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ABSTRACT 

Water treatment can be promoted through keen consideration 

of raw water quality parameters (Turbidity and pH). This 

paper discusses the development of a real-time water quality 

monitoring system using wireless sensor networks. At first, 

we present performance experiments on LoRa technology 

connectivity for wireless sensor networks in a rural set up of 

Dedan Kimathi University of Technology in Kenya. The 

specific sensors used for the developed system included: The 

DFRobot gravity Arduino turbidity sensor and the DFRobot's 

Gravity Analog pH Sensor. The sensed data values of these 

parameters were relayed to a gateway by a LoRaWAN 

transceiver. The gateway then uploaded the received 

parameter data values to The Things Network platform which 

was interfaced with a Google Cloud Platform, where an 

InfluxdB Virtual Machine database stored the received data. A 

web-based application (Dash Plotly app) was developed and 

interlinked with the database for analysis and visualization of 

the received data in real time. The system was deployed at the 

Nyeri Water and Sanitation Company treatment plant based at 

Nyeri town, Kenya, from 4th November, 2020 to 4th January, 

2021. The dataset obtained contained a total of 2,658 records, 

each collected after every 30 minutes.  Using a subset of 291 

records, extensive experiments were performed for the 

evaluation and assessment of machine learning anomaly 

detection algorithms of the Local Outlier Factor and the 

Robust Random Cut Forest for each of the two parameters; 

Turbidity and pH. From analysis results, the Local Outlier 

Factor algorithm outperformed its counterpart.   

General Terms 
Water quality, anomalies, machine learning, data 

Keywords 

Water quality monitoring; wireless sensor networks; anomaly 
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1. INTRODUCTION 
Human activities have various effects on the environment 

which have adversely impacted on human health in many 

ways [1]. Developing countries have been the most affected 

by the growth of numerous slums, poor sanitation, and post-

mining effects. The collective effect heightens a deteriorating 

environment. Environmental monitoring programs and 

systems have therefore been established globally to promote 

environmental sustainability [2]. For this research, we shall 

focus on water quality systems. 

Freshwater management has faced severe challenges in many 

world economies. These challenges are due to escalating 

competition for freshwater from many quarters of the 

ecosystem and human activities. The overexploitation of 

freshwater has reduced its availability for agricultural uses. As 

a consequence, poverty alleviation has become more difficult 

because agricultural development is a critical contributor to its 

reduction. Since water is an integral contributor to food 

security [3], the 2002 World Summit on Sustainable 

Development focused on water management and its relation to 

the Millennium Development Goals (MDGs) [4]. The 

consensus of the summit was that for water resource 

sustainability to be achieved, these resources should be 

exploited with care, bearing in mind their importance to future 

generations. As is, the current exploitation trends and 

competition for water resources fail to guarantee that the 

envisioned sustainability will be achieved. Therefore, all 

stakeholders were tasked to make rational decisions, 

projections, and plans to exploit and manage water resources 

sustainably. It was agreed that a novel universally accepted 

approach must be employed at all levels of society if water 

management goals are to be achieved [4]. 

In the early 2000s, new technology was integrated into water 

quality management (WQM) to remediate some limitations in 

the manual methods employed in the previous five decades. 

Notably, microelectronic mechanical sensors, fibre optics, 

laser technology, biosensors, among other sensors, 

revolutionized water quality analysis [5], [6]. These sensors 

identify various aspects of water quality in situ. Moreover, the 

advanced technology introduced water telemetry, which 

enhanced the acquisition of water quality data and 

accompanying monitoring procedures. Satellite technology 

also facilitated the acquisition of water images used for 

approximation of different water quality parameters [7]. 

Lakes, rivers, springs and seas, among other water bodies 

could also be monitored using visualization architectures for 

water quality courtesy of modern technology [5], [8]. 

The introduction of wireless sensor networks (WSNs) further 

bolstered WQM due to improved communication systems. 

Their ease of operation has made them increasingly popular. 

