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ABSTRACT
The purpose of this paper is to introduce and investigate weak
form of D-open sets in D-metric spaces, namely D-preopen sets.
The relationships among this form with the other known sets are
introduced. We give the notions of the interior operator, the closure
operator and frontier operator via D-preopen sets.
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1. INTRODUCTION
Metric spaces is one of the most important spaces in mathematics
there are various type of generalization of metric spaces, [5].
The axiomatic approach to the metric spaces is given by a french
mathematician M. Frechet in year 1812, [7]. In 1984, Dhage, [3],
introduced a new notion of a new structure of D-metric space
which is a natural generalization of the notion of ordinary metric
space to higher dimensional metric spaces, [4]. In 2000, Dhage,
[2], introduced some results in D-metric spaces are obtained
and the notion of open and closed balls. In 2013, [6], exhibited
methods of generating D-metrics from certain types of real valued
partial functions on the three dimensional Euclidean space. In
2017, Ali Fora, Massadeh and Bataineh, [1], introdused and a new
topological structure of D-closed set.

This paper is organized as follows. Section 2 is devoted to some
preliminaries. Section 3 introduces the concept of D-preopen sets
by utilizing the D-open balls. Furthermore, the relationship with
the other known sets will be studied. In Section 4 we introduce the
concepts of the interior operator, the closure operator and frontier
operator via D-preopen sets.

2. PRELIMINARIES
DEFINITION 2.1. [7]. Let X be any nonempty set. A function

d : X ×X → [0,∞) is called a metric function on X if it satisfies
the following three conditions for all x, y, z ∈ X:

(1) (positive property) d(x, y) ≥ 0 with equality if and only if
x = y;

(2) (symmetric property) d(x, y) = d(x, y);
(3) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

A pair (X, d), where d is a metric on X is called a metric space.
By Oε(x), we mean the open ball with center x and radius ε > 0,
that is,

Oε(x) = {y ∈ X : d(x, y) < ε}.
By Cε(x), we mean the closed ball with center x and radius ε > 0,
that is,

Cε(x) = {y ∈ X : d(x, y) ≤ ε}.
For metric space (X, d) and G ⊆ X , the set G said to be open set
if for any point x ∈ G, there exists ε > 0 such that Oε(x) ⊆ G.
The set G is called closed set in metric space (X, d) if X−G is an
open set in metric space (X,D). For the set of real numbers R, we
mean by the usual metric space (R, d),

d(x, y) = |x− y| for all x, y ∈ R

For metric space (X, d) and G ⊆ X , the interior operator of G
is denoted by Int(G) and the clouser operator of G is denoted by
Cl(G).

DEFINITION 2.2. [4]. A nonempty setX , together with a func-
tionD : X×X×X → [0,∞) is called a D-metric space, denoted
by (X,D) if D satisfies the following x, y, z, u ∈ X:

(1) D(x, y, z) = 0→ x = y = z (coincidence);
(2) D(x, y, z) = D(p(x, y, z)), where p is a permutation of

x, y, z (symmetry);
(3) D(x, y, z) ≤ D(x, y, a) + D(x, a, z) + D(a, y, z) for all

x, y, z, u ∈ X (tetrahedral inequality).

By ODε (x), we mean the D-open ball with center x and radius ε >
0, that is,

ODε (x) = {y ∈ X : d(x, y, y) < ε}.
By CDε (x), we mean the D-closed ball with center x and radius
ε > 0, that is,

CDε (x) = {y ∈ X : d(x, y, y) ≤ ε}.

The set G ⊆ X is called D-open set in D-metric space (X,D) if
for every x ∈ G, there is ε > 0 such that ODε (x) ⊆ G. The set
G is called D-closed set in D-metric space (X,D) if X − G is
D-open set in D-metric space (X,D). For D-metric space (X,D)
and G ⊆ X , the interior set of G is denoted by IntD(G) and the
clouser set of G is denoted by ClD(G).

THEOREM 2.3. [2]. Let (R,D) be D-metric space where

D(x, y, z) = max{d(x, y), d(y, z), d(z, x)}
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and (R, d) is usual metric space. Then for a fixed x ∈ R, the D-
open balls ODε (x) and ODε (x) are the sets in given by: ODε (x) =
(x− ε, x+ ε).

