysis of the result produced by

the various scanners after the detection stage. Finally, we ana-

lyzed and compare the scanners performance using the OWASP

benchmark metric to determine the tools precision, recall and

Youden index to ascertain which scanner is most effective and

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

17

superior in detecting security vulnerability in web applications.

4.2 Experimental setup
The experimental activity is divided into three steps: Pre-

Experimental Activities, Experimental Activities and Post Ex-

perimental Activities.

4.3 Open Source Web Vulnerability Scanner
As stated earlier, we used five open source scanners, namely

ZAP, Skipfish, Arachni, W3af, N. Stalker, IronWASP and Vega.

ZAP [35] is an open source web vulnerability scanner with a

user friendly interface used for penetration testing. It can be used

by people with different capabilities in the field of software se-

curity.

Skipfish [36] is an active web application security reconnais-

sance tool. It prepares an interactive sitemap for the targeted site

by carrying out a recursive crawl and dictionary-based probes.

The resulting map is then annotated with the output from a num-

ber of active security checks. The final report generated by the

tool is meant to serve as a foundation for professional web ap-

plication security assessments. Arachni [37] is very effective and

user-friendly web security vulnerability too written in Ruby. It is

very fast in scanning and offers different user interface. Again, it

provides a customized, command driven input and its output is

in the form of HTML. Iron WASP (Iron Web application Ad-

vanced Security testing Platform) is a very powerful web appli-

cation advanced security testing platform which comes in vari-

ous external libraries such as IronPython, IronRuby, Json. NET

etc. Vega an automated open-source web vulnerability scanner

for detecting SQL and other vulnerability type.

The aforementioned scanners were selected for the study based

on a comparison criteria proposed by the Web Application Se-

curity Consortium, “Web Application Security Scanner Evalua-

tion”[38] and another study conducted by Suteva et al. [39] on

the most popular open source vulnerability scanners. The scan-

ners were run on a workstation with an Intel(R) Core (TM) i5-

6500 CPU at 3.20GHz, 4 GB of RAM and Windows 7 Ultimate.

All the scanners evaluated has a graphical user interface and run

on Windows. Additionally, Skipfish, Arachni and W3AF are

available on FreeBSD. Table 1 list the features of the five open

source WAVS used in our study.

Table 1: Features of Scanners

Scanner Company Platform Version Operation

ZAP OWASP Java 2.7.0 Windows,

Linux, OS X

Skipfish Google Java 2.10beta Windows,

Linux, OS X,

FreeBSD

Arachni Arachni Java 1.5.1-

0.5.12

Windows,

Solaris, Linux,

BSD, Unix

IronWASP IronWASP Java 0.9.8.6 Windows,

Linux. OS X

Vega Subgraph Java 1.0 Windows,

Linux, OS X

Pre-Experimental Activities

Gather

information about

the eight open

source scanners

mentioned

Generate the

workload based on

the information

gathered in the

previous step

Gather

information about

the main web

vulnerability to be

detected by the

scanner

Experimental Activities

Scanned for

vulnerabilities

using the selected

scanners randomly

in WebGoat and

DVWA

Input the URL of

DVWA into the

text field of the

scanners

Select sample web

application

scanner and

configure to work

with DVWA and

WebGoat

Post-Experimental Activities

Compare scanners

performance

against the stated

metrics

Analyze the

vulnerability

report from the

scanners.

Figure 1: Experimental Activities

4.4 Benchmark Vulnerable Web Application

Selection
There are several benchmarks vulnerable web applications,

namely open web application security project (OWASP) bench-

mark [40] ,web application vulnerability scanner evaluation

project (WAVSEP) benchmark [41], web input vector extractor

teaser (WIVET) [42], WebGoat benchmark [43] and the damn

vulnerable web application (DVWA) benchmark [44].

WAVSEP, OWASP and WIVET have been applied mostly to

evaluate commercial and open source scanners [45], [41], [46].

