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ABSTRACT 

Beamforming is a signal processing technique by which an 

array of receivers sensitive to signals from all directions can 

be processed to form one larger more sensitive receiver that 

can identify which direction signals originate. In this paper the 

narrowband beamforming and wideband beamforming using 

Tapped delay line will be investigated. Some applications in 

wireless communication systems need to design beamformer 

with a specified response like a sidelobe level less than 

threshold level or forming a null response points in 

interference direction or jamming frequency. So we need to 

design optimal beamforming using optimization technique, to 

achieve a desired response. In this paper the common global 

optimization technique like Particle Swarm Optimization 

(PSO) will be discussed and will used to design a different 

examples on narrowband and wideband beamforming.   

General Terms 

Signal Processing, Wireless Communications, Optimization. 

Keywords 

Wideband Beamforming, Tapped Delay Line Filter, Particle 

Swarm Optimization. 

1. INTRODUCTION 
Telephony, data, image, Internet and video applications are 

essential to future wireless communication systems. 

Multimedia communications, as mentioned above, will 

demand more efficient antenna array structures than 

traditional monopole antennas.  

Array processing techniques like a beamforming help in 

improving the system performance, such as coverage increase, 

multipath fading mitigation, handoff simplification, and 

privacy enhancement. Thus, application of antenna arrays in 

wireless communications may be considered as one of the 

most promising ways to accommodate the rapidly growing 

service demands for multimedia transportation [1-2]. The 

received signals on an array of sensors are multiplied by a 

complex weights before summing to produce the array output 

and directional constraints on array weights [3] are imposed to 

have a desired response of the array in a given look direction. 

The constraints protect the desired signal arriving from the 

look direction when the array weights are obtained by solving 

some optimization problem. As the signal bandwidth 

increases the performance of the array system using this 

narrowband structure, where induced signals are multiplied by 

complex weights, starts to deteriorate [4]. 

For processing broadband signals a tapped delay line (TDL) 

filter in front of each element is used [5-7] and filter 

coefficients are determined by solving some constrained 

beamforming problem [8-9]. Many of these constraints are 

designed to obtain a desired frequency response of the 

processor in the look direction while simultaneously cancel 

the unwanted directional sources impinging on the array from 

other directions.  

This paper is organize as follow : a narrowband beamforming 

and a wideband beamforming using TDL is introduced in 

section 2 followed by a review of PSO technique and required 

parameters  in section 3 , section 4 contains an optimal 

beamforming design example using PSO . A brief conclusion 

is presented in section 5.  

2. BACKGROUND 
The first and foremost, beamformer can be grouped according 

to bandwidth of signal environment. This can be either 

narrowband or broadband, narrowband beamforming is 

generally less complex. Therefore, the question arises which 

signals can be considered narrowband, and where broadband 

characteristics have to be assumed. According to [10], if the 

ratio between the signal bandwidth and the mid-band 

frequency falls below a specific threshold, the signal can be 

considered narrowband. The value of the threshold typically 

2.5% –depends upon the application and no fixed standard 

definition is available. The beamforming structure, shown in 

Fig.1, works effectively only for narrowband signals like 

sinusoidal ,Where M sensors sample the wave field spatially 

and the output y(t) at time t is given by an instantaneous linear 

combination of these spatial samples xm(t), m = 0, 1, . . . , M − 

1, as equation below: 

       

   

   

         
                               

For complex plane wave (ej ωt) with an angular frequency ω 

and a Direction of arrival (DOA) angle θ, where θ ∈ [−π/2  

π/2] is measured with respect to the broadside of the linear 

array the signal received by the first sensor is x0(t) = ej ωt and 

by the mth sensor is  xm(t)= ej ω (t - τm) , m = 1, 2,……, M−1, 

where τm is the propagation delay for the signal from sensor 0 

to sensor m and is a function of θ. Then the beamformer 

output is:   

            

   

   

        
                          

with τ0 = 0. The response of this beamformer is given by: 

              

   

   

       
              
   

Where the weight vector w holds the M complex conjugate 

coefficients of the sensors given by: 
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and the vector d(ω,θ)  is given by:  

                                                         

We refer to d(θ ,ω) as the array response vector, which is also 

known as the steering vector or 

Direction vector. 

