
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

14

Analysis of Cognitive Complexity with Cyclomatic

Complexity Metric of Software

Dinuka R. Wijendra
Sri Lanka Institute of Information Technology

Sri Lanka

K.P. Hewagamage
University of Colombo School of Computing

Sri Lanka

ABSTRACT

The complexity of a software can be derived by using

software complexity metrics which determines various

software attributes quantitatively. The cognitive complexity

metric, which is considering as a prominent factor of

calculating the complexity of a software, evaluates how the

human brain processes the given software with respective to

different aspects, which involves the concept of cognitive

Informatics. The McCabe’s cyclomatic complexity is

currently using as a standard complexity metric to determine

the software complexity in terms of the number of linear

independent paths. Thus, a broad analysis is carried on how

the cognitive complexity derived based on Cognitive

Information Complexity Measure (CICM) and the McCabe’s

cyclomatic complexity relates and varies with the

computation of the given software, resulting that the cognitive

complexity value becomes high with respective to its

cyclomatic complexity. The cognitive complexity

computation beyond the CICM value does not have a strong

linear relation of the computation with cyclomatic complexity,

which may be derived with a certain combination of

relationships based on the factors involved within the

cognitive complexity determination.

General Terms

Cognitive Complexity Metric, Cyclomatic Complexity,

Cognitive Informatics, Basic Control Structures, Software

Complexity

Keywords

BCS, CC, CICM, LOC

1. INTRODUCTION
Software complexity metric can be defined as a quantitative

measurement that can be obtained from the software itself,

related documents and the processes which are going to be

followed. IEEE defines the software complexity as the degree

to which a system or component has a design or

implementation that is difficult to understand and verify [1].

Measuring the software complexity using different metrics

results to have an opportunity with decreasing the complexity

as well as it tends to maintain its quality and the cost. The

greater the complexity value, the software becomes more

error prone and difficult to maintain while its quality becomes

low and the cost becomes increasing. The term “Complexity”

can be calculated either by using size metrics, structural

metrics and object-oriented metrics since it can be determined

with respective to another software attributes. Therefore,

many software complexity metrics have been standardized in

order to compute their complexity values according to the

software attribute which has been considered. Therefore,

much effort has been taken to identify the techniques and

software metrics to measure the software complexity [2].

The cognitive complexity metrics plays a predominant role of

determining the human comprehension effort behind a given

software, which is still under the validation process. Many

researches have been conducted to propose different cognitive

complexity measurements considering numerous software

factors. The cyclomatic complexity is a validated software

complexity metric, which is being used in the software

industry to compute software complexity. Hence, the

evaluation of the non-validated cognitive complexity and the

cyclomatic complexity has to be performed, so that the

relations ship among both of the metrics can be outlined.

2. COGNTIVE COMPLEXITY METRIC

OF SOFTWRE
The term “Cognitive Complexity” comes under the field of

Cognitive Informatics which studies the internal information

processing mechanism of the human brain as well as its

software application [3]. Therefore, the cognitive complexity

tries to measure the human effort needed to perform a task or

to understand the logic behind the given software [4]. The

human effort needed to understand or to develop a given

software is always vary from human, which can be considered

as a subjective measurement. The same software can be

quantitatively analyzed by different set of people such that the

cognitive complexity calculation can be performed with

respective to various aspects. So that many researches have

been come up with the computation of the cognitive

complexity of a software by proposing several aspects which

are different with another proposed cognitive complexity

calculation. Since it is very difficult to analyze a common

methodology of performing the cognitive complexity

calculation, a standard way for the cognitive complexity

computation is still not arrived.

One of the researches of computing the cognitive complexity

was performed by A. K. Misra and D. S. Kushwaha [3], by

adhering to the idea of cognitive informatics, which identifies

the functional complexity of a software depends on the

internal architecture flow and its inputs and outputs [5], [6].

Thus, a software had been represented as a collection of

information in which the information can be represented as a

set of operators and operands, while some cognitive weights

have been assigned for the Basic Control Structures (BCS)

within the source code. The same computation was further

improved with the concept of nested BCS s in which the

cognitive complexity is calculated by the weights assigned

with the multiplication corresponding to the nesting level [7].

