
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

25

A System for GUI Testing of Android Apps with Multiple

Activities

Moheb R. Girgis
Department of Computer Science

Faculty of Science
Minia University
El-Minia, Egypt

Bahgat A. Abdel Latef
Department of Computer Science

Faculty of Science
Minia University
El-Minia, Egypt

Tahany Akl
Department of Computer Science

Faculty of Science
Minia University
El-Minia, Egypt

ABSTRACT

The wide spread use of Android and the GUI-driven nature of

its apps have risen the need for appropriate automated GUI

testing techniques. This paper presents a proposed system for

GUI testing of Android apps with multiple activities, which

applies a model-based approach to capture the event-driven

nature of Android apps. This approach comprises two phases:

Modeling Phase and Test Evaluation Phase. In the modeling

phase, for each activity in the app under test (AUT), an event

sequence diagram (ESD) is built, which depicts the activity's

events and possible transitions between them, and used to

generate event sequences (test cases). In the test evaluation

phase, certain event-based coverage criteria are employed to

measure the adequacy of the generated test cases. The

proposed system analyses the AUT, builds an ESD for each

activity, and generates event sequences. It handles the event

sequences explosion problem and discards any unacceptable

event sequences. For each event sequence, the system

generates a test script and a corresponding Robotium test

class, and executes the AUT with it. The paper also presents a

case study that illustrates the use of the proposed system for

testing an Android app with multiple activities, and the results

of the experiments that have been conducted to evaluate the

system's ability to expose some GUI errors that may occur in

Android apps.

General Terms

Mobile Apps GUI Testing, Model-Based Testing, Automated

GUI Testing.

Keywords

Android Apps GUI Testing, Model-Based Testing, Automated

GUI Testing Tools, Event-Based Coverage Criteria, Robotium

Test Framework.

1. INTRODUCTION
As mobile apps become more advanced and are exposed to

higher number of users, the requirements on their

performance grow, and the issue of their quality becomes very

important. Mobile app testing is one of the most frequently

used quality assurance techniques. Mobile apps are graphical

user interface (GUI) driven apps, which makes GUI testing of

such apps very important. GUI testing assures developers that

their app meets its functional requirements with high quality

such that it is more likely to be successfully accepted by users.

It is very useful to automate these tests, as test automation

saves a lot of time, but it is very difficult due to the

complexity of mobile apps and the limited resources available

in mobile devices.

Due to the popularity of Android platform, the presented work

focused on testing the GUI of Android apps. The paper

presents a proposed system for GUI testing of Android apps

with multiple activities, which analyzes the app under test

(AUT), generates test cases based on certain event-based

coverage criteria, and executes these test cases. The proposed

system applies a model-based approach to capture the event-

driven nature of Android apps. The model used in this

approach is the event sequence diagram (ESD), which depicts

the events for an app and the possible transitions between

them. The proposed system collects the IO/Clickable views of

each activity in the AUT and their events. Then, it generates

an ESD for each activity, combines all ESDs in one ESD and

uses it to generate a set of event sequences according to the

specified event-based criteria. For each event sequence, the

system generates a test script and a corresponding Robotium

test class, then executes the AUT with it. The paper also

presents a case study to illustrate the use of the proposed

system for testing a simple Android app with three activities,

and the results of the experiments that have been conducted to

demonstrate the system's ability to expose GUI errors that

may occur in Android apps.

The paper is organized as follows: Section 2 presents a review

of related research in the area of model-based GUI testing of

Android apps. Section 3 presents background on Android

app's Activities and the Robotium framework. Sections 4 and

5 describe the proposed GUI testing approach for Android

apps, and the supporting system, respectively. Section 6

presents the case study. Section 7 presents the experimental

results. Section 8 presents the conclusion of this work.

2. RELATED WORK
This section presents a review of related research in the area

of model-based GUI testing of Android apps. Model-based

GUI testing of Android apps is one of test input/event

generation approaches for Android app testing.

Amalfitano et al. [1] presented a technique for rapid crash

testing and regression testing of Android apps. It is based on a

crawler that automatically builds a model of the app GUI and

obtains test cases that can be automatically executed.

Amalfitano et al. [2] presented AndroidRipper, an automated

technique that is based on a user-interface driven ripper that

automatically explores the app GUI with the aim of exercising

the application in a structured manner. Yang et al. [3]

presented a grey-box approach and a tool, for automatically

extracting a model of a given mobile app. They perform static

analysis to extract the events of the app GUI, then, dynamic

crawling to reverse-engineer a model of the app, by exercising

these events on the running app. Azim and Neamtiu [4]

presented Android App Explorer (A3E) that allows Android

apps to be explored while running on actual phones. They

construct a high-level control flow graph from the app

bytecode that captures legal transitions among activities, and

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

26

use it to develop an exploration strategy that permits fast,

direct exploration of activities. They also developed another

exploration strategy that mimics user actions for exploring

activities and their constituents. Choi et al. [5] proposed an

automated technique, called SwiftHand, which uses machine

learning to learn a model of the app during testing, then uses

the learned model to generate user inputs that visit unexplored

states of the app, and uses the execution of the app on the

generated inputs to refine the model. Amalfitano et al. [6]

presented MobiGUITAR, which is based on observation,

extraction, and abstraction of the run-time state of GUI

widgets. The abstraction is a scalable state-machine model

that, together with test coverage criteria, enables automatic

generation of test cases. Su et al. [7] presented Stoat, which

uses dynamic analysis enhanced by a weighted UI exploration

strategy and static analysis to reverse engineer a stochastic

model of the app GUI interactions, then it adapts Gibbs

sampling to iteratively mutate/refine the stochastic model and

guides test generation from the mutated models toward

achieving high code and model coverage.