THEOREM 2.4. [2]. Let (R,D) be D-metric space, where

D(x, y, z) = d(x, y) + d(y, z) + d(z, x)

and (R, d) is usual metric space. Then for a fixed x ∈ R, the D-
open balls ODε (x) and ODε (x) are the sets in given by: ODε (x) =
(x− ε/2, x+ ε/2).

THEOREM 2.5. [2]. Every D-open ODε (x) , x ∈ X , ε > 0 is a
D-open set in X (i.e., it contains a ball of each of its points).

THEOREM 2.6. [1]. Every a finite set in a D-metric space
(X,D) must be D-closed set.

THEOREM 2.7. [2]. Every ball CDε (x) in a D-metric space
(X,D) is D-closed set.

THEOREM 2.8. [2]. Arbitrary union and finite intersection of
D-open balls ODε (x), x ∈ X is D-open set.

THEOREM 2.9. [1]. Let D : X ×X ×X ×X → [0,∞) be a
D-metric on X having a finite range. Then every subset A of X is
D-closed set.

3. D-PREOPEN SETS
DEFINITION 3.1. Let (X,D) be a D-metric space. A subset

G ⊆ X is called a D-preopen set in D-metric space (X,D) if for
every x ∈ G, there is δ > 0 such that for every y ∈ ODδ (x),
ODε (y) ∩ G 6= ∅ for every ε > 0.A subset G ⊆ X is called a
D-preclosed set in D-metric space (X,D) ifX−G is a D-preopen
set in D-metric space (X,D).

The set of all D-preopen sets inX denoted byDpO(X,D) and the
set of all D-preclosed sets in X denoted by DpC(X,D).

EXAMPLE 3.2. Let (R,D) be D-metric space given by

D(x, y, z) = max{d(x, y), d(y, z), d(z, x)},

where (R, d) is usual metric space on the set of real number R.
An open interval G = (0, 2) is D-preopen set in (R,D). For every
x ∈ G, take δ = min{|x|, |2 − x|} > 0. If y ∈ ODδ (x), then
ODε (y) ∩G 6= ∅ for every ε > 0.

EXAMPLE 3.3. In Example(3.2), a closed intervalG = [−1, 1]
is not D-preopen set, since at x=1, take y = (2 + δ)/2 ∈ ODδ (1)
and ε = δ/2 > 0. Note that ODδ/2((2 + δ)/2) ∩ G = ∅. That is,
G = [−1, 1] is not D-preopen set in (R,D).

THEOREM 3.4. Every D-open set is a D-preopen set.

PROOF. LetG be any D-open set in D-metric space (X,D). Let
x ∈ G be arbitrary point. Then there is δ > 0 such that ODδ (x) ⊆
G. For every y ∈ ODδ (x), y ∈ ODε (y) and y ∈ G for every ε > 0.
That is, ODε (y) ∩ G 6= ∅ for every ε > 0. Hence G is D-preopen
set.

The converse of above theorem need not be true.

EXAMPLE 3.5. In Example(3.2), the set of rational numbersQ
is a D-preopen set but not D-open set in (R,D).

Note that the intersection of two D-preopen sets no need to be
D-preopen set. In Example(3.2), the set of rational numbers Q is a
D-preopen set but not D-open set in (R,D) and the set IR ∪ {q}

is a D-preopen set in (R,D), where IR is the set of irrational
numbers and q is any rational number, but Q ∩ (IR ∪ {q}) = {q}
is not D-preopen set.

The following theorem shows that the intersection of a D-open set
and a D-preopen set is a D-preopen set.

THEOREM 3.6. The intersection of a D-open set and a D-
preopen set is a D-preopen set.

PROOF. Let A be D-open set and B be D-preopen set in D-
metric space in (X,D). Let x ∈ A ∩ B be arbitrary point. Then
x ∈ A and x ∈ B. Then there are δ1 > 0 and δ2 > 0 such that
ODδ1(x) ⊆ A and for every y ∈ ODδ2(x), ODε (y) ∩ B 6= ∅ for
every ε > 0. Take δ = min{δ1, δ2} > 0. Then ODδ (x) ⊆ A
and for every y ∈ ODδ (x), ODε (y) ∩ B 6= ∅ for every ε > 0.
Now for every y ∈ ODδ (x) and since A is D-open set, then there is
εy > 0 such that ODεy (y) ⊆ A and ODmin{εy,ε}(y) ∩B 6= ∅. Since
ODmin{εy,ε}(y)∩B ⊆ ODε (y)∩A∩B, thenODε (y)∩ (A∩B) 6= ∅
for every ε > 0. That is A ∩B is D-preopen set.