Another computation of a cognitive complexity had been

introduced by S. Misra [4], such that the cognitive weight

complexity measure was defined as the cognitive weight of

the simplest software component, which is the linear

structured BCS s. Therefore, the cognitive complexity was

calculated according to the weightages assigned for the BCS s

and the cognitive weight units inside the given source code.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

15

So that it can be concluded that the amount of information

inside the software was calculated according to the cognitive

weights assigned for each information category defined.

As another approach of deriving the cognitive complexity, J.

K. Chhabra [8] determined the cognitive complexity in which

it considered the way of scattering of the internal information

in terms of Lines Of Codes (LOC) inside the source code.

Because it has been discovered that the effort that the human

brain goes high if the distance of the module declaration and

its usage is high rather than that happens in directly without

much more distance. This includes the number of LOC, which

are there form the variable or method declaration,

initialization and its actual usage. Together with the Spatial

aspect which have been computed, it combined the cognitive

complexity value of the internal information by assigning the

cognitive weights as in previous research outcomes, then the

summation of both aspects derived as the total cognitive

complexity of the given software. The same spatial aspect was

continued by considering the recursive functions’ spatial

capability [9]. Based on the relationship between structures,

Y. Choe, C. Jong and S. Han introduced a way of computing

the cognitive complexity of a software [10]. Basically, the

complexity value of that approach mainly considered with the

scope of the variables used inside the software. Also, by

considering the LOC value and the identifiers in the source

code, another way of cognitive complexity computation was

introduced [11].

Some researches were conducted to calculate the cognitive

complexity for an object-oriented code rather than just not

limited only for the procedural source codes only. As a result

of that, U.Chhillar and S. Bhasin proposed a way of

computing the Cognitive complexity of an object oriented

code by considering the inheritance level of statements in

classes, types of control structures, nesting of control

structures and the size of the program [12]. As another

approach, D. S. Kuashwaha and A. K. Misra proposed a way

of cognitive complexity computation by considering the

number of methods per class, reference to other object,

number of independent functions performed by methods in the

class, number of lines of code per method, probability of use

of instance variable and the amount of functional overlap of

classes in the object-oriented code given [13]. As another

approach of the spatial aspect of the object-oriented code was

introduced with respective to the method location rating, class

relation measure and object relation measure [9].

Any software complexity metric should be validated with the

standard software complexity metrics to determine the

practicability and the comprehension of the proposed software

with the real time applications. Among the available software

complexity frameworks, Weyuker properties and the

properties under Briand’s framework can be considered as

prominent. Weyuker defines nine software complexity

properties [14] where as five properties have been declared

under Briand’s framework [15]. Satisfaction of most of the

properties under one or both frameworks can let the proposed

software complexity metric under the real usage of

applications. Hence most of the proposed cognitive

complexity metrics have been validated against these

frameworks in order to verify their comprehended usage [16-

20].

With respective to the researches which have been conducted

to compute the cognitive complexity of either a procedural or

an object-oriented code, most of the researches pointed out the

basic aspects of how the human brain affects with

understanding the logic at a time where the same research has

been continued with the solutions for the drawbacks of the

previous aspect and sometimes with another aspect as well.

Therefore, it can be concluded that those computations were

highly based on the amount of information inside the source

code and their spatial aspects within the source code. The

information within the source code can be further categorized

into data types, data structures, BCS s and the user defined

functions. Thus, by considering those two basic aspects of

calculating the cognitive complexity, an analysis of how it

relates with the computation of the cyclomatic complexity

metric which is considered as a standard software complexity

metric to evaluate the complexity of a software, is going to be

discussed.

3. CYLOMATIC COMPLEXITY

METRIC OF SOFTWARE
Cyclomatic complexity of metric was introduced by McCabe

[21], which indicates the structural complexity of a module

quantitatively by considering the control flow of the given

method or a module of a program. It is widely used in many

industrial applications to compute the complexity value.