The authors have previously presented a model-based

approach for UI testing of Android apps that have only single

activity [8]. The approach presented in this paper extends the

authors' previous approach to test the UI of Android apps with

multiple activities. The proposed approach differs from the

reviewed approaches in the following aspects: (1) it builds a

simple model, ESD, to represent the events in the UI of each

activity and possible transitions between them, combines all

ESDs in one ESD and uses it to generate test cases; (2) it

employs event-based coverage criteria, adapted for Android

app, to measure the adequacy of the generated test cases; (3) it

significantly reduces the number of generated event sequences

by filtering out any sequence that is a subsequence of another

one, and any sequence that includes unacceptable event

subsequences; (4) it automatically generates test scripts from

event sequences and converts them to test classes; and (5) it

utilizes the Robotium Test Framework features to extract the

AUT activities' views and related information, and to execute

the generated test classes.

3. BACKGROUND
Activities are the main components of an Android app, which

dictate the UI and handle the user interaction with the mobile

device screen [9]. An activity represents a single screen with a

UI. An app may have more than one activity, which

can interact with each other. The one, which is presented

when the app is launched, is called the main activity. The UI

for each activity of an app is defined using a hierarchy

of View and ViewGroup objects. Each view group is an

invisible container that arranges child views, while the child

views may be input controls or other widgets that draw some

part of the UI. Input controls are the app UI interactive

components. Android provides a wide variety of controls,

such as EditText, TextView, Button, RadioButton, CheckBox,

RadioGroup, and many more. UI inputs of an app include the

input controls and their events (actions) for each activity.

Events are a useful way to collect data about a user's

interaction with interactive components of apps, such as

button presses or screen touch etc. When an event happens, a

corresponding Event Handler is called to perform any

required task.

The proposed system utilizes the functionalities provided by

the Robotium framework for extracting information about the

views in each activity in the AUT, and for executing the

generated test class of each event sequence. Robotium is an

extension of the Android test framework and was created to

make it easy to write UI test automation scripts for Android

apps [10]. Robotium tests allow the tester to define test cases

across Android activities. Robotium tests perceive the AUT as

black box, i.e., it only interacts with the user interface and not

via the internal code of the app. The main class for testing

with Robotium is Solo. Through a Solo object and its

methods, we can set values in input fields, click on buttons

and get results from other UI components. Methods of JUnits

Assert class can then be used to check those results.

4. THE PROPOSED ANDROID APPS UI

TESTING APPROACH
The proposed approach for testing the UI of Android apps

with multiple activities is described as follows: Firstly, the

AUT is statically analyzed to identify its activities and the

views within each activity with their events. Then, testing is

performed in two levels: activity level and app level. In the

activity level testing, each activity is tested separately to verify

whether it works as expected. Then, in the app level testing,

the whole app is tested to verify whether all of its activities

can work together to complete the desired functions. In this

level, each activity is treated as a trusted unit as it has

successfully passed the activity level testing. An execution

path of the app is represented by a sequence of these trusted

units.

Each of these testing levels consists of two phases: Modeling

phase and Test Evaluation phase. In the modeling phase, a

model is built for each activity/app to be used in generating

test cases for the UI testing of the activity/app, while in the

test evaluation phase, event-based coverage criteria are

employed to determine whether the UI of the activity/app has

been adequately tested by the generated test cases.

The possible execution paths in an activity/app UI are

represented by a model called the Event Sequence Diagram

(ESD) [11], which is based on the Finite State Machine

model. In an ESD, each node represents an event, while a

state transition is determined based on how the current node is

responding to inputs. An ESD is built for each activity, then

the ESDs of all activities are combined to build an App ESD.

An ESD D is a 2-tuple <N, E> where:

N is a set of nodes representing all the events for an

activity/app. Each node nN represents an event in D.

E  N x N is a set of directed edges between the nodes.

Each edge eE represents transition from one event to the

next. An event e2 is said to follow e1 if and only if e2 can

be initiated after e1.

The constructed ESDs are used in generating test cases (event

sequences) for each activity, in the activity level testing, and

then for the whole app, in the app level testing, based on

certain event-based coverage criteria.

In order to measure the test adequacy of test cases, Memon

[12] has defined two sets of event-based coverage criteria:

intra-component criteria for events within a component; and

inter-component criteria for events across components. In this

work, these criteria were adapted for Android apps, and

called: Intra-activity criteria and Inter-activity criteria,

respectively. The first criteria are employed in the test

evaluation phase of the activity level testing, while the second

criteria are employed in the test evaluation phase of the app

level testing. These criteria were defined as follows [8]:

http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/ViewGroup.html
https://www.tutorialspoint.com/android/android_edittext_control.htm
https://www.tutorialspoint.com/android/android_textview_control.htm
https://www.tutorialspoint.com/android/android_button_control.htm
https://www.tutorialspoint.com/android/android_radiobutton_control.htm
https://www.tutorialspoint.com/android/android_checkbox_control.htm
https://www.tutorialspoint.com/android/android_radiogroup_control.htm

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

27

Intra-activity criteria

 Event Coverage: each event in the activity should be

triggered at least once.