Conversely, DVWA and WebGoat benchmark have not been

used much to evaluate many popular WAVS although it is de-

veloped by a well-known organization and is actively main-

tained. Hence, we used DVWA and WebGoat to evaluate the

performance of the tools (i.e.to obtain the true positives, false

positives and the false negatives.) since they are regarded as one

of the best benchmark option for assessing the effectiveness of

web application vulnerability scanners [19]. DVWA [44] has a

friendly user interface that allows developer, teachers and stu-

dents to explore and analyze web service security. It consists of

vulnerabilities such as Command Execution, Cross Site Request

Forgery, Insecure captcha, File inclusion, SQL injection, SQL

injection (blind), Reflected Cross-site scripting (XSS), Stored

Cross-site scripting (XSS). WebGoat [43] on the other hand is

an open source OWASP application created to help developers

and experts test their tools in detecting security vulnerability in

web application.

The vulnerability types in WebGoat includes the following:

Access Control Flaws, AJAX Security, Authentication Flaws,

Buffer Overflows, Code Quality, Concurrency Cross-Site Script-

ing, Bypass Error Handling, Injection Flaws, Denial of Service,

Insecure Communication, Insecure Configuration, Insecure

Storage, Malicious Execution, Parameter Tempering, Session

Management, Web Services.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

18

4.5 Evaluation Metric
The evaluation of this study is conducted in two stages. In the

first stage we obtained the benchmarking results (i.e. TPR, FPR,

TNR and FNR) by first executing the scanners against the two

vulnerable web applications, damn vulnerable web application

(DVWA) and WebGoat. Secondly, evaluate each tool perfor-

mance based on precision, recall and Youden index to be able to

make inform conclusions for each of the scanner under study.

The performance metrics are:

Precision is defined in [40] as the percentage of correctly detect-

ed bugs to the number of all detected bugs (i.e. number of bugs

detected by the tool that are actually rear bugs). Eq. 1, shows the

formula for this metric. A precision value of 100% represents a

high detection accuracy of the exact bug.

(Eq.1)

Recall [47] is the percentage of the correctly detected bugs to the

number of known bugs (i.e. a number of bugs that were sup-

posed to be detected by the tool but couldn’t detect. Eq. 2 shows

the formula for recall.

(Eq.2)

The Youden index (Yi) [48] was proposed by W.J. Youden to

evaluate the performance of analytical tests (diagnostic tests).

The values for the index range from -1 to 1. For instance, if a

tool is able to detect all bugs without any false positive present it

obtains a Youden index of 1.

However, if the tool could not detect actual bugs but produced

false positives then it obtains a Youden index of -1. A Youden

index of 0 is invalid. Eq. 3 shows the formula for Youden index.

(Eq.3)

Detection rate (DR) [49] is the total number of existing vulnera-

bilities the scanner managed to detect in the web application.

(Eq.4)

(Eq.5)

Where:
True Positive (TP) [50] is the total number of correctly detected

vulnerabilities by a scanner.

False Positive (FP) [51] is the total number of non-existing

vulnerabilities detected by the a scanner.

True Negative (TN) [51] is where there is no existence of vul-

nerability in the web application.

False Negative (FN) [50] is the tool inability to detect vulnera-

bility in the web application.

5. EXPERIMENTAL RESULTS
This section of the study presents experimental results and eval-

uation of the tools effectiveness based on the afforementioned

metrics.

5.1 Comparison of the scanners detection rate
We evaluated the detection rate of the tools in DVWA and

WebGoat based on their numerical measure (i.e. the total num-

ber of existing vulnerabilities the scanner managed to detect)

and time efficiency (i.e. the time taken to detect vulnerabilities

within the shortest possible time) in the web application. It must

be noted that vulnerabilities that were not detected in both

DVWA and in WebGoat were not used in the analysis due to the

required number of pages stipulated.

5.1.1 Numerical measure
Table 1, presents the detection capabilities of the tools in

DVWA for the vulnerabilities under study. Vulnerabilities (i.e.

CE, BF MC, XSS, GI, GP, and SQL). We observed that the

scanners detected known vulnerabilities such as CE, XSS and

SQL in DVWA. There is much variation in the detection capa-

bilities of the individual scanners as they achieve different result.

For example, OWASP Zap discovered 1 CE, 19 XSS and 6

SQL. Skipfish detected 3 CE, 1 XSS and 2 SQL. Vega detected

the highest number of 12 SQL vulnerability in DVWA and ZAP

detected the highest number of 19 XSS vulnerability.

Similarly, based on the experimental results presented in Table

1, we are able to see the detection capabilities of each scanner in

identifying vulnerabilities in the two vulnerable web applica-

tions under study. The vulnerabilities that were detected by the

scanner in WebGoat are XSS, BF, and GP. Although no scanner

detected all the vulnerabilities in WebGoat, however, the indi-

vidual detectability is a clear indication that the tools are devel-

oped differently and the depth of each strength and weakness

invariably also differs.