Simply it can be said that the cyclomatic complexity value is

measuring the number of linear independent paths within the

source code given so that higher the complexity value, it is

more complex to understand, high number of test cases to

modify the particular code. Thus, it can lead to a high cost and

effort as well. Basically, it is calculated with respective to the

graph theory in which the procedural statements of the source

code are going to be converted to a control flow graph [22].

The control flow graph describes the logical structure of the

software modules in which its nodes represent the

computational statements or expressions and the edges

represent the control between nodes [23-24]. Therefore, the

Cyclomatic Complexity (CC) metric is going to be defined as,

where,

CC - the Cyclomatic Complexity value of the control flow

graph (G) drawn pf the given program,

e – number of edges in G,

n – number of nodes in G.

Furthermore, the same complexity value can be obtained by

determining the number of decision statements which directly

affects for the complexity in the program and can be

calculated as,

where,

d – number of decision statements inside the program.

Decision statements can be considered as if statements,

number of cases within switch, all kinds of loops and try-

catch statements.

The calculation of the cyclomatic complexity value with

respective to the edges and nodes inside the control flow

graph demonstrated in Fig 2 based on decision statements

inside the source code under Fig 1 is mentioned below.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

16

Fig 1: Sample source code to calculate the cyclomatic

complexity

Fig 2: Control flow graph for the source code in Fig. 1

Meanwhile some researches were conducted to analyze the

problems of cyclomatic complexity. It was found as an issue

of calculating the cyclomatic complexity value manually,

using the equations and by using Resource Standard Metric

(RSM) which is a commercially available tool for the code

quality analysis, is different such that the manual computation

does not count the multiple conditions involved within one

statement but RSM counts it. Several researches have been

conducted such that proposing some improvements to be done

for the existing cyclomatic complexity metric by addressing

its issues. One solution was that to improve the existing

cyclomatic complexity with the level of module interactions

and the module coupling value [23]. Same research has been

conducted to extend with introducing two formulas on

diversity of modules with different types of coupling.

Although there were some modifications of extending the way

of computing the cyclomatic complexity, still the same

standard way of calculating the cyclomatic complexity with

respective to the standard two equations is being followed.

4. RELATIONSHIP BETWEEN

CYCLOMATIC COMPLEXITY AND

COGNITIVE COMPLEXITY
It is essential to analyze the relationship between the

cyclomatic complexity with existing standard complexity

metrics. Most of the analysis have been done with the

standard cyclomatic complexity concept with other available

standard complexity metrics to come up with the relationship

among those metrics. The relationship between cyclomatic

complexity with LOC value has been analyzed such that it

was concluded that both are having a linear relationship with

few investigate statistical issues namely the distribution

among both [25]. With respective to the computation of the

cognitive complexity of a given software with most of the

researches conducted, it can be concluded that it basically

determines the amount of internal information inside the

source code quantitatively by assigning the corresponding

cognitive weights and also the spatial aspect of how the

information scatters through the software in terms of LOC.

Moreover, the cyclomatic complexity of a software

determines the number of linear independent paths that its

internal logic can be gone through. Therefore, to analyze the

relationship between the cognitive complexity and the

cyclomatic complexity, the relation of the internal

information, their spatial capacities and the number of linear

independent paths inside the given software should be

thoroughly considered.

A source code, which contains lots of data variables,

structures, data types and BCS s results with high total

cognitive weight, so that the amount of information will be

high. Furthermore, if the distance between variable

declaration, initialization and functions’ definition to their

actual usage or calling is high, their spatial capacity also tends

to be high. Therefore, the cognitive complexity of such a

source code will be getting a high value. The cyclomatic

complexity of that source code fully depends on the number

of BCS s inside it, irrespective of the amount of information

and their spatial capacities. Thus, the cyclomatic complexity

of a software in which its cognitive complexity value is high,

can be either low, medium or high depending on BCS s is

there in the source code given. The possibilities of

determining the cyclomatic complexity with respective to the

cognitive complexity of the same software with the

architectural and the spatial aspects are showed in Table 1.

