
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

21

Access Control Model for Container based Virtual

Environments

Titus Murithi Rugendo
School of Computing and Informatics

University of Nairobi, Kenya

Andrew Mwaura Kahonge
School of Computing and Informatics

University of Nairobi, Kenya

ABSTRACT

With rapid development and adoption of virtualization

technology, security concerns have become more prominent.

Access control is the focal point when it comes to security.

Since, it determines if a user can access a system and perform

the action they intend to. Containers provide an all or nothing

access control mechanism. Where if a host machine user has

privileged access then they can access the containers as root

user, with all privileges and perform any desired action. All

unprivileged users on the host machine are denied access to

the container environment. This research focuses on the

concept of access control in container environment. It is

geared more towards Docker container environment since it is

the most widely adopted containerization technology. The

study also analyses existing container authorization plugins to

determine how they make access decisions. Additionally, this

study led to the design and development of an effective access

control plugin that makes access decisions to containers based
on container users.

Keywords

Virtualization, Container, Docker, Access Control,

Authorization

1. INTRODUCTION
Virtualization technology is becoming widely adopted since

the last decade [1]. It involves partitioning a computer system

into multiple isolated virtual environments. Various

virtualization solutions have emerged to the market. These

solutions can be classified into two major groups: Hypervisor-

based virtualization and Container-based virtualization.

Hypervisor virtualization is where each virtual host has a copy

of its own Operating system kernel. In container

virtualization, all the virtual hosts or containers share the host

Operating System kernel. Hence, Container virtualization falls

under the Operating System level of Virtualization. This paper

focuses on access control in container virtualization

technology. There are several container technologies that are

currently available and in use, namely LXC, OpenVZ, Linux-

Vserver and Docker, with Docker being the most

predominant. LXC, Linux Container was the origin of

container revolution. It was also used as the underlying

technology when implementing LXD and Docker containers

[2]. This paper is going to focus on Docker container since it

is the most widely adopted container technology because:

Applications packaged in a Docker container can run almost

in all Operating systems without requiring any modifications.

Secondly with Docker, one can deploy more virtual

environments within the same hardware compared to other

technologies. Finally, Docker interacts well with third party

tools that aid in deployment and management of containers,
such as: kubernetes, ansible and Mesos [1].

Access control is a key part of securing a computer system. It

prevents illegal and legal entities from illegally accessing

authorized resources. With increased used of virtual

environments, many security concerns are rising and need to

be addressed. Hypervisor based virtual environments are

considered more secure than container based virtual

environments since they provide an extra isolation layer

between the host and the applications. Access to hypervisor

based virtual environments is limited to users within the guest

Operating System. In container based virtual environments,

any user with privileged access rights on the host machine,

especially in Linux kernel can access all container

environments as super users without being authenticated. This

means that all users with administrator rights can access and

modify contents and applications running within different

containers even if they are not supposed to [3]. This is a

security challenge that this study is trying to address. Figure 1

below shows how container virtual environments are
structured.

Container 1 Container 2

Virtualization Layer i.e. Docker Engine

Host Operating System

 Hardware

Figure 1: Container-based Virtualization Architecture

Containerization is a lightweight form of virtualization that

consumes less space and time to start. A container contains

the entire runtime environment including: the application,

application run time dependencies, libraries, settings, system

tools, binaries and configuration files, all bundled together

into a single package. Thus, containers provide lightweight

application virtualization, isolation of its performance, fast

and flexible deployment and fine-grained resource sharing [4].

Access control [5] in container virtual environments can be

achieved by extending container functionalities using plugins

communicating with the container engine. For Docker

containers they have an authorization framework that is not

capable of implementing security functions but provides a

base for their implementation. The framework works by

extending Docker daemon through the REST interface to

external authorization plugins. The plugins are responsible for

implementing mechanisms for allowing or denying user

requests [6].