 Again, vulnerabilities such as DoS, CE, HRS, and were not

detected by all the scanners. The reasons for this gap could be in

two-fold, either the tools are not capable of detecting such vul-

nerabilities in WebGoat because of their internal functionality or

the said vulnerability may not exist in WebGoat.

5.1.2 Time efficiency
We equally evaluated the time efficiency of each scanner. The

processing time for each scanner is calculated in seconds by the

start time minus the completion time. We recorded the elapsed

scanning time for each scanner in both DVWA and Web Goat.

The running time for DVWA ranges from 60 seconds to 180

seconds,360 seconds and 2400 seconds and WebGoat ranges

from 60 seconds to 120 seconds and 900 seconds. We also ob-

served that, the running time for vulnerability detection in web

application differ from one application to other. For instance, the

running time for ZAP to detect vulnerability in DVWA and

WebGoat is 360 seconds and 60 seconds respectively. The time

differences by the scanners could be attributed to the URL injec-

tions points of webpages by the scanners. For example, a smaller

number of 2 or 4 URL injection point will demand a few se-

conds (i.e. 60) than an injection point of 9 or 10 (which could be

120 seconds). Again, the scan profile of the tools for vulnerabil-

ity detection could vary the detection time. More so, the varia-

tions of the tools detection speed (Time) could be attributed to

the internal component of the application.

5.2 Results Evaluation
We present a detailed evaluation of the tools based on the stand-

ard evaluation metrics discussed in section IV-E.

5.2.1 Detection and accuracy rate analysis of

scanners
In this section we evaluate the performance of the scanners base

on their detection and accuracy rate in DVWA and in WebGoat.

The obtained experimental results are presented in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

19

TABLE 2: COMPARISON OF THE SCANNERS

DETECTION AND ACCURACY RATE IN DVWA AND

WEBGOAT

scanner DVWA WebGoat

Detection
Rate

Accuracy
Rate

Detection
Rate

Accuracy
Rate

ZAP 100% 54.1% 100% 54%

Skipfish 100% 75% 23.5% 94.4%

Arachni 75% 66.6% 41.1% 80.9%

IronWASP 80% 66.6% 5.8% 100%

Vega 100% 56.2% 58.8% 73.9%

From Table 2, it is evidently clear that all the tools obtained a

high detection rate in DVWA ranging from 80% to 100%. How-

ever, the detection rate in WebGoat is low for all the tools ex-

cept ZAP which obtained a detection rate of 100%. This is an

indication that the detection capability of open source scanners

varies from one application to another. This is because of the

different penetration testing approaches implemented by the

individual scanners to detect vulnerabilities in web application.

It is noticeable from the results presented that, the accuracy rate

of the scanners in both DVWA and WebGoat is higher. For ex-

ample, IronWASP recorded accuracy rate of 100% followed by

Skipfish and Arachni with accuracy rate of 94.4% and 80% re-

spectively. Again, we observed that, comparatively the accuracy

rate in DVWA is low though the detection rate is high, this is

due to significant number of false positives reported by the tools.

From the experimental results, we observed that no single scan-

ner detected vulnerability of all types in web applications. This

is because of the uniqueness of the scanners hence, the number

of variations in the detection and accuracy rate.

5.2.2 Precision and recall analysis of scanners
In this study both precision and recall metrics are measured in

the range of 0-100%. For instance, an effective tool whose de-

tection has no false negative and false positive would have a

value of 100% for precision and recall. Table 3, presents the

precision and recall values of scanners for both DVWA and

WebGoat.

TABLE 3: PRECISON AND RECALL COMPARISON OF

SCANNERS
scanner DVWA WebGoat

Precision Recall Precision Recall

ZAP 54.1% 100% 54% 100%

Skipfish 75% 75% 80% 23.5%

Arachni 60% 75% 63% 70%

IronWASP 80% 50% 100% 6.2%

Vega 56.2% 100% 62.5% 58.8%

In this study both precision and recall metrics are measured in

the range of 0-100%. For instance, an effective tool whose de-

tection has no false negative and false positive would have a

value of 100% for precision and recall. Table 3, presents the

precision and recall values of the scanners for both DVWA and

WebGoat. From the Table 3, ZAP and Vega obtained a recall

value of 100% in DVWA. These recall values are relatively high

which is an indication of the tools ability to detect rear vulnera-

bilities. Similarly, there are variations in the tools precision val-

ues which could be attributed to the tool’s uniqueness in vulner-

ability detection.