Table 1. Relationship of cognitive complexity and the

Cyclomatic complexity under different possibilities

Cognitive

Weight

Spatial

Capacity

Cognitive

Complexity

CC

Data

types &

structure

s

BCS

High High High High High

High High Low Medium High

Low High High Medium High

Low High Low Medium/ Low High

High Low High Medium Low

High Low Low Medium/ Low Low

void IsNumber (String S)

{

boolean b= true;

for (i=0,i<S.length,i++)

{

if ((ASCI(CharAT(i)) > value) & (ASCI(CharAT(i)) < value))

b=true;

else

break;

}

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

17

Low Low Low Low Low

Low Low High Medium/ Low Low

5. RESULTS AND DISCUSSION
To analyze the relationship between the cognitive complexity

and the cyclomatic complexity, fifteen “C” programs have

been selected from E. Balagurusamy’s book, “Programming

in ANSI C” [26]. The Cognitive Information Complexity

Measure (CICM) has been calculated according to D.

Kushwaha and A. K. Misra’s approach [3] is listed in Table 2.

Table 2. CICM, LOC and CC values for sample source

codes

Program

No

CICM

value

LOC CC

value

Ref.of

source

code
1 2.52 10 2 pp.38

2 3.08 9 1 pp.49

3 16.16 16 2 pp.9

4 4.75 17 1 pp.69

5 10.48 11 2 pp.64

6 11.24 15 2 pp.61

7 10.32 16 2 pp.43

8 11.68 15 3 ;

RSM=4

pp.103

9 14.04 12 2 pp.102

10 14.52 17 2 pp.42

11 13.3 15 2 pp.133

12 18.4 16 2 pp.39

13 28.49 20 3 pp.106

14 36.69 17 4 pp.113

15 39.2 25 5 pp.122

The dependency levels of CICM, LOC and CC values of

those fifteen source codes are graphically represented in Fig 3.

Fig 3: Dependency between CICM, LOC and CC values

for the sample programs

The CICM value computed in the Table 2 demonstrate the

cognitive complexity of a given source code with respective

to the weighted information count, which defines the LOC

value, total number of identifiers and operators and the

cognitive weights assigned for BCS s [3]. The cyclomatic

complexity computation is limited only for the occurrences of

linear independent paths based on the BCS s irrespective of

the amount of information behind the source code. Therefore,

it is inevitable that the cognitive complexity value generated

in Table 2 is always higher than its cyclomatic complexity

value. Since the cognitive complexity value is considered in

one way according to a prior research, the problem of

occurring high cognitive complexity with respective to its

cyclomatic complexity have to be analyzed. Table 1 specifies

the various situations that the cognitive complexity and the

cyclomatic complexity derives, so that it can be concluded

that the cognitive complexity cannot be always derived as a

higher value with respective to the cyclomatic complexity

value. Thus, the relationship between both the metrices should

be analyzed through its definitions, which may go beyond its

quantitative computations.

The cognitive complexity is defined as the human

comprehension effort to understand a given software, where

the cyclomatic complexity defines the number of linear

independent paths inside the given source code. The human

comprehension effort of a software is a subjective

measurement, since different users tends to understand the

software in different ways. This also includes the users

background, which includes the programming language, past

experience and the knowledge regarding the computing

environment. The amount of information plays a vital role of

determining the effort of understandability such that the

higher effort should be taken to comprehend a source code

with lots of information. The special capacity of a source code

is another factor, which defines the LOC count between the

declaration and the usage of the code segments. The spatial

capacity occurs high, when the distance between a segment

declaration and its usage is high, resulting a high cognitive

complexity. Moreover, the tools available with the

programming environment namely Integrated Development

Environment (IDE) and the documentation available such as

manuals and commenting procedures will reduce the

comprehension effort of understandability, which results in

low cognitive complexity. Moreover, there may be many

different factors, which can be considered as the factors for

cognitive complexity determination as per the users involved

with it. The cyclomatic complexity value is an objective

measurement, which does not vary with the human

involvement of the source code. Thus, deriving an exact

relationship between both the metrices is a difficult process,

such that both the metrices varies in different scenarios.