THEOREM 3.7. The union of any family of D-preopen sets is
D-preopen set.

PROOF. Let Gλ be a D-preopen subset of D-metric space
(X,D) for all λ ∈ ∆. Let x ∈

⋃
λ∈∆Gλ be an arbitrary point.

Then there is at least λ0 ∈ ∆ such that x ∈ Gλ0
. Since Gλ0

is a
D-preopen then for every x ∈ Gλ0

, there is δ > 0 such that for
every y ∈ ODδ (x), ODε (y) ∩ Gλ0

6= ∅ for every ε > 0. Since
Gλ0

⊆
⋃
λ∈∆Gλ, then for every x ∈

⋃
λ∈∆Gλ, there is δ > 0

such that for every y ∈ ODδ (x), ODε (y) ∩
⋃
λ∈∆Gλ 6= ∅ for every

ε > 0. That is
⋃
λ∈∆Gλ is D-preopen set.

4. D-PREOPEN OPERATORS
In this section, we define the interior operator, the closure operator
and frontier operator via D-preopen sets.

DEFINITION 4.1. Let (X,D) be a D-metric space andG ⊆ X .
The DP -closure operator of G is denoted by ClDP (G) and defined
by

ClDP (G) = ∩{H ⊆ X : G ⊆ H and H is D-preclosed set}.

The DP -interior functor of G is denoted by IntDP (G) and defined
by

IntDP (G) = ∪{H ⊆ X : H ⊆ G and H is D-preopen set}.

REMARK 4.2.

(1) From Theorem(3.7), ClDP (G) is a D-preclosed set and
IntDP (G) is D-preopen set in D-metric space (X,D).

(2) For a D-metric space (X,D) and G ⊆ X , it is clear from the
definition of ClDP (G) and IntDP (G) that G ⊆ ClDP (G) and
IntDP (G) ⊆ G.

THEOREM 4.3. For a D-metric space (X,D) and G ⊆ X ,
ClDP (G) = G if and only if G is a D-preclosed set.

PROOF. Let ClDP (G) = G. Then from definition of ClDP (G)
and Theorem(3.7), ClDP (G) is a D-preclosed set and G is a D-
preclosed set. Conversely, we have G ⊆ ClDP (G) by Remark(4.2).
Since G is a D-preclosed set, then it is clear from the definition of
ClDP (G), ClDP (G) ⊆ G. Hence G = ClDP (G).

THEOREM 4.4. For a D-metric space (X,D) andG ⊆ X , and
IntDP (G) = G if and only if G is a D-preopen set.
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PROOF. Let G be D-preopen set. Then for all x ∈ G, we have
x ∈ G ⊆ G. That is, G ⊆ IntDP (G). Then G = IntDP (G) from
Remark(4.2). The converse is trivial.

THEOREM 4.5. For a D-metric space (X,D) andG ⊆ X , x ∈
ClDP (G) if and only if for all D-preopen set M containing x, M ∩
G 6= ∅.

PROOF. Let x ∈ ClDP (G) and M be any D-preopen set con-
taining x. If M ∩ G = ∅ then G ⊆ X −M . Since X −M is
a D-preclosed set containing G, then ClDP (G) ⊆ X −M and so
x ∈ ClDP (G) ⊆ X − M . Hence this is contradiction, because
x ∈M . Therefore M ∩G 6= ∅.
Conversely, Let x /∈ ClDP (G). Then X − ClDP (G) is a D-preopen
set containing x. Hence by hypothesis, [X − ClDP (G)] ∩ G 6= ∅.
But this is contradiction, because X − ClDP (G) ⊆ X −G.

THEOREM 4.6. For a D-metric space (X,D) andG ⊆ X , x ∈
IntDP (G) if and only if there is D-preopen set M such that x ∈
M ⊆ G.