For example, IronWASP and Skipfish obtained a precision value

of 80% and 75% respectively in DVWA. ZAP and arachni ob-

tained a precision value of 54% and 62.5% respectively in

WebGoat which is an indication that the tools detected vulnera-

bilities that are actually not correctly classified as rear vulnera-

bility (false positive). Skipfish and IronWASP obtained very low

recall result in WebGoat 23.5% and 6.2% respectively. This

means the inability of the aforementioned tools to detect known

vulnerabilities in WebGoat. Details of the precision and recall

values for each scanner is presented in Table 3.

5.2.3 Youden index.
This section reports the empirical analysis regarding the Youden

index of the scanners. As explained in section 4-E, the Youden

index evaluates the performance of a tool’s diagnostic tests with

values ranging from -1 to 1.

TABLE 4: COMPARISON OF THE SCANNERS YOUDEN

INDEX IN DVWA

Scanner DVWA

TP TN FN FP
Yi

ZAP 26 3 0 22 0.12

Skipfish 6 3 0 2 0.6

Arachni 6 3 2 4 0.17

Vega 18 3 0 14 0.17

IronWASP 4 3 1 1 0.55

From Table 4, it can be Skipfish obtained the highest Youden

index of 0.6 which implies the effectiveness of the scanner in

detecting known vulnerabilities in web application with little or

no false positive. This is followed by IronWASP with a Youden

index of 0.55. Arachni and Vega both obtained a Youden of 0.17

respectively. ZAP obtained the lowest Youden index of 0.12 in

DVWA.

TABLE 5: COMPARISON OF THE SCANNERS YOUDEN

INDEX IN WEBGOAT

Scanner WEBGOAT

TP TN FN FP
Yi

ZAP 27 3 0 23 0.11

Skipfish 4 3 0 1 0.75

Arachni 7 3 10 4 0.15

Vega 10 3 7 6 0.10

IronWASP 1 5 16 0 0.05

Skipfish outperformed all the scanners by obtaining a Youden

index of 0.6 and 0.75 in DVWA and in WebGoat respectively.

This is an indication of the tool superiority in detecting vulnera-

bilities in web application among the other open source scan-

ners. The imbalance variations of the tool Youden index is an

indication that a number of open-source scanners can function

effectively in detecting security vulnerabilities in web applica-

tion. Thus, licensing alone should not be used as a standard met-

ric for measuring the effectiveness of a tool. Hence, the afore-

mentioned open-source scanners can be used by security experts

for vulnerability detection.

5.2.4 Lessons learned
Open-source WAVS are mostly used by vendor for testing web

application; however, this study and other existing research have

proven the variation in their performance in vulnerability detec-

tion. Therefore, in our quest to examine the detection capabili-

ties of open-source scanner based on the aforementioned stand-

ard evaluation metrics, we made the following interesting obser-

vations:

 The difficulty of open-source WAVS to detect a cou-

ple of vulnerabilities in web application is due to the

location of the said vulnerability which is preceded by

a similar exploited one which makes it difficult to de-

tect the former.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

20

 Although, open source scanners such as ZAP, Skipfish,

Vega, and Arachni have high detection rate, they also

obtained significant number of false positive which

lowers the accuracy rate of the tools.

 We anticipated that, the consequences of high false

positives rate in most open source WAVS can render

developers to spend scarce resource trying to find solu-

tion to vulnerabilities that actually do not exist in web

application.

 The report generated by the scanners should not be in a

format difficult for users to interpret and understand

(e.g. HTML and XML). We rather recommend a user-

friendly format such as PDF and Word.

 We observed diversification of the scan result; hence

we recommend an approach that can integrate the

scanners to compliment the weakness and strength of

each other in detecting vulnerabilities.

 We observe that the open source scanners are fairly ef-

fective for detecting known vulnerabilities namely

Command Execution, Cross-Site Scripting, and SQL

injection.

 The functionality of open source scanners should be

improved to detect known and unknown web applica-

tion vulnerability.