 Event-Interaction Coverage: after an event e has been

performed, all events that can interact with e should be

executed at least once.

 Length-n Event-sequence Coverage: all length-n event

sequences within an activity should be executed at least

once.

Inter-activity criteria

 Invocation Coverage: each event that starts a new activity

must be performed at least once.

 Invocation-termination Coverage: all length 2 event

sequences consisting of an event followed by one of the

invoked activity’s termination events has to be tested.

 Length-n Event-sequence Coverage: all length-n event

sequences that start with an event in an activity and end

with an event in another activity must be tested.

Having defined the ESD and the event-based coverage criteria

for UI testing, the following steps are performed in order to

apply the proposed UI testing approach to test the UI of an

Android app: 1) Identify the app activities and build the

corresponding ESDs; 2) Using the activities ESDs, construct

the App ESD; 3) Generate test cases according to the defined

coverage criteria; 4) Execute the test cases; 5) Analyze and

evaluate the execution results.

5. THE PROPOSED ANDROID APPS UI

TESTING SYSTEM
This section describes the proposed Android apps UI testing

system that implements the proposed UI testing approach,

described above. Figure 1 shows the steps that are followed

by the system to generate and execute test cases for the AUT

activities. The system utilizes the functionalities provided by

the Robotium Test Framework in two of these steps: in

analyzing the AUT activities to extract their views and related

information, and in executing the generated test class for each

event sequence. The system builds an ESD for each activity,

and generates test cases based on the ESDs of the AUT and

the coverage criteria, described in Sec. 4. The system takes as

input the AUT, and produces as output: UI event sequences,

Executable test cases, Criteria coverage report, and Test

results report.

Generate_and_Run_Test_Cases Algorithm, shown in Figure

2, implements the steps shown in Figure 1. In this algorithm,

three data structures are created for each activity acti: Event

list ELi, which contains the activity's IO/clickable views with

their events; Event Index List EILi, which contains for each

view its index in ELi, type, text, and id; and Event Sequences

List SEQi, which contains all possible acceptable event

sequences of the activity.

In this algorithm, the For loop (lines 1-14) performs the

following actions for each activity acti of app: Creates a Solo

object, uses it to identify the current activity acti and detects

acti's views and related information, which includes the view's

type, event, text and id (lines 3-5); selects only IO/clickable

views, saves the text of each view with its event in the Event

List ELi, and generates the Event Index List EILi (lines 6-7);

then, in the inner loop (lines 8-13), for each event e  ELi,

generates all possible acceptable sequences of e with all other

events in ELi, using the procedure

Generate_Event_Sequences, shown in Figure 3, and stores

them in the Event Sequences List SEQi.

Fig 1: The steps of the proposed GUI testing approach for

Android Apps with multiple activities

To overcome the event sequences explosion problem, the

procedure identifies subsumption between different event

sequences, and discards any sequence that is a subsequence of

a previously generated sequence. Also, to ensure the

feasibility of event sequences, i.e. their ability to be executed,

the procedure discards any sequence that includes any

unacceptable event subsequences. Then, the algorithm (lines

14-15) combines all EILi's, using the procedure

CombineEventIndexLists, shown in Figure 4, to get

CombEIL, and combines all SEQi's, using the procedure

CombineEventSequences, shown in Figure 5, to get

CombSEQ.

Yes

No

Identify current activity acti

Identify all UI views within acti

Select IO/clickable views and

identify their events

Create event sequences SEQi

Generate test script

Generate Robotium test class

Produce accumulated criteria

coverage and test results reports

Load app under test (AUT)

Select an event sequence from

CombSEQ

Are more tests

required?

Exit

i = 1

Create Event Index List EILi

Is i < no. of

activities?
i = i + 1

Yes

Combine Event Index Lists EILi in

CombEIL

Combine Event Sequences SEQi in

CombSEQ

Run app with Robotium test class

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

28

Fig 1: Generate_and_Run_Test_Cases Algorithm

Finally, the algorithm (in lines 17-24) repeats the following

actions while more tests are required: selects an event

sequence s  CombSEQ; generates a test script for it, by

using CombEIL and the procedure Generate_Test_Script,

shown in Figure 6. The test script includes, for each event in

s, a line that contains the type of the corresponding view, its

text and id. Then, it generates, from the generated test script, a

Robotium test class, using the procedure Create_Test_Class,

shown in Figure 7, and adds it to app; executes app with the

Robotium test class, and produces test results and criteria

coverage reports. These reports provide the tester with

information about the detected errors, if any, and the

fulfilment of the specified test coverage criteria, to decide

whether more tests are required or not.

Fig 2: Generate_Event_Sequences Procedure

Fig 4: CombineEventIndexLists Procedure

In procedure CombineEventSequences, the For loop (lines 1-

9) checks, for each activity, acti, other than the main activity,

whether any of its event sequences, sij, does not end with

BACK event (bki), and if so, it appends bki to that sequence.