Ideally access control is supposed to prevent illegal access to

unauthorized resources. However, currently all privileged

users within a host Linux Operating system can gain root

access, with full privileges to all containers running on that

host without requiring any form of authorization. Docker

employs an all or nothing approach where you either have

admin access or no access. Docker does not offer admin

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

22

segregation controls, where different users can have different

admin rights to different containers [7].

The objectives for this study include: First, to review the

concept of access control in container virtual computing

environments. Secondly, to evaluate the existing container

authorization frameworks in terms of how they implement

access control. Thirdly, to design and develop an access

control plugin model that will make access decisions to

containers based on a specific virtual environment user. And,

finally to test and evaluate the performance and effectiveness

of the developed access control plugin in container based

virtual environments.

2. RELATED WORK
There is already an existence of several container

virtualization authentication plugins that have been

developed. These plugins are used to perform authentication

in Docker containers. This is because Docker has provided a

way of extending its functionalities using external plugins.

Docker engine allows the use of HTTP methods to

communicate with the plugins. The plugins must also be

stored in designated directories, to be discovered by the

Docker engine. There are only three types of files that can be

put in a plugin directory [8].

 . json – files containing full json specification for

the plugin.

 . sock – UNIX domain sockets.

 .spec – files containing URLs, like

tcp://localhost:port_number

User credentials and tokens are not passed to the authorization

plugins. Thus, proper authentication and security policies are

not enabled on the plugins. To achieve this the authorization

plugin needs to be designed in a way that it will provide

means that will allow configurations from an administrator

[9].

When an access request is made by the user the Docker

daemon passes the request to the installed access control

plugin. The plugin is responsible for making the decision

whether the user is allowed or not allowed to access or run a

certain Docker command. For an access control plugin to

communicate with the container engine, request syntax should

include: User, Request URI, Request Method, Request Body

and Request header. And, the response allowed is of the

syntax: Allow which is a Boolean value of either true or false,

Message and Error if any [8]. Figure 2 below shows how a

Docker engine should interact with an authorization plugin to

allow a user to perform actions they are authorized to.

 HTTP request

 Authentication

 HTTP request, User

 Process

 Allow Request

 Daemon command flow

 HTTP response, User

 Process

 Allow Response

 HTTP response

Figure 2: Authorization allow

 HTTP request

 Authentication

 HTTP request, User

 Process

 request

 Deny, error message

 Error Message

Figure 3: Authorization deny

Figure 3 above shows how the Docker engine should interact

with an authorization plugin to deny a user request from

performing an action they are not authorized to.

The two common Docker authentication plugins are Open

Policy agent and Authz by Everett Toews. The two plugin

technologies have been implemented to authorize what

Docker commands a certain user or all users can run.

2.1 Open Policy agent (OPA)
OPA uses TLS to allow the Docker engine to authenticate

users. OPA is uses three inputs to make authentication

decisions [10].

 Data – Which is a set of facts about the outside

world. This could be a list of users and their granted

permissions.

 Query Input – It triggers the computation leading to

the decision to be made. Specifies the question in

JSON format whose answer will be decided by

OPA. For instance; the question, is user Titus

Client Engine AuthZ Plugin

AuthZ Plugin Engine Client

AuthZ Plugin

AuthZ Plugin

Engine

Engine

Client

Client

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

23

allowed to invoke GET /protected /resource? The

JSON query will look like: Titus, GET, and

/protect/resource.

 Policy - It specifies the computational logic, for the

given data and query input, yields a policy decision

which is a query result. The computational logic is a

set of policy rules.

The users being authenticated are already predefined within a

file that will be stored in a certain location whose path will be

added to the plugin for decision making. The permissions too

are predefined and tied to a specific user in another file that is

also linked to the plugin. Thus, OPA plugin makes

authorization decisions based on its defined users and not host

machine users or specific container users. The access

decisions and permissions defined only affect the docker

commands that a defined user can run. If a user is set with

write permissions, then they can be able to access all the

containers has the default privileged user.