 Developers of commercial and open source scanner

are always in a hurry to build on customized tool to

meet customer requirement as a result most applica-

tions and tools come out with a lot of vulnerabilities.

Therefore, the development of scanners should be

standardized to sanitize the system.

6. THREAT TO VALIDITY
In this section, we discuss the internal and external threat to

validity. Threat to internal validity relate to the total number of

vulnerabilities in our experimental vulnerable web applications,

damn vulnerable web application and WebGoat. However, we

estimated the total number of vulnerabilities by the aggregation

of the scanners true positive that form a true representation for

our experiment. More so, we had challenges in configuring these

tools. This is because their functionalities were not compatible

with the Java platform (new version) we were using.

We need to try several versions which may be limited in func-

tion to carry out the experiment. Threat to external validity relate

to the generalization of our results. In this study, we used vul-

nerability data in two vulnerable web applications to verify the

efficiency of the tools. In the future, we will reduce this threat by

exploring other vulnerabilities and another implementation tool.

7. CONCLUSION AND FUTURE

DIRECTION
In this paper we assessed and analyzed five open-source WAVS,

namely OWASP ZAP, Skipfish, Arachni, Iron WASP and Vega

using a publicly available web project called Damn Vulnerable

Web Application (DVWA) and WebGoat. Additionally, we

evaluated the performance of these web application vulnerability

scanners using the OWASP benchmark metrics to determine the

scanners precision, recall and Youden index, so we can make

conclusions with regards to the scanners performance and effec-

tiveness in detecting vulnerabilities. Our findings show that,

open source web application vulnerability scanners are very

effective in detecting vulnerabilities in web applications. For

example, OWASP ZAP and Skipfish are superior in detecting

common vulnerabilities such as command execution, cross-site

scripting, and SQL injection vulnerabilities. ZAP, Skipfish and

Vega obtained a detection rate of 100% and accuracy rate of

54.1%, 75% and 66.6% in DVWA. The detection rate of the

tools in WebGoat was not encouraging, Skipfish and Arachni

obtained 23.5% and 41.4% respectively. Skipfish obtained the

best accuracy rate of 75% in DVWA and 94.4% in WebGoat.

Similarly, Arachni and IronWASP obtained 89.9% and 100%

accuracy rate in WebGoat. The results are indication of the tools

uniqueness in detecting vulnerabilities in web applications. Fur-

thermore, Skipfish obtained the highest Youden index of 0.7 and

0.6 in DVWA and WebGoat, which makes the scanner superior

than the all the studied tools.

8. REFERENCES
[1] D. Sagar, S. Kukreja, J. Brahma, S. Tyagi, and P. Jain,

"Studying open source vulnerability scanners for

vulnerabilities in web applications," Institute of Integrative

Omics and Applied Biotechnology Journal, vol. 9, pp. 43-

49, 2018.

[2] P. Baral, "Web application scanners: a review of related

articles [Essay]," IEEE Potentials, vol. 30, pp. 10-14, 2011.

[3] N. Antunes and M. Vieira, "Benchmarking vulnerability

detection tools for web services," in Proceedings of the

2010 IEEE International Conference on Web Services

(ICWS), 2010, pp. 203-210.

[4] M. Vieira, N. Antunes, and H. Madeira, "Using web

security scanners to detect vulnerabilities in web services,"

in Proceedings of the IEEE/IFIP International Conference

on Dependable Systems & Networks 2009, pp. 566-571.

[5] M. Zalewski, N. Heinen, and S. Roschke, "Skipfish-web

application security scanner," ed: URL: http://code. google.

com/p/skipfish/(visited on 06/03/2012), 2011.

[6] I. M. Babincev and D. V. Vuletić, "Web application

security analysis using the kali linux operating system,"

Vojnotehnički glasnik, vol. 64, pp. 513-531, 2016.

[7] N. Suteva, D. Zlatkovski, and A. Mileva, "Evaluation and

testing of several free/open source web vulnerability

scanners," Proceedings of the 10th Conference for

Informatics and Information Technology (CIIT 2013), 2013.

[8] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan, "A

cost-effective approach to evaluating security vulnerability

scanner," in Proceedings of the 15th Asia-Pacific

Symposium on Network Operations and Management

(APNOMS), 2013 2013, pp. 1-3.