This ensures that, during execution, each sequence returns

back to the main activity. Next, the For loop (lines 10-22)

combines the event sequences of the main activity with event

sequences of the other activities that can be reached from it.

The presented automated GUI testing system has been

developed using Android Studio 3.0.1 and Microsoft Visual

Studio 2010 on a Laptop with processor: Intel Core i5 –

4300U CPU – 2.50 GHz and RAM: 8 GB. The AUT tests are

executed using an Android emulator.

Procedure CombineEventIndexLists()

Input: Event Index Lists EILi of all activities acti in app

 (i = 1 … No. of activities)

Output: Combined Event Index List CombEIL

Begin

1. CombEIL = []

2. For each activity acti  app (i = 1 … No. of

activities)

3. Begin

4. Add EILi to CombEIL.

5. End For

6. Return CombEIL

End.

Procedure Generate_Event_Sequences(e, EL)

Input: an event e

 Event List EL

Output: Event sequences list for event e, Se

Begin

1. Se = []

2. While there are possible event sequences from e

to other events in EL

3. Begin

4. Generate a possible event sequence s from e

to other events in EL

5. If s is a subsequence of another generated

sequence in Se or it includes any unacceptable

event subsequences Then

6. Discard s

7. Else

8. Add s to list Se

9. End If

10. End While

11. Return Se

End.

Generate_and_Run_Test_Cases Algorithm

Input: app, the AUT

Output: Test classes, Test results report, and Criteria

coverage report

Begin

1. For each activity acti  app (i = 1 … No. of

activities)

2. Begin

3. Create a Solo object, solo.

4. Identify the current activity acti in app, by

using the method solo.getCurrentActivity().

5. Detect all UI views in acti, by using the

method solo.getCurrentViews().

6. Select from the detected views, only

IO/clickable views and save the text of each

view with its event in the event list ELi.

7. Generate the Event Index List EILi, which

contains for each event its index in ELi, type,

text, and id.

8. SEQi = [] // Initialize Event Sequences

 // List for activity acti

9. For each event e  ELi

10. Begin

// generate all possible acceptable

// sequences of e with all other events

// in ELi and store them in Se

11. Se = Generate_Event_Sequences(e, ELi)

12. Add Se to SEQi

13. End For

14. End For

15. CombEIL = CombineEventIndexLists()

// Combine all EILi together

16. CombSEQ = CombineEventSequences()

 // Combine all SEQi together

17. testComplete = false

18. While not testComplete

19. Begin

20. Select next event sequence s  CombSEQ

21. Generate_Test_Script(s, CombEIL)

 testScriptFile

22. Create_Test_Class(testScriptFile)

 Robotium test class testClassFile

23. add testClassFile to app

24. Run app with the Robotium test class

25. Produce accumulated Criteria Coverage

Report and Test Results Report

26. If no more tests are required Then

testComplete = true

27. End While

End.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

29

Fig 5: CombineEventSequences Procedure

Fig 6: Generate_Test_Script Procedure

Fig 7: Create_Test_Class Procedure

The system provides users with the GUI interface shown in

Figure 8. The system interface consists of:: seven buttons:

"Browse", "Load AUT and Get Views and Sequences",

"Generate Test Script, Test Class", "Run test class", "Get

Number of Nodes", "Get Number of Edges", and "Generate

Report"; three EditTextBox; controls, two TextView controls

and one ListBox control. Firstly, the user selects an app for

testing by clicking "Browse" button. Then, when the user

clicks "Load AUT and Get Views and Sequences" button, the

selected app is loaded, list of all the clickable/IO views of

each activity of this app and their events are extracted, and

from this list the system generates all possible acceptable

event sequences of views. Next, a cycle starts: when the user

clicks "Generate Test Script and Test Class" button, the

system selects an event sequence and generates a test script

for it, then generates a Robotium test class for the generated

test script, and shows its file name in the ListBox. This test

class is added to the AUT. Each test class contains calls to

Robotium functions through a Solo object that correspond to

lines in the test script. When the user clicks "Run test class"

button the test class is executed. Then, the system asks the

Procedure Create_Test_Class (testScriptFile)

Input: The test script for an event sequence,

 testScriptFile

Output: A Java test class file, testClassFile

Begin

1. Insert the following lines into testClassFile:

public void setUp() throws Exception {

solo = new Solo(getInstrumentation(),

getActivity());

}

public void testRun() {

2. While ! testScriptFile.EOF()

3. Begin

4. Read a line ln from testScriptFile

5. From ln, get view_type, text, and id

6. If view_type == "RadioButton" || view_type

 == "Button" Then

7. Insert the following instruction into

testClassFile:

solo.clickOnView(solo.getView(id));

8. Else If view_type == "TextView" Then

9. Insert the following instructions into

testClassFile:

TextView textField =

 (TextView)solo.getView(id);

assertEquals((String)textField.getText(),

 text);

10. Else If view == "EditText" Then

11. Insert the following instructions into

testClassFile:

EditText vEditText =

 (EditText) solo.getView(id);

solo.enterText(vEditText, some text);

12. Else If …

….

13. End;

14. Insert "}" into testClassFile

End.