2.2 Docker-authz-plugin
This plugin was developed by Everett Toews, it provides all

or nothing authorization mechanism. Where all host system

users can run all commands and even access containers as

privileged users or not being able to access and run a single

container command for all system users. Initially the plugin

denies all authorization until any system user runs the hello

world docker image, then access for all users is allowed [11].

By default, Docker containers employ an all or nothing access

control mechanism. Since Docker is based on Linux kernel it

uses Linux default autonomous access control technology.

Where access to containers is achieved by adding roles and

permissions to host system users [12]. That allows all

privileged host system users to access the containers has root

user, with all privileges. And, denies all non-privileged host

users’ access to containers. Since the default engine cannot

make access control decisions [6], plugins like the ones

discussed above are being developed to address this issue.

3. PROPOSED MODEL
The container administrator will be responsible for creating

users in the container and assigns privileges to them. Some

can have super user rights while others cannot. The

administrator also defines the policy in terms of which

container users can gain access to the container. The policy is

stored within the host machine where permissions have been

restricted to the administrators group only. When a container

user sends an access request to the Docker engine. The

request is forwarded to the access control plugin which

decides to allow or deny the request based on the defined

policy. On the policy the administrator defines users who are

allowed access to the container. Thus, the plugin checks the

user in the request URI against user defined in the policy and

users in the container. If there is a match, by the requesting

user is allowed access in the policy and is a user in the

container they wish to access then the request is allowed.

Otherwise, the request is denied.

All host system users’ access to containers will not be allowed

by the plugin. The default root container access with all

privileges within the container will also not be allowed by the

plugin. Also, allowed containers users will only be able to

access the containers in unprivileged mode. Only container

users with privileged mode should be able to elevate

themselves to have super user rights within the containers.

Changes within a container can only be performed by

privileged users only. Unprivileged users can only perform
read operations.

 User request Access allowed

 User request response

 Access request Decision Checks for users to effect policy Creates Users

 Defines Policy

Figure 4: The Proposed Model

Figure 4 above illustrates how the plugin will operate with the

Docker daemon or engine to control access to different

containers. The access decision is based on users created

within the containers and if they are allowed access to the

container within the policy file. Note that all users allowed

access to containers by policy access the containers in

unprivileged mode since the default root access will be

disabled by the plugin. Actions that users can perform within

the containers will be determined by privileges given by the

container administrator.

4. METHODOLOGY
The research was based on exploratory research design, it was

divided into two parts: The first part involved reviewing

literature, whereby existing materials in the container

virtualization field were reviewed. The aim for this was to

develop a strong background and determine whether there are

other container access control plugins and how they have been

implemented. Also, to determine how container engines

communicate with external plugins to implement additional

features that cannot be achieved by the container on its own.

Docker Container
Container Engine

Plugin

Policy decision Point

Policy Decision Point

Container

User

Container

Administrator

 Policy

Users

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

24

The second part involved exploring current container access

control plugins by performing numerous tests. The tests were

meant to show how the plugins communicate with the

container engines. And, how they implement access control or

authorization for containers. This led to the identification of

the current gaps in container access control.

Data for this study was collected using focus group

discussions and observations. The focus group involved a

discussion with five container virtualization experts within

Nairobi, Kenya. The discussion was aimed at identifying the

common themes among the existing container technologies in

terms of access control. Observations involved testing the

existing container authorization plugins and determining how

they interact with the container engine to achieve

authorization.

The main aim of this research is to develop an efficient

container access control plugin. Thus, container experts from

Nairobi were involved to share their experiences with

containerization technology. They helped determine how

access control in containers can be improved. Since they

shared the various problems that they face when trying to

control access to containers, as it was a big challenge to them.

Subsequently, this research also adopted qualitative research

approach since all the data gathered is qualitative in nature.

This data will help in identifying and analyzing similar and

important themes and patterns from the collected data.