For a uniformly spaced linear array with an inter-element 

spacing d, also τm = mτ1 = m(d sin θ) / c and ωτm = m (2πd sin 

θ) / λ. we set d = λ/2 , then ωτm = mπ sinθ and the response of 

the uniformly spaced narrowband beamformer is given by:  

                       

   

   

    
           

The narrowband beamforming structure, shown in Fig.1, 

works effectively only for narrowband signals. When the 

signal bandwidth increases, its performance will degrade 

significantly. For wideband signals, since each of them 

consists of infinite number of different frequency components, 

the value of the weights should be different for different 

frequencies.  This is why the narrowband beamforming 

structure with a single constant coefficient for each received 

sensor signal will not work effectively in a wideband 

environment. The frequency dependent weights can be 

achieved by sensor delay-lines (SDLs). Traditionally, an easy 

way to form such a set of frequency dependent weights is to 

use a series of tapped delay-lines (TDLs) or FIR (Finite 

impulse response), IIR (infinite impulse response) filters in its 

discrete form. Both TDLs and FIR/IIR filters perform a 

temporal filtering process to form a frequency dependent 

response for each of the received wideband sensor signals to 

compensate the phase difference for different frequency 

components. Such a structure is shown in Fig.2 [11]. 

 
Fig.1: Narrowband beamforming 

 

The beamformer obeying this architecture samples the 

propagating wave field in both space and time. The output of 

such a wideband beamformer can be expressed as: 

          

   

   

   

   

            
       

where        is the receive signal at antenna element m ,w is 

weight value ,  J − 1 is the number of delay elements 

associated with each of the M sensor channels in Fig.2 and Ts 

is the delay between adjacent taps of the TDLs. We now 

analyze the array’s response to an impinging complex plane 

wave (ej ωt) with an angular frequency ω and a DOA angle θ, 

where θ ∈ [−π/2  π/2] is measured with respect to the 

broadside of the linear array. Then the signal received by the 

first sensor is x0(t) = ej ωt and by the mth sensor is  xm(t)= 

ej ω (t - τm)  , then we have                            , m = 

1, 2,……, M−1,  i = 0, . . . , J − 1. The array output is given by 

equation below: 

                                   
  

   

   

   

   

                

where τm is the propagation delay for the signal from sensor 0 

to sensor m and is a function of θ  For a uniformly spaced 

linear array with an inter-element spacing d . We have τm = 

mτ1 = m(d sin θ) / c and  ωτm = m (2πd sin θ) / λ. To avoid 

aliasing, d ≤ λmin/2 where λmin is the wavelength of the signal 

component with the highest frequency ωmax. In its discrete 

form,    is the temporal sampling period of the system and 

should be no more than half the period Tmin of the signal 

component with the highest frequency according to the 

Nyquist sampling theorem, i.e.    ≤ Tmin/2. The P(ω,θ) is the 

beamformer’s frequency and angle dependent response. It can 

be expressed in as shown in equation below: 

                                
  

   

   

   

   

 

With the normalized frequency    = ω   , ω(mτ1 + i   ) 

changes to mμ   sin θ + i Ψ  with μ = d/(c   ), we have 

(Zaman at al., 2011): 

                                    
 

   

   

   

   

 

 

           
    

 
    

            
          

 

   

   

   

   

 

 

After we define a response of narrowband beamforming and 

wideband beamforming in equations above, the statement of 

the current problem (design optimal beamforming) simply 

reduces to use the PSO algorithm  to find the weights vector 

,w , of the array elements that result an beamforming  

response with minimum SLL and, if desired nulls at specific 

directions and frequency. 
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Fig.2: Wideband beamforming structure 

 

3. PARTICLE SWARM OPTIMIZATION 

TECHNIQUE (PSO) 
Optimization simply means finding a “better” solution to a 

problem. It is the process of adjusting inputs of a phenomenon 

to obtain a desirable output. Most of the real-life problems are 

optimization problems, indeed. Scientists, engineers, 

manufacturer’s financiers and even sociologists consult with 

different types of optimization techniques in order to obtain 

efficient solutions to their problems. In mathematics, 

optimization deals with seeking for the minima or maxima of 

a function within a search space. 

Particle swarm optimization is one of the famous global 

optimization techniques which is inspired by social behaviour 

of “swarms” in the nature. The swarms like bird flock, bees 

swarm and fish school are very successful in finding food in 

nature. They are in continuous interaction with each other 

while searching for food in a large area. Each bird or fish tells 

the location and quantity of the food that it found to the 

others. Thus, by taking into account the location and quantity 

data from each member of the swarm, whole swarm tends 

towards the optimum location where maximum amount of 

food is present [12]. 