Procedure Generate_Test_Script (s, EIL)

Input: an event sequence s

 Event Index List EIL

Output: A test script file for the event sequence s,

 testScriptFile

Begin

1. For each e  s

2. Begin

3. Get the view type that corresponds to event e,

with its text and id, from EIL

4. Add a line representing the action of this view,

which contains this information, to the test

script.

5. End

6. Save the generated test script in testScriptFile

End.

Procedure CombineEventSequences()

Input: Event sequences list mainSEQ of main_activity

 of app

 Event sequences lists SEQi of all other activities

 acti in app (i = 2 … No. of activities)

Output: Combined event sequences CombSEQ

Begin

1. For each activity acti  app (i = 2 … No. of

activities)

2. Begin

3. For each sequence sij  SEQi (j = 1 … No. of

sequences in SEQi)

4. Begin

5. If sij does not end with BACK event (bki) Then

6. Append bki to sij

7. End If

8. End For

9. End For

10. CombSEQ = []

11. For each sequence s  mainSEQ

12. Begin

13. If s includes an event e that triggers another

activity acti

14. pos = index of e in s

15. Randomly select a sequence sij from SEQi

16. Set s' = s

17. Insert sij at position pos+1 in s'

18. Add s' to CombSEQ

19. Else

20. Add s to CombSEQ

21. End If

22. End For

23. Return CombSEQ

End.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

30

user whether he/she wants to continue, if the answer is no, the

system stops, otherwise, the system allows the user to do more

tests by clicking "Generate Test Script and Test Class" button,

which repeats the above cycle, (see Figure 1). When the user

clicks "Generate Report" button, the system loads the file that

contains the executed paths of the ESD of the AUT and

generates the coverage report.

Fig 8: The interface of the proposed system

6. CASE STUDY
This section presents an example of using the proposed

approach and system for testing a simple Android app called

Metric_Conversion. It allows users to convert Kilograms to

Pounds or Kilometers to Miles and vise-versa. As shown in

Figure 9, this app has 3 activities. The main activity, shown in

Figure 9(a), includes a TextView control that displays the

message "Select?", 2 Radio buttons ("Mass" and "Length"),

and 2 buttons ("Exit" and "Next"). It allows users to select

either Mass units conversion or Length units conversion. The

second activity, shown in Figure 9(b), includes a TextView

control that displays the title "Mass Conversion", 2 TextView

controls that display the labels "Kilograms" and "Pounds", 2

EditText controls, and 3 buttons ("Compute", "Clear" and

"Back"). It appears when the user selects "Mass" Radio button

and presses "Next" button in the main activity. It allows users

to enter a mass amount in Kilograms/Pounds in the EditText

control labeled "Kilograms"/"Pounds", then click "Compute"

button to convert the input amount to Pounds/Kilograms and

display it in the EditText control labeled

"Pounds"/"Kilograms", respectively. The third activity, shown

in Figure 9(c), is similar to the second one except that it is

used for length units conversion. It appears when the user

selects "Length" Radio button and presses "Next" button in

the main activity. It allows users to enter a length amount in

Kilometers/Miles in the EditText control labeled

"Kilometers"/"Miles", then click "Compute" button to convert

the input amount to Miles/Kilometers and display it in the

EditText control labeled "Miles"/"Kilometers", respectively.

In the second and third activities, pressing "Clear" button

clears the contents of the EditText controls, and pressing

"Back" button causes the app to return to the main activity. In

the main activity, pressing "Exit" button terminates the app.

The system detects the IO/clickable views and saves the text

of each view with its event in the events list, L, as shown in

Table 1. Figure 10 shows the events index list, IL, which

contains, for each event, its index in L, its type, text, and id.

Figure 11 shows the corresponding ESD. Using the list L and

the ESD, the system generates all possible acceptable

sequences of views. In this example, only the interactions

between the main activity and the second activity are

considered, as the third one is similar.

Table 2 shows some of the generated test cases (event

sequences). For each sequence the system generates a test

script as the one shown in Figure 12, which corresponds to the

event sequence [Idle-1-3-16-13-15-Idle-4] (Test case T7).

Each line in the test script contains the view type, text, and id,

separated by commas. If a view does not have text, e.g.,

EditText, the text positon is left empty. Then, the system

generates a Robotium test class for the generated test script, as

shown in Figure 13, and adds it to the AUT. Finally, the app

with the test class is executed.

Figure 14 shows part of the Criteria Coverage Report

produced by the system for the test cases shown in Table 2. It

consists of two parts:

Part (I): Intra-Activity Criteria Coverage. It shows for each

test case: the event sequence, the Event Coverage that

includes: the newly covered events and the accumulated event

coverage percentage, the Event-Interaction Coverage that

includes: the newly covered edges and the accumulated event-

interaction coverage, and Length-n Event-sequence Coverage;

(a) Main Activity (b) Second Activity (c) Third Activity

Fig 9: The Metric_Conversion app UI

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

31

Fig 10: The Event Index List of the example app

Part (II): Inter-Activity Criteria Coverage. It shows

Invocation Coverage that includes only one event (Event 3),

which starts the second activity, Invocation-Termination

Coverage that includes all length-2 sequences from an event

to the main activity termination event (Event 4) and from an

event to the second activity termination event (Event 15), and

Length-n Event-Sequence Coverage that includes all length-n

event sequences that start with an event in the main activity

and end with an event in the second activity.