After analyzing the collected data and determining the

important and similar themes and patterns, an efficient plugin

that makes access decisions based on container users was

designed. The main aim of this plugin is to limit the users who

can access different containers and defining roles different

users can perform within the container environments.

5. RESULTS
The data for this research was obtained from various sources.

First there were focus groups discussions with

containerization technology experts within Nairobi. Secondly

there were numerous tests that were conducted on current

container authorization plugins and on the Docker engine to

see how it communicates with external plugins. Observations
were made from these tests and recorded.

5.1 Data Analysis
The data collected from the focus group was qualitative in

nature and it was analyzed using content analysis to identify

common patters and themes among the containerization

experts.

Table 1 below shows the summarized version of the common

patterns and themes identified among the container
technology experts involved in the focus group discussion.

Data collected through observation, by performing test on

current Docker authorization plugins and on Docker engine.

To determine how the engine, communicate with access

control plugins was also qualitative. This data was analyzed
using framework analysis to identify common themes.

Table 2 below summarizes common themes that were

identified on the tests conducted on current container

authorization plugins. And also how the container engine

communicates and extends its functionalities using third party

plugins.

Table 1: Content Analysis for Focus Groups data

Code Description

Most adopted Container virtualization Technology Docker since it is easy to use and can be used with all operating systems

Widely adopted Operating system for use with

Docker
Linux Kernel since it is built from on LXC. Also, most servers run on Linux

environments

Concern on access control in docker containers
The main concern is that it is not possible to securely protect applications

running within containers. since anyone with super user access to host

system can access the containers as root. By running the exec command.

Ideal Container access control plugin
Should make access decision based on users already in the system.

Container users and if possible, host system users also

Table 2: Framework Analysis for data from observeations on tests conducted

Code Description

How docker authorization framework interacts

with user requests By use of HTTP requests and responses

Docker daemon request and response syntax

For an authorization request it gets the following key parts: (User,

Request Method, URI, Request body and Request header) For

Response it takes a Boolean (True or False) to allow or deny a

request, a message and an error if need be.

Languages that have been used to try to develop

container authorization plugins
Golang since docker is developed using Golang and python has

been tested too using flask framework.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

25

Currently Developed plugins
Open Policy Agent (OPA) using Golang and authz by Everett

Toews using python.

How do existing container plugins communicate

with the container engine
Using http requests. The code structure follows that of the syntax

required by the container engine.

Basic working of the current container

authorization plugins

They do perform authorization, but not based on an existing

container or system user. OPA defines sample users and

permissions in the policy. Authz denies all docker requests unless

one runs the hello-world image, then it allows all the

authorizations.

5.2 Plugin Development
This study led to development of a container access control

plugin that will control access in Docker containers based on

container users. It has been developed using python Flask

framework using HTTP methods to ensure efficient

communication with the Docker engine. It uses the. spec way

of storing files. This plugin is built only to control which

container users can access the containers. All host system

users have no access to containers. Also, allowed container

users can only access the containers as non-root users, since

the plugin also disables the default root access. The Docker

access command, exec, has been used to implement the policy

file, to make decision on whether a request is allowed or
denied access to a container.

5.3 Plugin test results
The individual components developed were tested using

Postman API testing tool. The Docker engine communicates

with external authorization plugins through three main parts.

These parts are defined as routes in API. Firstly, there is

‘/Plugin.Activate’, that is used to test if the plugin works and

can communicate with docker engine. Secondly

‘/AuthZPlugin.AuthZReq’, that carries authorization requests

from users to the docker engine, which then transfers it to the

access control plugin for decision making based on policy. It

is also responsible for returning a response to the user from

the plugin through the Docker engine based on decision made

by the plugin. Lastly the ‘/AuthZPlugin.AuthZRes’ route that
defines a valid access response from the plugin.