The particle swarm optimization technique was first 

introduced in [13], by James Kennedy who is a social 

psychologist; and by Russell Eberhart who is an electrical 

engineer. In their articles “Particle Swarm Optimization” and 

“A new optimizer using particle swarm theory”, they 

described the stages of development of their technique from a 

social study of swarms to an optimizer. They also discussed 

the basic concepts of this technique and the results obtained 

from applications upon which their technique performed 

successfully. Particle swarm optimization technique has been 

further developed by many researchers and has undergone 

many changes since its introduction in 1995. According to 

Kennedy and Eberhart, particle swarm optimization can be 

used in solution of multidimensional nonlinear global 

optimization problems effectively. Moreover, it has a very 

simple concept and can be implemented by using primitive 

mathematical operators which make the technique 

computationally inexpensive in terms of both memory and 

speed requirements. The operation of PSO is summarized in 

flowchart shown in Fig.3. 

 
Fig.3: Flowchart of main steps for PSO algorithm 
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In a flowchart diagram. After defining the solution space and 

the fitness function, the PSO algorithm starts by randomly 

initializing the position and velocity of each particle in the 

swarm. For an N dimensional problem, the position and 

velocity can be specified by an M    N matrices as follows: 

11 12 1
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1 2
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N

M M M N
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Where Mo is the number of particles in the swarm. Each row 

of the position matrix represents a possible solution to the 

optimization problem. The velocity of each particle depends 

on the distance of the current position to the positions that 

resulted in good fitness values. To update the velocity matrix 

at each iteration, every particle should know its personal best 

and the global best position vectors. The personal best 

position vector defines the position at which each particle 

attained its best fitness value up to the present iteration. The 

personal best positions can be defined by the matrix below. 

    

         

         

   
           

   

The global best position vector defines the position in the 

solution space at which the best fitness value was achieved by 

all particles, and is defined by matrix below. 

                         

All the information needed by the PSO algorithm, Fig.3, is 

contained in X, V, P, and G. The core of the PSO algorithm is 

the method by which these matrices are updated in every 

iteration of the algorithm. These matrices are updated such 

that each particle takes the path of a damped oscillatory 

movement toward its personal best and the global best 

positions in every new iteration. To achieve this, the velocity 

matrix is updated according to [14-17] as:  

                      
                                 

where k  and  k-1  the superscripts and refer to the time index 

of the current and the previous iterations, U1 and U2 are two 

uniformly distributed random numbers in the interval [0,1] 

and these random numbers are different for each n of the 

components of the particle’s velocity vector. The parameter 

c1 and c2 are self-confidence and swarm confidence 

respectively, it specify the relative weight of the personal best 

position versus the global best position.  The value of these 

parameter are very important in speed of convergence for 

optimization problem then enhancement it performance. The 

value of these parameter depending in references and search 

paper [18] can be equal 2.  Or can be equal 1.49 [19]. 

Regarding the parameter (wo) inertia weight, it determines 

how the previous velocity of the particle influences the 

velocity in the next iteration how far the particle is from its 

personal best and global best positions. According to several 

studied the value of inertia weight w can be a constant wo=1, 

0.79; [19], also wo can be linearly damped function with 

iterations starting at 0.9 and decreasing linearly to 0.4 at the 

last iteration [12], or depending on [20], wo can be 

exponentially decay function starting at 0.9 and decreasing to 

0.4 at last iteration.  After we define the required updating 

velocity parameters, the position matrix is updated at each 

iteration according to:   

            

The PSO algorithm, like other evolutionary algorithms, uses 

the concept of fitness to guide the particles during their search 

for the optimum position vector in the N dimensional space. 