7. EXPERIMENTS
This section presents the results of the experiments, which

were carried out to demonstrate the error exposing ability of

the proposed system and the effectiveness of the GUI testing

coverage criteria employed in it. The materials of the

experiments were 10 Android apps. In these experiments,

different errors were seeded in each app one at a time. In

selecting the errors to be seeded, GUI errors were only

considered, i.e., those errors that are manifested on the visible

GUI at some point of time during the app's execution. The

seeded errors are classified into three categories, Input Errors,

Code Errors and Android App Errors. The input errors

category includes errors that may occur by the user during

his/her interaction with the app. The code errors category

includes errors that may occur, by the developer, in the code

of the UI controls event handlers. The Android app errors

category includes errors that may occur in the GUI of android

apps [13]. Table 3 describes the types of seeded errors and

their frequency in the experiments, and Figure 15 shows the

frequency of seeded errors in each error category.

Fig 11: The ESD of the GUI of the example app (15 nodes and 33 edges)

Table 1. Event List of the example app

Index Text Event Index Text Event

1 "Mass" Click 16 " " "enterText"

2 "Length" Click 17 " " "enterText"

3 "Next" Click 21 "Compute" "enterText"

4 "Exit" Click 22 " " "enterText"

13 "Compute" Click 23 " " "enterText"

14 "Clear" Click 24 "Clear" Click

15 "back" Click 25 "back" Click

Idle

1 2

4

3

13

17

15

14

16

21

23

25

24

22

3

Second

Activity

Third

Activity

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

32

Table 2. Some of the test cases generated for the main

activity with the second activity of the example app

Test Case No. Test Case

T1 Idle-1-3-15-Idle

T2 Idle-1-3-16-15-Idle

T3 Idle-1-3-16-13-14-16-15-Idle

T4 Idle-4

T5 Idle-2-4

T6 Idle-1-4

T7 Idle-1-3-16-13-15-Idle-4

T8 Idle-1-3-16-13-14-15-Idle

T9 Idle-1-3-17-15-Idle

T10 Idle-1-3-17-13-14-15-Idle

T11 Idle-1-3-17-13-14-16-15-Idle

…

Fig 12: The test script for the event sequence [Idle-1-3-16-

13-15-Idle-4] (Test case T7)

Fig 13: The test class generated for the test script shown in

Figure 12

In these experiments, each app was presented to the system to

generate test cases for it, as described above. Then, errors

were seeded one at a time in the app, and the system was used

to execute the generated test cases on each erroneous version

of the app. The system succeeded in detecting all the seeded

errors, which demonstrates its effectiveness. This also

demonstrates that the test cases generated to fulfill the

adopted GUI testing coverage criteria were very effective.

During test case execution, an error showed up, when an

assertion was not verified, UI control event caused

unexpected action or the action was not done, or incorrect

output was produced.

Fig 14: Part of the Test Coverage Report produced by the system for the test cases shown in Table 2

Criteria Coverage Report
App Name: Metric_conversion

Activity Name: MainActivity, Second_Activity

ESD: 10 nodes, 18 edges
Part I: Intra-activity criteria coverage

Test Case No.: T1

 Event Sequence: Idle-1-3-15-Idle
 Event Coverage: Newly covered events: Idle,1,3,15 Accumulated Event Coverage: 40 %

 Event-Interaction Coverage: Newly covered edges: Idle-1,1-3,3-15,15-Idle

Accumulated Event-Interaction Coverage: 22.22 %
 Length-n Event-sequence Coverage: n = 5

Test Case No.: T2

 Event Sequence: Idle-1-3-16-15-Idle
 Event Coverage: Newly covered events: 16 Accumulated Event Coverage: 50 %

 Event-Interaction Coverage: Newly covered edges: 3-16,16-15
Accumulated Event-Interaction Coverage: 33.33 %

 Length-n Event-sequence Coverage: n = 6

Test Case No.: T3
 Event Sequence: Idle-1-3-16-13-14-16-15-Idle

 Event Coverage: Newly covered events: 13,14 Accumulated Event Coverage: 70 %

 Event-Interaction Coverage: Newly covered edges: 16-13,13-14,14-16
Accumulated Event-Interaction Coverage: 50 %

 Length-n Event-sequence Coverage: n = 9

Test Case No.: T4
 Event Sequence: Idle-4

 Event Coverage: Newly covered events: 4 Accumulated Event Coverage: 80 %

 Event-Interaction Coverage: Newly covered edges: Idle-4
Accumulated Event-Interaction Coverage: 55.56 %

 Length-n Event-sequence Coverage: n = 2

public void setUp() throws Exception {

solo = new Solo(getInstrumentation(), getActivity());

}

@Override

public void tearDown() throws Exception {

solo.finishOpenedActivities();

super.tearDown();

}

public void testRun() {

solo.clickOnView(solo.getView("rr1"));

solo.clickOnView(solo.getView("button"));

EditText vEditText1 =

 (EditText)solo.getView(R.id.e22);

solo.enterText(vEditText1, "11 ");

solo.clickOnView(solo.getView("m1"));

solo.clickOnView(solo.getView("c8"));

solo.clickOnView(solo.getView("a6"));

solo.clickOnView(solo.getView("b1"));

}

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

33

Fig 14: Part of the Test Coverage Report produced by the system for the test cases shown in Table 2 (Continued)

8. CONCLUSION
This paper presented a proposed system that applies a model-

based approach for testing the GUIs of Android apps with

multiple activities. The employed model is the ESD, which

depicts the events for an app and the possible transitions

between them. The proposed approach consists of two phases:

Modeling Phase and Test Evaluation Phase. In the modeling

phase, an ESD is built for each activity in the AUT, then all

ESDs are combined to form the App ESD, which is used to

generate test cases (event sequences). In the test evaluation

phase, certain event-based coverage criteria are employed to

measure the adequacy of the generated test cases for testing

the GUI of the AUT.