[9] N. Antunes and M. Vieira, "Detecting SQL injection

vulnerabilities in web services," in Proceedings of the

Fourth Symposium on Dependable Computing 2009, pp.

17-24.

[10] Y. Makino and V. Klyuev, "Evaluation of web vulnerability

scanners," in Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications

(IDAACS),

Proceedings of 2015 IEEE 8th International Conference on

2015, 2015, pp. 399-402.

[11] M. Parvez, P. Zavarsky, and N. Khoury, "Analysis of

effectiveness of black-box web application scanners in

detection of stored SQL injection and stored XSS

vulnerabilities," in Proceedings of the 10th International

Conference on Internet Technology and Secured

Transactions (ICITST), 2015, pp. 186-191.

http://code/

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

21

[12] J. Fonseca, M. Vieira, and H. Madeira, "Testing and

comparing web vulnerability scanning tools for SQL

injection and XSS attacks," in Proceedings of the 13th

Pacific Rim International Symposium on Dependable

Computing (PRDC 2007), 2007, pp. 365-372.

[13] J. Fonseca, M. Vieira, and H. Madeira, "Testing and

comparing web vulnerability scanning tools for SQL

injection and XSS attacks," in 13th Pacific Rim

International Symposium on Dependable Computing

(PRDC 2007), 2007, pp. 365-372.

[14] L. Suto, "Analyzing the accuracy and time costs of web

application security scanners," San Francisco, February,

2010.

[15] J. Fonseca, M. Vieira, and H. Madeira, "Testing and

comparing web vulnerability scanning tools for SQL

injection and XSS attacks," in Proceedings of 13th Pacific

Rim International Symposium on Dependable Computing

(PRDC 2007), 2007, pp. 365-372.

[16] Y. Makino and V. Klyuev, "Evaluation of web vulnerability

scanners," in Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications

(IDAACS), 2015 IEEE 8th International Conference on,

2015, pp. 399-402.

[17] N. I. Daud, K. A. A. Bakar, and M. S. M. Hasan, "A case

study on web application vulnerability scanning tools," in

2014 Science and Information Conference, 2014, pp. 595-

600.

[18] "https://www.owasp.org/index.php/Benchmark."

[19] A. Baratloo, M. Hosseini, A. Negida, and G. El Ashal, "Part

1: simple definition and calculation of accuracy, sensitivity

and specificity," 2015.

[20] C. J. Van Rijsbergen, "A non-classical logic for information

retrieval," The computer journal, vol. 29, pp. 481-485, 1986.

[21] M. Alsaleh, N. Alomar, M. Alshreef, A. Alarifi, and A. Al-

Salman, "Performance-Based Comparative Assessment of

Open Source Web Vulnerability Scanners," Security and

Communication Networks, vol. 2017, 2017.

[22] S. Kals, E. Kirda, C. Kruegel, and N. Jovanovic, "Secubat:

a web vulnerability scanner," in Proceedings of the 15th

International Conference on World Wide Web, 2006, pp.

247-256.

[23] C. Ghezzi, M. Jazayeri, and D. Mandrioli, Fundamentals of

Software Engineering: Prentice Hall PTR, 2002.

[24] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force

vulnerability discovery: Pearson Education, 2007.

[25] E. F. R. G. V. Okun, P. E. Black, and E. Dalci, "Building a

Test Suite for Web Application Scanners."

[26] O. Hamed and N. Kafri, "Performance Prediction of Web

Based Application Architectures Case Study: .NET vs. Java

EE," International Journal of Web Applications, vol. 1,

2009.

[27] J. C. Fonseca, M. Vieira, and H. Madeira, "Correlating

security vulnerabilities with software faults," 2007.

[28] H. Le and P. Loh, "Unified approach to vulnerability

analysis of web applications," in AIP Conference

Proceedings, 2008, pp. 155-159.

[29] P. E. Black and E. Fong, "Proceedings of Defining the State

of the Art in Software Security Tools Workshop," NIST

Special Publication, vol. 500, p. 264, 2005.

[30] S. Panguluri, W. Phillips, and P. Ellis, "Cyber security:

protecting water and wastewater infrastructure," in

Handbook of water and wastewater systems protection, ed:

Springer, 2011, pp. 285-318.

[31] S. Zhang, D. Caragea, and X. Ou, "An empirical study on

using the national vulnerability database to predict software

vulnerabilities," in Proceedings of the International

Conference on Database and Expert Systems Applications,

2011, pp. 217-231.