A source code with higher cognitive complexity can be

occurred due to the high amount of information, high spatial

aspect, problems in users background, less facilities provided

and due to many other factors. The higher number of

information may not be occurred only due to the BCS s, but

also due to the number of identifiers and operators as well. A

source code containing high information with less number of

BCS s will lead to a less cyclomatic complexity, where its

cognitive complexity may end up with a higher value due to

the amount of information, if it is considered for the cognitive

complexity calculation. On the other hand, the comprehension

effort of the same source code may less, if the participant has

a prior knowledge of the source code logic. Thus, both of the

metrics values will be less. Therefore, the deviation of both

the metrics for a same source code also depends on many

factors, which cannot be limited to a certain context resulting

in different scenarios of their relationships.

The relationship among the cognitive complexity metric based

on CICM value computation and the cyclomatic complexity

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

18

metric clearly shows that the cognitive complexity of a source

code will be always high with respective to its cyclomatic

complexity value. The above relationship will show a

deviation with respective to the number of factors considered

for the cognitive complexity computation, which does not

clearly end up with a linear relation.

6. CONCLUSION
The cognitive complexity metric defines how the human brain

goes through the internal logic of the given software which

includes the theory of Cognitive Informatics. It is a subjective

measurement, such that the way of understanding level

depends from the person resulting that a standard way of

determining of cognitive complexity metric is still under

progress. According to the past researches under cognitive

complexity, it can be concluded that it covers the amount of

information within the source code quantitatively by assigning

the corresponding cognitive weights and how each

information scatters through the software. This paper analyzes

how the computation of the cognitive complexity through one

of the computations namely CICM, differs with cyclomatic

complexity, which calculates the number of linear

independent paths through the source code. According to the

results obtained, it can be derived that the CICM of a software

will be always high comparing to its cyclomatic complexity.

Since CICM is one of the cognitive complexity computations,

the analysis of cognitive complexity should go beyond that

computation with its definition. Therefore, it can be derived

that both of the computations do not have a specific

relationship, whereas varied relation can be existed under

some circumstances with respective to the BCS s inside the

source code. This can be occurred in which both are

evaluating the complexity of a software in two different

perspectives, although both evaluates the complexity of the

same software.

7. FUTURE WORK
The relationship between the cognitive complexity and the

cyclomatic complexity has been analyzed with respective to

fifteen sample programs addressed for different problems

solving as a preliminary step. The analysis should be further

expanded into more programs to obtain a comprehensive

relationship among both the metrics and the observe whether

the current relationship is existed for verification.

8. ACKNOWLEDGMENTS
The completion of this analysis could not have been achieved

without the continues motivation and the guide given by Prof.

K. P. Hewagamage, University of Colombo School of

Computing, Sri Lanka.

9. REFERENCES
[1] IEEE Computer Society: IEEE Standard Glossary of

Software Engineering Terminology, IEEE Standard

610.12-1990.

[2] J. C. Munsona and T. M. Khoshgoftaar, “The

dimensionality of program complexity,” Proceedings of

the 11th International Conference on Software

Engineering, pp. 245–253, 1989.

[3] D. S. Kushwaha and A. K. Misra, “A Modified Cognitive

Information Complexity of Software”, ACM SIGSOFT

Software Engineering Notes, vol. 31, no. 1, January

2006.

[4] S. Misra, “A Complexity Measure Based on Cognitive

Weights”, International Journal of Theoretical and

Applied Computer Sciences, vol. 1, pp. 1-10, 2006.

[5] Y. Wang and J. Shao, “Measurement Of The Cognitive

Functional Complexity of Software”, IEEE International

Conference on Cognitive Informatics, 2003.

[6] Y. Wang, “The Real-Time Process Algebra (RTPA)”,

Annals of Software Engineering: An International

Journal, Vol. 14, USA, pp. 235 – 274, 2002.