After testing all the three components in the code and

ensuring that they could function as expected. System testing

was conducted where all these individual components were

integrated and tested to determine if the plugin is performing

as expected. System testing was conducted on Linux

Operating System running on Ubuntu 18.04 LTS Kernel.

Docker engine version 19.03.8 was deployed on the Ubuntu

kernel, then Nginx and PostgreSQL docker images were used

to create containers and perform the tests. Users were created

within the containers and new images were built. The plugin

was deployed using a bash script where all dependencies were

installed too. The plugin performed as expected. First the

default root user access to containers that allows privileged

host system users access was disabled by the plugin. Access

to containers was based on users within that containers. Not

all users within the containers are allowed access, but only

those whose access has been allowed on the policy file. Thus,

a user cannot access a container he or she is not a member of

and he or she must have access rights defined within the
policy file.

Figure 5: Defining Policy file

Figure 5 above shows how the policy is defined within the

policy file. User ‘titus’ is allowed access to all containers
within that host using the exec command.

Figure 6 below shows how this study plugin disallows host

system users from accessing the containers. Host system user

pascal is denied access to containers since he is not an

existing user in any container.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

26

Figure 6: Host system users test

Figure 7: Container users Privilege levels

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

27

The container users who are allowed access by the policy can

only access the containers in unprivileged mode or as non-

root users. For a user to perform any change to the contents of

the applications, files or directories within the container they

must first elevate to privileged. To be able to elevate one’s

access to privileged mode a user must first have been granted

the rights by the container administrator. All users that do not

have rights to elevate to privilege mode and can access the

containers, can only perform read operations. Figure 7 above

shows different privileges that users within a container can

have. User ‘titus’ has sudo rights within the container, thus

can elevate the privileges and perform administrative tasks.

While, user ‘rugendo’ does not have sudo rights thus cannot

elevate the privileges. This shows that user ‘rugendo cannot

perform administrative tasks within the container.

To protect the policy file, all host system users were denied

privileged access. This is because the policy file is located

within the host system. Only users within a specific group for

container administrators is allowed privileged access. This

means that only members of this group can alter the policy
file.

Figure 8: Denying other host system users privileged access

The default privileged admin and sudo groups have been

disabled and group authz given privileged access, this is

according to figure 8 above. This means that only users from

group authz can modify the policy file. Figure 9 below shows

test on different host system users within different groups to

determine if they can elevate their privileges and modify the

policy file. User ‘pascal’ who is a member of sudo group and

not a member of authz group cannot access the policy file.

Whereas user ‘elly’ who is a member of authz group but not
sudo can elevate privileges and access the policy file.

Figure 9: Host system users’ access to policy file test

The users of authz group can add other container users to the

policy file to allow them to access containers. A user added on

the policy will only be able to access a container that they

already exist in. If the user is not in a container, they will not

be able to access that container. Users allowed access on the

policy can only access containers that they are a member of.

All other users will not be allowed access regardless of
whether they are container users or host system users.

After the developed plugin performed as expected. It was

shared with several Docker experts to perform usability

testing. This was to determine if the plugin is easy to use and

if it answers some of the issues that had been raised regarding

access control on containers. The response was that the plugin

is performing perfectly, and it will help in securing access and

what actions users can perform within the containers. It will

also simplify auditing since the administrators will focus on

specific container logs to determine actions performed by

specific container users. The only concern was if this plugin

can be integrated with host system users, to make container

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

28

access decisions based on them.

6. DISCUSSION
The default access to container systems is based on all or

nothing. Where a host system user can either have full access

or no access at all. In this study were able to find that you can

control the access to container virtual environments by use of

a plugin. This research lead to development of an access

control plugin model that uses container users to make

decisions on who should be allowed access into a specific

container. The access control policy is defined in terms of

users created in the container virtual environment rather than

host users. The users are created in the container by

administrators and then used when making decisions based on

the policy of the plugin. The plugin uses user information in

the exec URL to check against the policy and container users

before allowing access to the container. Since the developed

plugin can limit who has access to the containers, then a

container administrator can give different file permissions and

privileges to different container users. Where, sudo or

superuser rights can be assigned to some specific users in the

container and give other users access rights without super

privileges. The user’s actions on the containers will depend on

the rights and permissions they have once the plugin allows

their access. The developed plugin does not make any

decisions based on host system users; in fact, it denies all their

access requests.