PROOF. Let x ∈ IntDP (G) and take M = IntDP (G). Then by
Theorem(4.5) and definition of IntDP (G) we get that M is a D-
preopen set and by Remark(4.2), x ∈ M ⊆ G. Conversely, let
there is D-preopen setM such that x ∈M ⊆ G Then by definition
of IntDP (G), x ∈M ⊆ IntDP (G).

THEOREM 4.7. For a D-metric space (X,D) and G,M ⊆ X ,
the following hold:

(1) If G ⊆M then ClDP (G) ⊆ ClDP (M).
(2) ClDP (G) ∪ ClDP (M) ⊆ ClDP (G ∪M).
(3) ClDP (G ∩M) ⊆ ClDP (G) ∩ ClDP (M).
(4) ClDP (G) ⊆ ClD(G).

PROOF. (1) Let x ∈ ClDP (G). Then by Theorem(4.5), for all
D-preopen set N containing x, N ∩ G 6= ∅. Since G ⊆ M
then N ∩M 6= ∅. Hence x ∈ ClDP (M). That is, ClDP (G) ⊆
ClDP (M).

(2) Since G ⊆ G ∪ M and M ⊆ G ∪ M , then by part(1),
ClDP (G) ⊆ ClDP (G ∪ M) and ClDP (M) ⊆ ClDP (G ∪ M).
Hence ClDP (G) ∪ ClDP (M) ⊆ ClDP (G ∪M).

(3) Since G ∩ M ⊆ G and G ∩ M ⊆ M , then by part(1),
ClDP (G ∩ M) ⊆ ClDP (G) and ClDP (G ∩ M) ⊆ ClDP (M).
Hence ClDP (G ∩M) ⊆ ClDP (G) ∩ ClDP (M).

(4) It is clear from Theorem(4.5) and from every D-open set is
D-preopen set.

In the above theorem ClDP (G∪M) 6= ClDP (G)∪ClDP (M) as it is
shown in the following example.

EXAMPLE 4.8. Let (R,D) be D-metric space, where

D(x, y, z) = d(x, y) + d(y, z) + d(z, x)

and (R, d) is usual metric space. LetG = IR andM = Q− [{q}],
where Q is the set of rational numbers, IR is the set of irrational
numbers and q is any rational number. Since G and M are D-
precloced sets in R. Then ClDP (G) ∪ ClDP (M) = G ∪M = R −
{q}. If R − {q} is D-precloced set in R then {q} is D-preopen set
but {q} is not D-preopen set and this contradiction. HenceR−{q}
is not D-precloced set in R. Since R− {q} ⊆ ClDP (R− {q}) then

ClDP (G ∪M) = ClDP (R− {q}) = R.

THEOREM 4.9. For a D-metric space (X,D) andG,M ⊆ X ,
the following hold:

(1) If G ⊆M then IntDP (G) ⊆ IntDP (M).
(2) IntDP (G) ∪ IntDP (M) ⊆ IntDP (G ∪M).
(3) IntDP (G ∩M) ⊆ IntDP (G) ∩ IntDP (M).
(4) IntD(G) ⊆ IntDP (G).

PROOF. (1) Let x ∈ IntDP (G). Then by Theorem(4.6), there is
D-preopen set N such that x ∈ N ⊆ G Since G ⊆ M then
x ∈ N ⊆ M . Hence x ∈ IntDP (M). That is, IntDP (G) ⊆
IntDP (M).

(2) Since G ⊆ G ∪ M and M ⊆ G ∪ M , then by part(1),
IntDP (G) ⊆ IntDP (G∪M) and IntDP (M) ⊆ IntDP (G∪M).
Hence ClDP (G) ∪ IntDP (M) ⊆ IntDP (G ∪M).

(3) SinceG∩M ⊆ G andG∩M ⊆M , then by part(1), IntDP (G∩
M) ⊆ IntDP (G) and IntDP (G ∩ M) ⊆ IntDP (M). Hence
IntDP (G ∩M) ⊆ IntDP (G) ∩ IntDP (M).

(4) It is clear from Theorem(4.5) and from every D-open set is
D-preopen set.

In the above theorem IntDP (G ∩M) 6= IntDP (G) ∩ IntDP (M) as
it is shown in the following example.