These networks have promoted quick capture, transmission 

and analysis of data relating to the environment. Application 

of WSNs in WQM procedures has lowered the sensing costs 

and increased the amount of data and sampling points 

analyzed at any particular moment. The WSNs also have an 

in-built capability to transfer data by utilizing low power 

techniques. This capability enhances the easy remote receipt 

of data from numerous data sensors and points. Therefore, the 

new technology is more appealing than the original manual 

method. 
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Many countries have continually faced challenges in 

sustaining the supply of safe drinking water. Wireless sensor 

networks are a potential solution to water quality management 

because of their effectiveness, long-term affordability, and 

ease of use. They provide sufficient control capabilities to the 

research community since monitoring and evaluation of water 

quality are done remotely, quickly, and devoid of human 

interference. However, the communication sector poses a 

formidable obstacle to this proposed solution. Proper 

communication over these WSN requires long-lasting 

batteries, low-cost technology, and above all, the correct 

coverage.  

This research developed a real-time and low-cost water 

quality monitoring system based on wireless sensor networks. 

The major goals include: Determining the range of coverage 

and the strength of connectivity for Long-Range (LoRa) 

technology in a rural setting; accurate calibration and 

integration of the pH and the turbidity sensors to be used in 

the sensor node; Fabrication, testing and deployment of the 

developed sensor nodes for water quality parameter 

measurement; and finally, the development of a machine 

learning anomaly detection algorithm for the monitored 

parameters. 

The rest of the paper is organized as follows: Section 2 

describes the theoretical background of water body 

monitoring systems. Section 3 gives an overview of the 

proposed methodology, and Section 4 presents the results of 

the proposed methodology. Finally, the conclusion and future 

work are outlined in Section 5.  

2. PREVIOUS WORK  
In the last two decades, various researchers have submitted 

that a WSN is the most suitable method of WQM [9]. Online 

platforms have also been increasingly used to analyze data 

and automatically discern water quality problems in the past 

few years [10]. Research indicates that the WSNs method 

overcomes most of the limitations experienced in the 

traditional manual based in situ and traditional manual lab-

based methods. Unlike the traditional approaches, the WSNs 

method can replace outdated and expensive equipment with 

low-cost sensors. They eliminate the need for the 

transportation of data samples to the laboratory, thereby 

saving time, and reducing costs in the process.  The training 

of workers, collection of samples, data recording, and data 

analysis with the WSNs has proven cheaper when compared 

to the traditional WQM techniques [6], [10], [11]. Therefore, 

the WSNs method is currently more plausible than its 

traditional competitors.  

The WSNs can be designed to track the quality of water in 

freshwater sites. However, various aspects that must be 

considered before its implementation include; sensing abilities 

of the nodes, the level of signal processing, network layout, 

and whether the sensors are likely to use acoustic or radio 

communication. The WSNs can be used to track the water 

quality parameters such as the pH, temperature, turbidity, and 

the level of dissolved oxygen in water [12], [13], [14], [15]. 

However, there seems to be insufficient research towards 

incorporation of machine learning algorithms in anomaly 

detection. On energy management schemes, methods have 

been proposed and WSNs have been configured to go on sleep 

mode when not in use [16], a method that is adopted in this 

research. The Local Outlier Factor [17] and the Robust 

Random Cut Forest [18] are among the most popular and 

appropriate anomaly detection algorithms for time series 

water quality data. 

3.  METHODOLOGY 

The adopted methodology is represented by the block diagram 

in Figure 1.  

 
Fig 1: Methodology block diagram 

3.1 LoRa Connectivity and Range 

Evaluation 
An experimental evaluation of the proprietary parts of LoRa 

Technology were conducted to ascertain if it performs as 

advertised. The aim of this procedure was two-fold: To 

conduct performance experiments on LoRa connectivity and 

range evaluation for wireless sensor networks; and to present 

and discuss the results obtained in regards to connectivity and 

range evaluation for purposes of the developed WQM system. 

Measurement of the outlined parameters were conducted at 

the Dedan Kimathi University of Technology, Central Kenya, 

at different times throughout the day over several days. End 

devices that sent payloads periodically to the base station 

were deployed at different locations away from the base 

station. These locations were 100m apart, at a 1km path range 

along a line of sight (LoS) from a 2.5m stand node as shown 

in Figure 2. For every transmitted payload, there was a 

measure of the Received Signal Strength (RSSI), which is 

used in the connectivity and range of evaluation studies 

hereof. 

 
Fig 2: Test Points Geographical Locations. [Google Maps] 

3.1.1 Base Station 
The configured and installed LoRaWAN Industry gateway at 

the Dedan Kimathi University of Technology was used 

(Figure 3). The location of the gateway is approximately 25 

meters above the ground, on the roof of a centrally situated 

building (The Resource Center) at the university. 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 21, February 2021 

37 

 
Fig 3: The LoRaWAN Industry gateway (MultiTech 

Conduit) 

3.1.2 End Device 
The end-device was an STM32 Nucleo board (Figure 4), 

equipped with a LoRaWAN Transceiver Shield. While taking 

the measurements, the nodes were powered by 9V batteries. 