The proposed system, which applies the proposed approach,

analyzes the AUT, generates test cases, and executes these

test cases. It collects the IO/Clickable views in each activity

of the AUT and the associated events. Then, it generates the

App ESD, and uses it to generate a set of event sequences

according to the specified coverage criteria.

The system handles the event sequences explosion problem,

and ensures the feasibility of event sequences. By considering

these two issues, the number of generated sequences is

significantly reduced.

Test Case No.: T5

 Event Sequence: Idle-2-4
 Event Coverage: Newly covered events: 2 Accumulated Event Coverage: 90 %

 Event-Interaction Coverage: Newly covered edges: Idle-2,2-4

Accumulated Event-Interaction Coverage: 66.67 %
 Length-n Event-sequence Coverage: n = 3

Test Case No.: T6

 Event Sequence: Idle-1-4
 Event Coverage: Newly covered events: None Accumulated Event Coverage: 90 %

 Event-Interaction Coverage: Newly covered edges: 1-4

Accumulated Event-Interaction Coverage: 72.22 %
 Length-n Event-sequence Coverage: n = 3

Test Case No.: T7

 Event Sequence: Idle-1-3-16-13-15-Idle-4
 Event Coverage: Newly covered events: None Accumulated Event Coverage: 90 %

 Event-Interaction Coverage: Newly covered edges: 13-15

Accumulated Event-Interaction Coverage: 77.78 %

 Length-n Event-sequence Coverage: n = 8

Test Case No.: T8

 Event Sequence: Idle-1-3-16-13-14-15-Idle

 Event Coverage: Newly covered events: None Accumulated Event Coverage: 90 %

 Event-Interaction Coverage: Newly covered edges: 14-15

Accumulated Event-Interaction Coverage: 83.33 %
 Length-n Event-sequence Coverage: n = 8

Test Case No.: T9

 Event Sequence: Idle-1-3-17-15-Idle
 Event Coverage: Newly covered events: 17 Accumulated Event Coverage: 100 %

 Event-Interaction Coverage: Newly covered edges: 3-17,17-15

Accumulated Event-Interaction Coverage: 94.44 %
 Length-n Event-sequence Coverage: n = 6

Test Case No.: T10

 Event Sequence: Idle-1-3-17-13-14-15-Idle
 Event Coverage: Newly covered events: None Accumulated Event Coverage: 100 %

 Event-Interaction Coverage: Newly covered edges: 17-13

Accumulated Event-Interaction Coverage: 100 %
 Length-n Event-sequence Coverage: n = 8

Test Case No.: T11

 Event Sequence: Idle-1-3-17-13-14-16-15-Idle
 Event Coverage: Newly covered events: None Accumulated Event Coverage: 100 %

 Event-Interaction Coverage: Newly covered edges: None
Accumulated Event-Interaction Coverage: 100 %

 Length-n Event-sequence Coverage: n = 9

…

Part II: Inter-Activity Criteria Coverage

- Invocation coverage: Event 3

- Invocation-termination coverage:
 Main Activity Termination: Idle-4, 2-4, 1-4

 Second Activity Termination: 3-15, 16-15, 13-15, 14-15, 17-15

- Length-n event-sequence coverage

 3-15 n=2 Idle-1-3-16-13-15 n=6

 3-16-15 n=3 Idle-1-3-16-13-14-15 n=7

 Idle-1-3-15 n=4 Idle-1-3-17-13-14-15 n=7
 Idle-1-3-16-15 n=5 Idle-1-3-16-13-14-16-15 n=8

 Idle-1-3-17-15 n=5 Idle-1-3-17-13-14-16-15 n=8

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

34

Table 3. Types and frequency of seeded errors in 10 Android apps

Error

Category
Error Type Description Frequency

Input Errors

Empty field
No input is entered in a

TextBox
4

Incorrect format
Input is entered in a TextBox

in incorrect format
5

No Item Selected
No RadioButton is checked,

or no item is selected in a

ComboBox
9

Code Errors

Wrong action
(Incorrect assignment)

Wrong action for a UI control

event due to incorrect

assignment to a variable or UI

control property in the event

handler

1

Wrong action
(Incorrect statement)

Wrong action for a UI control

event due to an error in a

statement in the event handler
34

Action not done
(Missing statement)

An action of a UI control

event is not done due to

missing statement in the event

handler

19

Action not Done
(Incorrect statement)

An action of a UI control

event is not done due an error

in any statement in the event

handler

31

Action not done
(Incorrect assignment)