Existing container access control plugins work by allowing or

denying users from running specific docker commands. Like

for the case of authz plugin for docker containers by Everett

Toews [11], you either run all commands or denied running

any command at all. The authz plugin denies all requests until

docker-machine root user or any other host system user pulls

and installs hello-world plugin image. After running this

image all users in the docker-machine and host machine will

be able to run all docker commands and even access

containers without any restriction. This is like the default

container access control policy of all or nothing access and

running commands. The resulting access control plugin model

denies only access requests but allows all other docker

commands to be run by all users. To access a container, the

user must exist within the container and must be allowed

access into the plugin by the administrator. The plugin also

does not allow any host user to access the container regardless

of whichever situation.

In OPA container access control plugin, users used for access

control are neither host system nor container users. Rather you

define users on the policy with read-only rights set to true or

false and a json config file containing a specific user and http

headers for sending the request to the Docker engine. If the

user in the json file has read-only rights on the policy file,

then you can only run read Docker commands. If the user

read-only is set to false, then you can run all commands. The

worry with this is that if the settings are using user with read-

only set to false. You can run everything even gain access into

the container as root user without being limited. This research

resulting container access control plugin policy uses container

users created by the container administrator to make container

access decisions only. All other docker commands are not

restricted to any user. This paper resultant plugin deals only

with authorizing container access requests and does not make

decisions for other requests.

The challenges of both OPA and authz container authorization

plugins is that they do not make access decisions based on

existing users. Either host system users or container users.

This study plugin model addresses this by using container

users created by container administrator to make decisions on

who is allowed access. OPA and authz also do not restrict

access into the containers rather they give authorizations in

terms of commands one can run. For instance, a user in OPA

who can run all commands, can also access all containers in

root mode. This shows that any privileged host system user

can still alter applications and files running within a container.

This is because access decisions are not made depending on

container users, rather if a certain user is set in the policy and

json configuration file then all users on the hosts machine can

access all containers in privileged mode. This study resultant

plugin has addressed this by making sure that access to

containers is based on container users only. A user who is not

created in a certain container cannot access it even if they

have been allowed on the policy. Also, users created by the

container administrators and allowed access to the container

through the plugin, they gain access as unprivileged users.

Thus, a user can only perform actions like write, execute or

modification of files if they can elevate to privileged rights.

This means that the plugin can allow multiple users to the

container and still limit what they can do within the container
environment.

The main difference and a downside of this plugin compared

to OPA and authz is that this study resultant plugin is

concerned with access only. This plugin will not authorize

other container commands being run by host system users.

This is because the plugin is using container users to make

decisions. The major problem with all the plugins is securing

the policy file. Since the file in all plugins resides within the

host. To achieve this one must ensure that all applications

running within that host are running within containers. This is

to ensure that only container administrators have privileged

access on the host system.

7. CONCLUSION
This research sought to review the concept of access control

and try to address the challenge of access to container-based

environments by all privileged users in a host system. This

study was able to evaluate and determine how current

container virtualization authorization frameworks implement

access control. And, how they interact with container engines.

Additionally, the study led to the design and develop an

efficient plugin for controlling access to containers. This

study has successfully established that, a container access

control model that makes access decisions based on container

specific users can be implemented. Also, all host users can

also be denied access to containers despite their privileges.

The default container root access to containers can be denied

using this plugin. This enables the administrator to give

different container users different privileges and rights within

the containers. Since all allowed users get access in

unprivileged mode. Actions to be performed within the

container will depend on the privileges given to a specific

container user by the administrator.

