
International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 20, February 2021 

38 

Temporal Gradient based Satellite Image Compression 

Sanchita Rani Das 
Department of Computer Science 

& Engineering,  
Prime University,  

Bangladesh 

 

Md. Al Mamun 
Department of Computer Science 

& Engineering, 
Rajshahi University of Engineering 

& Technology, 
Bangladesh 

Md. Ali Hossain 
Department of Computer Science 

& Engineering, 
Rajshahi University of Engineering 

& Technology,  
Bangladesh 

 
 

ABSTRACT 

Now a day’s tremendous amount of earth observing data or 

images is downloaded in order to accommodate in variety of 

geographical and environmental applications like change 

detection, weather forecasting, climate change, disaster 

management etc. The recent advancement in spatial, spectral 

and temporal resolution of satellite images has make it 

possible to use the images in these vital and world-wide 

challenging applications. Due to limited transmission rate, 

remote sensed satellite images needs to be compressed before 

being delivered to the user. While individual images can be 

processed by considering spatial and spectral redundancies, a 

communication system for satellite images can also consider 

the temporal correlation between images of same place for 

two different time. In this paper a gradient-based temporal 

compression technique has been proposed to approximate the 

image using a reference image of previous time, which is 

already available. The residual image is transmitted where the 

proposed rate defeats the sate of art compression technology 

like JPEG.   
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1. INTRODUCTION 
Remote sensed satellite images gathers plenty of information 

which can be used in variety of geographical and 

environmental applications like change detection, weather 

forecasting, climate change, disaster management etc. The 

recent advancement in spatial, spectral and temporal 

resolution of satellite images has make it possible to use the 

images in these vital and world-wide thought-provoking 

applications. Petabytes of data/images are now available to be 

downloaded and thus satellite image communication or 

compression has become a critical issue in remote sensed data 

management. Lossy compression is preferable where a certain 

amount of image alteration is tolerable. It is not suitable for 

continuous data communication system as the recent 

data/image needs to be fully reconstructed and can be used as 

a reference as well [1]. Moreover, some application can’t 

afford loss because every pixel has sensitive information. 

Lossless compression of satellite images have been classified 

into some major area of research methodologies, including 

prediction based, transformation based, and clustering based.  

The performance of the prediction-based approach depends on 

designing accurate predictor where residual image entropy is 

lower than the original one and the compression ratio is 

higher. Median predictor is being used in [2] whereas residual 

prediction is performed at the last stage between two stages. 

Apart from spatial or spectral de-correlations [3][4], temporal 

de-correlation has also been introduced [1][5]. The reference 

image in temporal prediction is assumed to be linearly related 

to the other images in the time sequence if there is no 

significant land cover change.  

A lossless compression approach has been proposed in this 

paper that uses gradient-based temporal prediction to 

approximate the image using a reference image of previous 

time, which is already available. Most of the time anomalous 

pixels are considered as outlier for spatial or spectral 

prediction based compression approach and they are dealt 

separately [6][7]. Similarly the unpredictable pixels of multi-

temporal images need to be removed and the pixels having 

different temporal features compared with the same location 

pixels in the reference image are reformed [8]. That is why 

gradient-based compression approaches show high adaptive 

ability compared with other approaches as it can easily 

classify the unpredictable pixels as temporal edges. The 

median edge detector in MED prediction technique 

categorizes the horizontal and vertical edges. In spatial 

prediction considering local neighbourhood it predicts the 

current pixel from pixels that are not part of the edges 

[9](Figure. 1). This idea is used in spectral prediction 

[3][4][10] and extended for multi-temporal image 

compression in this paper. 

2. PREDICTION METHOD 
If any edge is detected in the reference image, it is highly 

possible that it will also occur in the recent image. Consider 

the neighbourhood from the previous image and the recent 

image in Figure. 2(a) and Figure. 2(b), the gradient-based 

temporal predictor is proposed as follows: 

1. if x(i, j)- x(i-1, j) |- | x(i, j)- x(i, j-1) >déë ùûthen 

predicted y(i, j)*= y(i, j-1)+a{x(i, j)- x(i, j-1)}  

2. else if x(i, j)- x(i-1, j) |- | x(i, j)- x(i, j-1) < -déë ùû then 

predicted y(i, j)* = y(i-1, j)+a{x(i, j)- x(i-1, j)}  

3. Otherwise predicted 

y(i, j)* =
y(i-1, j)+a{x(i, j)- x(i-1, j)}+ y(i, j -1)+a{x(i, j)- x(i, j -1)}

2
 

where δ is a threshold and α is the linear regression parameter 

when executed between reference image and recent image. 

The first equation is meant to identify the horizontal edge and 

the second one to identify the sharp vertical edge in the 

reference image. 
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Fig 1: Edges in spatial prediction (horizontal and vertical). 

 
   (a)                                            (b) 

Fig 2: Pixel localization (a) reference image (old), (b) 

recent image 

3. MULTI-TEMPORAL IMAGE 

COMPRESSION 
Consider two image set,

},...,1|,{ niyYxXZ ii  , where X  and Y

are captured at two different time t and t+1, respectively, and 

n is the number of pixels, a prediction function, (.) , and a 

residual/error function, 0(.) d , temporal prediction can be 

derived as the minimization problem. 
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where  2)()),(( iiii yxyxd    is the sum 

squared errors or in short residuals between the predicted 

value and the exact value, and λ a set of possible prediction 

functions. The minimization or optimization procedure 

(Equation. (1)) is to find the prediction model that will 

minimize the residual or errors between the predicted and the 

actual values of the dependent variable, Y.  