EXAMPLE 4.10. In Example(4.8), take G = Q ∪ {r} and
M = IR, where Q is the set of rational numbers, IR is the set
of irrational numbers and r is any irrational number. Since G and
M are D-preopen sets in R. Then IntDP (G) ∩ IntDP (M) = G ∩
M = (Q ∪ {r}) ∩ IR = {r}. Since {r} is not D-preopen set and
IntDP ({r}) ⊆ {r} then IntDP (G ∩M) = IntDP ({r}) = ∅.

THEOREM 4.11. For a D-metric space (X,D) and G ⊆ X ,
the following hold:

(1) IntDP (X −G) = X − ClDP (G).
(2) ClDP (X −G) = X − IntDP (G).

PROOF. (1) SinceG ⊆ ClDP (G), thenX−ClDP (G) ⊆ X−G.
Since ClDP (G) is a D-preclosed set then X − ClDP (G) is a D-
preopen set. Then

X − ClDP (G) = IntDP [X − ClDP (G)] ⊆ IntDP (X −G).

For the other side, let x ∈ IntDP (X − G). Then there is D-
preopen set N such that x ∈ N ⊆ X − G. Then X − N
is a D-preclosed set containing G and x /∈ X − N . Hence
x /∈ ClDP (G), that is, x ∈ X − ClDP (G).

(2) Since IntDP (G) ⊆ G, then X − G ⊆ X − IntDP (G). Since
IntDP (G) is a D-preopen set then X − IntDP (G)) is a D-
preclosed set. Then

ClDP (X −G) ⊆ ClDP [X − IntDP (G)] = X − IntDP (G)

. For the other side, let x /∈ ClDP (X − G). Then by Theo-
rem(4.5), there is a D-preopen set N containing x such that
N ∩ (X −G) = ∅. Then x ∈ N ⊆ G, that is, x ∈ IntDP (G).
Hence x /∈ X − IntDP (G). Therefore X − IntDP (G) ⊆
ClDP (X −G).

THEOREM 4.12. For a subset G ⊆ X of D-metric space
(X,D) the following hold:

(1) IfM is a D-open set inX thenClDP (G)∩M ⊆ ClDP (G∩M).
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(2) IfM is a D-closed set inX then IntDP (G∪M) ⊆ IntDP (G)∪
M .

PROOF. (1) Let x ∈ ClDP (G) ∩M . Then x ∈ ClDP (G) and
x ∈ M . Let V be any D-preopen set in (X,D) containing
x. By Theorem(3.6), V ∩ M is D-preopen set containing x.
Since x ∈ ClDP (G) then by Theorem(4.5), (V ∩M)∩G 6= ∅.
This implies, V ∩ (M ∩ G) 6= ∅. Hence by Theorem(4.5),
x ∈ ClDP (G ∩M). That is, ClDP (G) ∩M ⊆ ClDP (G ∩M).

(2) Since M is a D-closed set X then by the part(1) and Theo-
rem(4.11),

X − [IntDP (G) ∪M ] = [X − IntDP (G)] ∩ [X −M ]

= [ClDP (X −G)] ∩ [X −M ]

⊆ ClDP [(X −G) ∩ (X −M)]

= ClDP (X − (G ∪M))

= X − (IntDP (G ∪M)).

Hence IntDP (G ∪M) ⊆ IntDP (G) ∪M .

LEMMA 4.13. For a D-metric space (X,D) and G ⊆ X , x ∈
ClD(G) if and only if for all ε > 0, ODε (x) ∩G 6= ∅.

PROOF. Let x ∈ ClD(G) and ε > 0. If ODε (x) ∩ G = ∅
then G ⊆ X − ODε (x). Since X − ODε (x) is a D-closed set con-
taining G, then ClD(G) ⊆ X − ODε (x) and x ∈ ClD(G) ⊆
X − ODε (x). Hence this is contradiction, because x ∈ ODε (x).
Therefore ODε (x) ∩G 6= ∅.
Conversely, Let x /∈ ClD(G). Then X − ClD(G) is a D-open set
containing x. Then there is ε > 0 such thatODε (x) ⊆ X−ClD(G)
Hence by hypothesis, ODε (x) ∩ G 6= ∅. But this is contradiction,
because ODε (x) ⊆ X − ClD(G) ⊆ X −G.

THEOREM 4.14. A subset G ⊆ X of D-metric space (X,D)
is a D-preopen set if and only if G ⊆ IntD(ClD(G)).