An action of a UI control

event is not done due to

incorrect assignment to a

variable or UI control property

in the event handler

12

Wrong arithmetic operator
A computation includes a

wrong arithmetic operator.
3

Incorrect constant value
A computation includes an

incorrect constant value.
1

Android App

Errors

Intent payload replacement

Replace the actual value, in

the key-value pair in

intent.putExtra() method, by

the default value

1

Intent target replacement

Replace the target of an Intent

with one of the possible

classes within the same

package of the current class

14

OnClick event replacement
Replace an OnClick event

handler with another

compatible handler
33

Button widget deletion
Delete a button from the XML

layout of the UI
25

EditText Widget Deletion Removes a EditText widget. 7

TextView widget deletion Remove a TextView widget 8

Incorrect button caption
Change the caption of a

Button or RadioButton widget
35

Button widget switch
Switch the locations of two

buttons on the same screen
16

Total 258

For each event sequence, the system generates a test script,

then generates a corresponding Robotium test class, adds it to

the AUT and executes it. The system utilizes the Robotium

framework functionalities in extracting information about the

views of the AUT activities, and in executing the generated

test class of each event sequence.

Next, the paper presented a case study that illustrated the use

of the proposed GUI testing system in testing the UI of a

simple Android app with three activities. Finally, it presented

the results of the experiments that have been conducted to

evaluate the system's ability to detect some types of errors that

may occur in Android apps. The system succeeded in

detecting all the seeded errors, which demonstrates the

effectiveness of the system and the test cases generated to

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

35

fulfill the adopted GUI testing coverage criteria.

In the experiments, simple Android apps were used, but in

future work, an empirical validation of the proposed approach

will be performed by conducting experiments involving real

world apps with larger size and complexity, with the aim of

evaluating its effectiveness and scalability in a real testing

context.

Fig 15: Frequency of seeded errors in each error category

9. REFERENCES
[1] Amalfitano, D., Fasolino, A. R., Tramontana P. 2011. A

GUI crawling-based technique for Android mobile

application testing. In: Proceedings of the IEEE Fourth

International Conference on Software Testing,

Verification and Validation Workshops (ICSTW ’11),

252–261. Berlin, Germany.

[2] Amalfitano, D., Fasolino, A. R., Tramontana, P., De

Carmine, S., Memon, A. M. 2012. Using GUI ripping for

automated testing of Android applications. In:

IEEE/ACM International Conference on Automated

Software Engineering, ASE’12, 258–261. Essen,

Germany.

[3] Yang, W., Prasad, M. R., Xie, T.: A grey-box approach

for automated GUI-model generation of mobile

applications. In: Proceedings of the 16th International

Conference on Fundamental Approaches to Software

Engineering, FASE’13, 250–265. Rome, Italy, (2013).

[4] Azim, T., Neamtiu, I. 2013. Targeted and depth-first

exploration for systematic testing of android apps. In:

Proceedings of the ACM SIGPLAN International

Conference on Object Oriented Programming Systems

Languages & Applications, OOPSLA’13, 641–660.

Indianapolis, IN, USA.

[5] Choi, W., Necula, G. C., Sen, K. 2013. Guided GUI

testing of android apps with minimal restart and

approximate learning. In: Proceedings of the 2013 ACM

SIGPLAN International Conference on Object Oriented

Programming Systems Languages & Applications,

OOPSLA’13, 623–640. Indianapolis, IN, USA.

[6] Amalfitano, D., Fasolino, A. R., Tramontana, P., Ta, B.

D., Memon, A. M. 2015. MobiGUITAR: Automated

Model-Based Testing of Mobile Apps. IEEE Software,

32(5), 53–59.

[7] Su, T., Meng, G., Chen, Y., Wu, K., Yang, W., Yao, Y.,

Pu, G., Liu, Y., Su, Z. 2017. Guided, Stochastic Model-

Based GUI Testing of Android Apps. Symposium on the

Foundations of Software Engineering (ESEC/FSE’17),

pp. 245-256. Paderborn, Germany.

[8] Girgis, M. R., Abdel Latef, B. A., and Akl, T. 2020. A

GUI Testing Strategy and Tool for Android

Apps, International Journal of Computing, 19(3), 355 –

364.

[9] Android - Application Components, https://www.

tutorialspoint.com/android/android_application_

components.htm, last accessed 2018/8/12.

[10] Android user interface testing with Robotium – Tutorial,

http://www.vogella. com/tutorials/Robotium/article.html,

last accessed 2018/9/20.

[11] Li, P., Huynh, T., Reformat, M., Miller, J. 2007. A

practical approach to testing GUI systems. Empirical

Software Engineering, 12(4), 331–357.

[12] Memon, A. M. 2001. A Comprehensive Framework for

Testing Graphical User Interfaces. PhD Thesis,

Department of Computer Science, University of

Pittsburgh.

[13] Deng, L., Offutt, J., Ammann, P., Mirzaei, N. 2017.

Mutation operators for testing Android apps. Information

and Software Technology, 81, 154-168.

0

50

100

150

Input Errors Code Errors Android App
Errors

Fr
e

q
u

e
n

cy

Error Category

IJCATM : www.ijcaonline.org

https://www.sciencedirect.com/science/journal/09505849/81/supp/C