[7] D. S. Kushwaha and A. K. Misra, “Improved Cognitive

complexity Measure: A Metric that Establishes Program

Comprehension Effort”, ACM SIGSOFT Software

Engineering Notes, vol. 31, no. 5, September 2006

[8] J. K. Chhabra, “Code Cognitive complexity: A New

Measure”, World Congress on Engineering, vol. 2, July

6-8 2011.

[9] C. R. Douce, P. J. Layzell and J. Buckley, “Spatial

measures of software complexity”, in Proceedings of 11th

meeting of Psychology of Programming Interset Group,

Leeds, January 1999.

[10] Y. Choe, C. Jong and S. Han, “Software Cognitive

Information Measure based on Relation between

Structures”, 2013.

[11] T. Klemola and J. Rilling, “A Cognitnve Complexity

metric based on Category learning”, in Prceeding of the

2nd IEEE International Conference of Cognitnve

Informatics (ICCI’03), 2003.

[12] U. Chhillar and S. Bhasin, “A New Weighted Composite

Complexity Measure for Object-Oriented Systems”.

International Journal of Information and Communication

Technology Research.vol.1, no. 3, July 2011.

[13] D. S. Kushwaha and A. K. Misra, “Cognitive

Information Complexity measure of Object Oriented

Software – A Practitioner’s Approach”, in Proceedings

of the 5th WSEAS International Conference on Software

Engineering, Parallel and Distributed Systems, pp174-

179, February 15-17, 2006.

[14] E. Weyuker, “Evaluating Software Complexity

Measure”, IEEE Transaction on Software Complexity

Measure, 14 (9), pp. 1357 – 1365, 1988.

[15] L. Briand and S. Morasca, “Property Based Software

Engineering Measurement”, IEEE Transactions on

Software Engineering, vol. 22, no. 1, January 1996.

[16] D. S. Kushwaha and A. K. Misra, “ Robustness Analysis

of Cognitive Information Complexity Measure using

Weyuker Properties” , ACM SIGSOFT Software

Engineering Notes, vol. 31, no. 1, January 2006.

[17] S. Misra and A. Misra, “Evaluation and Comparison of

Cognitive complexity Measure”, ACM SIGSOFT

Software Engineering Notes, vol. 32, no. 2, March 2007.

[18] S. Misra, “Validating Modified Cognitive complexity

Measure”, ACM SIGSOFT Software Engineering Notes,

vol. 32, no. 3, May 2007.

[19] J. K. Chhabra and V. Gupta, “Evaluation of Object-

Oriented Spatial Complexity Measures”, ACM

SIGSOFT Software Engineering Notes, vol. 34, no. 3,

May 2009.

[20] S. Misra and A. Misra, “Evaluating Cognitive

complexity Measure with Weyuker Properties”, Third

IEEE International Conference on Cognitive Informatics

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 19, February 2021

19

(ICCI’04), 2004.

[21] T. McCabe, “A Complexity Measure”, IEEE

Transactions on Software Engineering, December 1976.

[22] T. McCabe, “Structured Testing: A Testing Methodology

Using the Cyclomatic complexity Metric,” NIST Special

Publication, pp. 500-235, September 1996.

[23] A. Madi, O. K. Zein and S. Kadry, “ On the

Improvement of Cyclomatic complexity Metric”,

International Journal of Software Engineering and its

Applications, vol 7, No 2, March 2013.

[24] G. K. Gill and C. F. Kemerer, “Cyclomatic complexity

Density and Software Maintainance Productivity”, IEEE

Transactions of Software Engineering, vol 17, No 2,

December 1991.

[25] J. Graylin, R. K. Smith, N. A. Kraft, J. E. Hale and D.

Hale, “Cyclomatic complexity and Lines of Code:

Empirical Evidence of a Stable Linear Relationship”,

International journal of Software Engineering and

Applications, pp. 2: 137-143, October 2009.

[26] E. Balagurusamy,Programing in ANSI - C, Tata

McGraw-Hill Publishing Company Limited, New

Delhi,Second edition, 1992.

IJCATM : www.ijcaonline.org