PROOF. Suppose that G is a D-preopen set. Let x ∈ G be arbi-
trary point. Then there is δ > 0 such that for every y ∈ ODδ (x),
ODε (y) ∩ G 6= ∅ for every ε > 0. By Lemma(4.13), we get
that ODδ (x) ⊆ ClD(G). That is, x ∈ IntD(ClD(G)). Hence
G ⊆ IntD(ClD(G)).
Conversely, Suppose that G ⊆ IntD(ClD(G)) and x ∈ G is ar-
bitrary point. Then x ∈ IntD(ClD(G)). That is, there is δ > 0
such that ODδ (x) ⊆ ClD(G). Hence for every y ∈ ODδ (x),
ODε (y) ∩G 6= ∅ for every ε > 0. Hence G is a D-preopen set.

For a subsetG of D-metric space (X,D) the D-frontier operator of
G is defined by

ΓDP (G) = ClDP (G)− IntDP (G).

THEOREM 4.15. For a subset G ⊆ X of D-metric space
(X,D), the following hold:

(1) ClDP (G) = ΓDP (G) ∪ IntDP (G).

(2) ΓDP (G) ∩ IntDP (G) = ∅.
(3) ΓDP (G) = ClDP (G) ∩ ClDP (X −G).

PROOF. Note that

(1) ΓDP (G) ∪ IntDP (G)

= (ClDP (G)− IntDP (G)) ∪ IntDP (G)

= [ClDP (G) ∩ (X − IntDP (G))] ∪ IntDP (G)

= [ClDP (G) ∪ IntDP (G)] ∩ [(X − IntDP (G)) ∪ IntDP (G)]

= ClDP (G) ∩X = ClDP (G).

(2) It is clear from the definition of ΓDP (G).
(3) By Theorem(4.11),

ΓDP (G) = ClDP (G)− IntDP (G) = ClDP (G)

∩(X − IntDP (G))

= ClDP (G) ∩ ClDP (X −G).

This is the desired.

COROLLARY 4.16. For a subset G ⊆ X of D-metric space
(X,D), ΓDP (G) is D-preclosed set in (X,D).

PROOF. By Theorem(4.9) and the part(3) of the last theo-
rem.

THEOREM 4.17. For a subset G ⊆ X of D-metric space
(X,D), the following hold:

(1) G is a D-preopen set if and only if ΓDP (G) ∩G = ∅.

(2) G is a D-preclosed set if and only if ΓDP (G) ⊆ G.

(3) G is both D-preopen set and D-preclosed set if and only if
ΓDP (G) = ∅.

PROOF. (1) Let G be a D-preopen set. Then IntDP (G) = G.
Then by Theorem(4.15),

ΓDP (G) ∩G = ΓDP (G) ∩ IntDP (G) = ∅

Conversely, suppose that ΓDP (G) ∩G = ∅. Then

G− IntDP (G) = [G ∩ ClDP (G)]− [G ∩ IntDP (G)]

= G ∩ (ClDP (G)− IntDP (G))

= G ∩ ΓDP (G) = ∅.

That is, IntDP (G) = G. Hence G is a D-preopen set.
(2) Let G be a D-preclosed set. Then ClDP (G) = G. Then

ΓDP (G) = ClDP (G)− IntDP (G) = G− IntDP (G) ⊆ G.

Conversely, let ΓDP (G) ⊆ G. Then by Theorem(4.15),

ClDP (G) = IntDP (G) ∪ ΓDP (G) ⊆ IntDP (G) ∪G ⊆ G.

That is, ClDP (G) = G. Hence G is D-preclosed set.
(3) Let G be both D-preclosed set and D-preopen set. Then

ClDP (G) = G = IntDP (G). Then

ΓDP (G) = ClDP (G)− IntDP (G) = G−G = ∅.

Conversely, suppose that ΓDP (G) = ∅. Then ClDP (G) −
IntDP (G) = ∅. Since IntDP (G) ⊆ ClDP (G) then ClDP (G) =
IntDP (G). Since IntDP (G) ⊆ G ⊆ ClDP (G) then

ClDP (G) = G = IntDP (G).

That is, ClDP (G) = G. Hence G is both D-preclosed set and D-
preopen set.
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