The fitness defines how well the position vector of each 

particle satisfies the requirements of the optimization 

problem.  The PSO at each iteration define the best particle 

position which has a best fitness, and pass this information to 

all particle to adjusting their velocity and position vector. The 

core parameter in all optimization algorithm is defined the 

requirement of optimization problem or answer a question 

what is the main purpose for the optimization problem. The 

answer of this question is fitness function which is translate 

the optimization purpose to mathematical equation. In design 

an optimal beamforming, there are many variable (objective 

variable) can be used by optimization algorithm to achieve 

desired response or evaluate the fitness like weights set 

displacement between antenna elements. Depending on the 

application in this paper, we will use the weights set with 

minimum sidelobe level forming null in specific points. To 

achieve this goal we used the following fitness functions:   

1- For a narrowband beamforming 

                                                  

  

   

      

2- For a wideband beamforming  

                                                       

  

   

      

where OF1, OF2 are optimization factors (important in 

optimization problem) for sidelobe and null points 

respectively ,        : magnitude of narrowband response at 

(θS)            : is the magnitude of null points,              :  
magnitude of wideband response at  (f, θS) ,f is frequency 

range            Where     ,    are lower and upper limit for 

frequency range respectively, θS  is a range of sidelobes 

direction =           left            right  , Where     ,    are lower 

and upper limit  for sidelobe respectively .             : is the 

magnitude of null points ,     : the directions of null points ,    

: the frequency of  null points ,  k0:  number of  null points. 

4. EXPERIMENTATS AND RESULTS 
The PSO algorithm outlined in the previous section is 

illustrated by the following design examples. The PSO 

algorithm was implemented using MATLAB. The first design 

example is design a narrowband beamforming with sidelobe 

level in band [ -90° ,-17°] and [17°,90°]  less than -30dB, in 

this example, the array is composed of 10 identical isotropic 

elements, in PSO algorithm the number of particle in swarm 

Mo was chosen equal 20, the number of iteration was chosen 

large enough to guarantee the convergence PSO to desired 

solution, initial solution is ones and inertia weight (wo) is 

linear damped from 0.9 to 0.4 also c1, c2 equal 2. Fig.4 and 
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Fig.5, shown the output from PSO algorithm. We can see, the 

response of design approximately symmetrical with a desired 

response with the max sidelobes level are less than -30db and 

it was achieved within 250 iterations. In Fig.4, we compared 

between the initial response (weights are ones) and PSO 

output response, we can see that, the different in sidelobes 

level approximately 10dB, but the cost is the main beamwidth 

increase a few degrees. At each iteration the velocity of  each 

particles in swarm change in magnitude and dimension ,so the 

Fig.6, is shown a  magnitude of velocities V for  the best 

particle , as we see in Fig.6 the velocity of each element have 

random variation till to reach 0 value within  250 iteration 

which mean that  the particle didn’t change its value after  this  

point ,  Because it reach to the global best solution. 

 

Fig.4: Normalized magnitude response of optimal 

narrowband beamformer with max sidelobe level -30db 

 

Fig.5: Convergence curve of the fitness function versus the 

number of iterations 

 

Fig.6: Convergence of a best particle velocities versus the 

number of iterations 

The second design example is design a narrowband 

bamfomring with null points at direction 

                 and a sidelobes in band [ -90° ,-17°] 

and [17°,90°] .We used the same parameters in previous 

example only we changed the initial solution to become 

random values, the optimization factors are OF1=10, OF2= 

(50 (θ=-70°), 40 (θ=-50°), 40 (θ=40°), 50 (θ=50°)). The 

results of this design were plotted in Fig.7 and Fig.8, the 

desired null points are achieved with average response equal -

90dB within 500 iteration. 

 
Fig.7:  Normalized  magnitude response of a narrowband 

beamforming with a null points at direction       = -70°,-

50°,40°,60°. With initial solution is random complex values 

 
Fig.8: Convergence curve of the fitness function versus the 

number of iterations 

Third example in narrowband beamforming is design a 

narrowband beamformer with a response has a broad null 

band from the direction       °          ° , We used 

the same parameters in previous example only We changed 

optimization factor to OF1=10, OF2= (40 for the band (θ=-

58°): (θ=-63°)).  

The output and result are plotted in Fig.9 and Fig.10, we can 

see the desired response abroad null point with width 6° 

degree is achieved with average response equal -70dB within 

500 iterations. 
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Fig.9: Normalized magnitude response of a narrowband 

beamforming with a broad null band at direction       = -

58°:-63°. With initial solution is random complex values 

 

Fig.10:.Convergence curve of the fitness function versus 

the number of iterations 

For wideband beamforming case, the number of particle in 

swarm Mo was chosen equal 20 and The number of iteration 

was chosen large enough to guarantee the convergence PSO 

to desired solution also, We used the frequency range for all 

design examples is f = [1.05Ghz – 1.45Ghz] .The system 

parameters are the same for all design, the array is composed 

of 15 identical isotropic elements, each feeding a 21-tap delay 

element. The first example illustrate the wideband 

beamformer with a sidelobes in band [ -90° ,-20°] and 

[20°,90°] and single null point with initial solution is ones and 

inertia weight (wo) is linear damped from 0.9 to 0.4 also c1,c2 

equal 2. Fig.11, Fig.12 and Fig.13, shown the output from 

PSO algorithm at direction -41° and frequency f= 1.05 GHz, 

We used optimization factors OF1, OF2 = 5, 30 respectively.  