[32] M. Abedin, S. Nessa, E. Al-Shaer, and L. Khan,

"Vulnerability analysis for evaluating quality of protection

of security policies," in Proceedings of the 2nd ACM

Workshop on Quality of Protection, 2006, pp. 49-52.

[33] J. A. Wang and M. Guo, "Vulnerability categorization

using Bayesian networks," in Proceedings of the Sixth

Annual Workshop on Cyber Security and Information

Intelligence Research, 2010, p. 29.

[34] P. Anbalagan and M. Vouk, "On mining data across

software repositories," in Proceedings of the 6th IEEE

International Working Conference on Mining Software

Repositories, 2009. MSR'09. , 2009, pp. 171-174.

[35] S. Evans, "Securing WebGoat using ModSecurity, summer

of code 2008," OWASP beta level, OWASP Foundation,

2008.

[36] R. Mohammed, "Assessment of Web Scanner Tools,"

International Journal of Computer Applications (0975-

8887), vol. 133, 2016.

[37] K. McQuade, "Open source web vulnerability scanners: the

cost effective choice," in Proceedings of the Conference for

Information Systems Applied Research ISSN, 2014, p. 1508.

[38] N. Teodoro and C. Serrão, "Automating Web Applications

Security Assessments through Scanners," Web Application

Security, p. 48.

[39] N. Suteva, D. Zlatkovski, and A. Mileva, "Evaluation and

testing of several free/open source web vulnerability

scanners," 2013.

[40] " OWASP. OWASP Benchmark. Available:

https://www.owasp.org/index.php/Benchmark, 2017.," pp.

1-6.

[41] B. Mburano and W. Si, "Evaluation of Web Vulnerability

Scanners Based on OWASP Benchmark," in Proceedings

of the 26th International Conference on Systems

Engineering (ICSEng), 2018, pp. 1-6.

[42] E. n. İ. Tatli and B. r. Urgun, "WIVET—benchmarking

coverage qualities of web crawlers," The Computer Journal,

vol. 60, pp. 555-572, 2017.

[43] N. A. Aziz, S. N. Z. Shamsuddin, and N. A. Hassan,

"Inculcating Secure Coding for beginners," in Proceedings

of the International Conference on Informatics and

Computing (ICIC), , 2016, pp. 164-168.

[44] Y. Makino and V. Klyuev, "Evaluation of web vulnerability

scanners," in Proceedings of the 8th IEEE International

Conference on Intelligent Data Acquisition and Advanced

Computing Systems: Technology and Applications

(IDAACS), 2015, 2015, pp. 399-402.

[45] M. El, E. McMahon, S. Samtani, M. Patton, and H. Chen,

http://www.owasp.org/index.php/Benchmark.
http://www.owasp.org/index.php/Benchmark

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 18, February 2021

22

"Benchmarking vulnerability scanners: An experiment on

SCADA devices and scientific instruments," in

Proceedings of the 2017 IEEE International Conference on

Intelligence and Security Informatics (ISI), 2017, pp. 83-88.

[46] S. Idrissi, N. Berbiche, F. Guerouate, and M. Shibi,

"Performance evaluation of web application security

scanners for prevention and protection against

vulnerabilities," International Journal of Applied

Engineering Research, vol. 12, pp. 11068-11076, 2017.

[47] Y.-H. Tung, S.-S. Tseng, J.-F. Shih, and H.-L. Shan, "W-

VST: A Testbed for Evaluating Web Vulnerability

Scanner," in Proceeding of the 14th International

Conference on Quality Software, 2014, pp. 228-233

[48] W. J. Youden, "Index for rating diagnostic tests," Cancer,

vol. 3, pp. 32-35, 1950.

[49] H. Holm, T. Sommestad, J. Almroth, and M. Persson, "A

quantitative evaluation of vulnerability scanning,"

Information Management & Computer Security, vol. 19, pp.

231-247, 2011

[50] J. Akosa, "Predictive accuracy: a misleading performance

measure for highly imbalanced data," in Proceedings of the

SAS Global Forum, 2017, pp. 2-5.

[51] N. Antunes and M. Vieira, "On the metrics for

benchmarking vulnerability detection tools," in

Proceedings of the 45th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, 2015,

pp. 505-516.

IJCATM : www.ijcaonline.org