Multi-temporal compression gain is very high due to the large 

temporal correlation that exists between the two images that 

are sometime apart. Actually temporal correlation coefficient 

indicates the strength of the relationship between variables or 

in this case it shows how two temporal images vary together. 

It actually quantifies the linear consistency between the 

images. The correlation coefficient between two dates’ image 

data sets }{xX   and }{yY  , is defined as 
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where x and y are the sample means of X and Y , 

respectively, and n the total number of pixels. However, the 

prediction function can be selected conferring the association 

shown by the temporal correlation and in the proposed system 

the high temporal correlation justifies the use of gradient 

based prediction approach describes in section II as the 

candidate function, (.) . 

4. IMAGES 
Resolution of the sensors installed in the satellite is 

developing in to a dominant level. Spatial resolution 

considered as the size corresponding to the ground area 

covered by a pixel. Landsat ETM+ (enhanced thematic 

mapper) captures images in medium spatial resolution, which 

is measured as 15-80 meters. The images are multispectral 

image with the spectral range of 0.45 µm to 2.35 µm, which 

include one panchromatic band and one thermal band of 

different resolution. In the proposed experiment, 6 bands of 

Landsat ETM+ images of the central capital region of 

Australia were captured where the images are one year apart 

of which 3 bands are shown in Figure. 3, Figure. 4 and Figure. 

5 for band1, band2 and band3 respectively. The 3D scatter 

plot for band3 images between the two dates is shown in Fig. 

6. The high dense clutter clearly indicates the high association 

between the images. All the 6 bands have high temporal 

correlations between the two dates that can be easily shown in 

Figure 7. Band 6 and 8 are omitted because these have 

different resolution than the other bands. The final results by 

applying the proposed method have been discussed in the 

following section. 

 

(a)                                              (b) 

Fig 3: Satellite (Landsat Enhanced Thematic Map+) 

images (band1) captured in year (a) 2000 and (b) 2001. 

 

(a)                                              (b) 

Fig 4: Satellite (Landsat Enhanced Thematic Map+) 

images (band2) captured in year (a) 2000 and (b) 2001. 

 

(a)                                                      (b) 

Fig 5: Satellite (Landsat Enhanced Thematic Map+) 

images (band3) captured in year (a) 2000 and (b) 2001. 
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Fig 6: 3D scatter plot between the images for band3 

captured in the year 2000 and 2001. 

 

Fig 7: Temporal Correlation coefficients for all the bands. 

5. RESULTS AND DISCUSSATION 
The significant performance measurement in this case is 

known as entropy, which is the minimum number of bits 

required for the storage and transmission of the image. Let 
ix  

be a data set over a space, X , so }{Xxi   where i=1 to n. 

The entropy of ix is the function of its distribution. If (.)P  

is the probability mass function defined over X , the entropy 

of X is 


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The entropy is actually dependent upon the likelihood of the 

distribution of the pixel values. Whenever a good prediction 

model is realized, the overall prediction errors can be closely 

guessed by the symmetric narrow exponential distribution. 

The entropy of this kind of distribution is assumed to be 

monotonic function of its variance: The smaller the variance, 

the smaller the entropy [13]. 

Firstly the original entropy of the recent or current image has 

been calculated together with the entropy of the compressed 

image when JPEG 2000 is applied. These measures are then 

compared with the residual entropy of the proposed method. 

Here linear implementation [14] of the temporal compression 

has also been used for comparison. 

Considering   in Equation. 1 as a general polynomial 

function defined as 
p

p xxx   ................2

2

1

10      (4) 

Here p is the degree of the polynomial, when p > 1,  is a 

non-linear function. For frequent temporal images, it is not 

unrealistic to assume that the non-changed pixels will have 

identical brightness values. Even if the images are some days 

apart. Considering all these facts first-order polynomial is 

used as the linear prediction function for images, which 

contain a small portion of real changes. Taking  0  

and,  1
 for the first-order polynomial, the candidate 

prediction function becomes [14], 

  ii xx )(                                                       (5) 

The entropy comparison for all possible way of image 

distribution have been shown in Table I and corresponding 

graph has been shown in Figure. 8. The results easily depicts 

that the proposed method outperform the state of art 

technology JPEG 2000. The linear prediction performs well 

with respect to the original image transmission but can not 

beat JPEG 2000. This is due to the fact that the temporal 

edges can only be handled through the proposed robust 

gradient based approach which is ignored in linear 

approaches.  

Table 1: Comparison with the state of art methods 

Entropy 

Bands 
Original 

Entropy 

JPEG 

2000 

Linear 

Prediction 

Proposed 

Method 

B1 4.4745 3.5901 3.6874 3.4965 

B2 4.7903 3.5803 3.8775 3.4730 

B3 5.3158 4.0173 4.4462 3.9201 

B4 5.8456 4.2670 4.8022 4.1327 

B5 6.0473 4.7086 5.1049 4.5910 

B7 5.7295 4.4889 4.7860 4.3705 

 
Fig 8: Entropy comparison for possible ways of 

transmission. 

6. CONCLUSION 
The temporal compression of optical multispectral image data 

has been introduced in this paper. The previous approaches 

mostly adopted compression approaches considering spatial 

and spectral correlations or redundancies. Whereas this paper 

explores a new area of investigation in individual data set 

compression by reflecting temporal correlations. In short the 
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sequential data compression approach is motivated by the 

temporal correlation observed between two images in 

different time sequence. Although de-correlation in the 

spectral and spatial domains is the widely adopted technique 

for individual image-based compression, higher compression 

gains can be achieved by integrating them with de-correlation 

in the temporal domain. 
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