7.1 Limitations
This study resultant plugin can work best on a host system

that is running all applications on containers. If there are some

applications running on the host system and having multiple

groups with privileged rights, the policy file security might be

threatened. This is because the policy file is stored within the

host system. Secondly, the developed container access control

plugin can only be used to restrict access to docker containers

based on users in the specific container virtual environment. A

container administrator must first create specific container

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 20, February 2021

29

users and give them different privileges since, all host system

users are denied access to the containers. Finally, this plugin

can only be implemented using Docker containers. Currently

it cannot be used with other container technologies since it is

based on the Docker syntax of communication. Where

communication between Docker engine and the plugin uses

HTTP methods and docker .spec file.

7.2 Recommendations for Further Work
Currently, the developed plugin can work on a host system

that is running all applications on containers. If there are

applications running on the host system and having multiple

groups with privileged rights, the policy file security might be

threatened. This is because the policy file is located within the

host Operating System. Future studies should try to find a way

of incorporating the policy file within a specific container.

Docker container developers should also include a way of

prompting authorized users for password as they access the

containers.

Future works should also look at how a container access

control plugin can be interfaced with host system users. This

will help address the issue of which host system user can run a

specific container command. Finally, future works should try

to implement an access control plugin that can be used with

other container technologies.

8. REFERENCES
[1] T. Bui, "Analysis of Docker Security," 2015.

[2] H. Jain, "LXC and LXD: Explaining Linux Containers,"

2 June 2016. [Online]. Available:

https://www.sumologic.com/blog/lxc-lxd-linux-

containers/. [Accessed 27 April 2020].

[3] J. Chelladhurai, P. R. Chelliah and S. A. Kumar,

"Securing Docker Containers from Denial of Service," in

IEEE International Conference on Services Computing,

San Francisco, CA, USA, 2016.

[4] C. Pahl, B. Antonio, J. Soldani and P. Jamshidi, "Cloud

Container Technologies: a State-of-the-Art Review,"

IEEE Transactions on Cloud Computing, p. 1, May 2017.

[5] Z. H. Shoeb and A. Sobhan, "Authentication and

Authorization: Security Issues for Institutional Digital

Repositories," Library Philosophy and Practice, pp. 1-8,

2010.

[6] F. Hauser, M. Schmidt and M. Menth, "xRAC:

Execution and Access Control for Restricted Application

Containers on Managed Hosts," ArXiv, vol.

abs/1907.03544, pp. 1-9, 2019.

[7] K. Kuusik, "Docker Security – Admin Controls," 19 June

2015. [Online]. Available: https://blog.container-

solutions.com/docker-security-admin-controls-2.

[Accessed 12 January 2020].

[8] docker Inc, "docker docs," 2019. [Online]. Available:

https://docs.docker.com/engine/extend/plugins_authoriza

tion/. [Accessed 04 February 2020].

[9] L. Levin, "Docker AuthZ Plugins: Twistlock’s

Contribution to Docker Security," 18 February 2016.

[Online]. Available:

https://www.twistlock.com/2016/02/18/docker-authz-

plugins/. [Accessed 29 December 2019].

[10] A. Nosek, "Open Policy Agent, Part I - The

Introduction," 14 October 2019. [Online]. Available:

https://dzone.com/articles/open-policy-agent-part-i-the-

introduction. [Accessed 31 December 2019].

[11] E. Toews, "Develop a Docker Authorization Plugin in

Python," 30 July 2016. [Online]. Available:

https://etoews.github.io/blog/2016/07/30/develop-a-

docker-authz-plugin-in-python/. [Accessed 20 February

2020].

[12] D. Lang, H. Jiang, W. Ding and Y. Bai, "Research on

Docker Role Access Control Mechanism Based on

DRBAC," in Jwenal of Physics: Conference Series,

Beijin, 2019.

IJCATM : www.ijcaonline.org