We can see from Fig.11, the desired null point is achieved 

with magnitude equal -70 db and the desired response need 

only 100 iteration. 

Second design example, We discuss the wideband 

beamforming with magnitude response have a duple null 

points at (θ=-41° ,f =1.25Ghz ) and (θ=59° ,f =1.05Ghz ) , We 

used the initial solution is complex values with phase equal -

30° , for inertia weight (wo) we used the exponential decay 

function start from 0.9 to 0.4. and c1,c2 equal 1.49 and for 

optimization factor the values are (for sidelobes OF1=10,for 

the null point at (θ=-41° ,f =1.25Ghz) OF =140 ,and at the 

second null point OF =200) , Fig.14 and Fig.15, shown the 

results of desired design  and the output of PSO algorithm . 

The desired response achieved within 100 iterations with null 

points average magnitude equal -41dB. 

 

Fig. 11: The magnitude response of wideband 

beamforming with null point at θ= -41°, f=1.05 GHz 

 

Fig. 12:  A 3-D wideband beam pattern example based on 

an equally spaced linear array with null point θ= -41°, 

f=1.05 GHz, N= 15, J = 21 and initial weight=ones 

 

Fig. 13: Convergence curve of the fitness function versus 

the number of iterations 
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Fig.14: The magnitude response of wideband 

beamforming with null points at θ=59 ° f = 1.05 GHz. And 

θ=-41°, f=1.25 GHz 

 

Fig.15: Convergence curve of the fitness function versus 

the number of iterations 

Last example , We designed an wideband beamforming with a 

magnitude response have a three null points at same direction 

θ=-51° but different frequencies ( f1 = 1.05Ghz , f2= 1.25Ghz 

, f3=1.45Ghz) , in this design we used the same system  

parameters  but we used  the initial solution equal to ones ,and 

inertia weight (wo) is linear decay function from 0.8 to 0.4 , 

and for c1,c2 equal 1.49 and for optimization factors we used 

the following values (for sidelobe OF1 =5 , for the first null 

point at θ=-51° ,f =1.05Ghz OF= 30,for second null at θ=-51° 

,f =1.25Ghz OF =45,and at third null the OF=30). Fig.16 and 

Fig.17, shown the result of desired response and the output of 

PSO algorithm, we can see that the desired response achieve 

with 500 iteration .note that ,the average different between 

PSO output and initial solution at null point approximately 

15db. 

 
Fig.16: The magnitude response of wideband 

beamforming with null points at θ=-51 ° f = 1.05 GHz, 

f=1.25 GHz, f=1.45 GHz 

 
Fig.17: Convergence curve of the fitness function versus 

the number of iterations 

5. CONCLUSION 
This paper illustrated the use of the particle swarm 

optimization (PSO) method in design narrowband and 

wideband beamforming with Taped Delay Lines (FIR Filter) 

geometry for the purpose of suppressed sidelobes and null 

placement in certain directions and frequency. The PSO 

algorithm was successfully used to optimize the weights set 

for optimal beamformer to exhibit a beamformer response 

with either suppressed sidelobes null placement in certain 

directions, or both. In each of these cases the PSO algorithm 

easily achieved the optimization goal. As an evolutionary 

algorithm the PSO method will most likely be an increasingly 

attractive alternative, in the electromagnetic and antennas 

community, the PSO algorithm is much easier to understand 

and implement and requires minimum mathematical 

preprocessing. Beamforming can be designed using new 

optimization methods such as cuckoo and genetic algorithms, 

a performance comparison can be done afterwards in order to 

evaluate each optimization method strengths and weaknesses. 

Moreover, the application of designing a good null points for 

beamforming in radar systems, satellite TV and avoiding the 

jamming on TVs and radar channels. The research in this field 

is open because of the fact that there is no optimal solution 

especially for its applications in designing a smart antenna 

systems. 
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