The transmit power was +14 dBm at a frequency of 868MHz. 

For on-ground measurements, the node was attached to a 

stand, approximately 2.5 m height of the ground. Each device 

was registered on The Things Network (TTN) platform, 

which forwarded data to the database for storage after 

receiving it from the device.  

 
Fig 4: STM32 Nucleo board, with a LoRaWAN 

Transceiver Shield 

3.2 Raw Water Quality Parameters 
The developed system studied and reviewed the parameters of 

turbidity and pH; both which determine water treatment 

procedures. Equivalent sensor calibration methodologies were 

followed for the pH and turbidity sensors. A lab assessment 

(utilizing standard buffer solutions and reference instruments) 

was conducted at the NYEWASCO water treatment plant 

labs. Significant consideration was given to obtain linear 

responses, mitigate noise, and achieve high accuracy and 

quality resolution. 

3.2.1 Turbidity (TU)  
In this parameter, the level of cloudiness of water caused by 

microorganisms and floating particles is measured. TU is 

obtained by the use of the ISO 7027 approach where infrared 

light scatters at right angles to cross beams. TU is indicated in 

Nephelometric Turbidity Units (NTU). Turbid waters are 

susceptible to escalated growth of microbes as they provide 

sufficient food and shelter for pathogens. 

The DFRobot gravity Arduino turbidity sensor (Figure 5), was 

used to detect the opaqueness levels of water. It utilizes light 

to sense the suspended solid particles that affect the 

transmission and scattering of light. The sensor operates at 

voltage of 5V DC and a maximum 40 mA. A temperature 

range of between 5℃ and 90°C proves ideal for this sensor. Its 

response time is 500ms. 

 

 
Fig 5: The DFRobot gravity Arduino turbidity sensor 

interfaced with Arduino UNO R3 Board for calibration 

To ascertain the provided equation, a number of standard 

solutions (0, 20, 40, 100, 200, 1008 and 4000 NTU) available 

at NYEWASCO water quality laboratory were used to carry 

out secondary calibration. This exercise was conducted on 

Wednesday, August 2020 at a room temperature of 22° C. 

Using a turbidimeter as a primary instrument, the turbidity of 

these standard solutions was measured and the experiments 

repeated with this sensor while records were being kept. 

3.2.2 pH 
pH is the level of acidity or alkalinity of water. It is usually 

indicated by the use of a negative logarithm of the 

concentration of hydrogen ions in water. If the pH of water 

suddenly changes by a minimum of 0.5 pH units, there is a 

reason to suspect contamination. 

A  DFRobot's Gravity Analog pH sensor to gauge the solution 

pH and mirror its acidity or alkalinity was deployed for this 

framework (Figure 6). Its activity voltage ranges between 3.3 

to 5.5V, and an accuracy of ±0.1 at 22℃; recognition scope of 

0 to 14, and activity temperature range of between 5 and 

60°C. Its response time is stipulated to be one minute and a 

resolution of 0.01. 

 

 
Fig 6: DFRobot's Gravity Analog pH sensor interfaced 

with Arduino UNO R3 Module for calibration 

Thereafter, the pH of several solutions was obtained using the 

Kenya Bureau of Standards calibrated pH meter alongside our 

sensor probe. This exercise was conducted at NYEWASCO 

water quality laboratory on Wednesday, August 2020 at a 

room temperature of 21℃. This was meant for result 

validation purposes. 

3.3 Sensor Node Fabrication and 

Deployment 
Printed circuit boards (PCBs) play a very crucial role in 

development of micro-controlled systems. They allow circuits 

to be realized with a minimum number of connectors and 

hence optimization of the occupied space on a fabricated 
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PCB. For this prototype, the STM32 Nucleo F466RE 

microcontroller was used. The schematic and layout of the 

STM32 Nucleo F466RE microcontroller board were prepared 

using the KiCad 4.0.7 software, a suite for electronic design 

automation. The fabricated sensor node before packaging is 

shown in Figure 7. 

 

 
Fig 7: Sensor Node PCB Fabrication Design interfaced 

with the STM32 Nucleo board and the LORAWAN 

Transceiver 

The central measurement node successfully fabricated was 

deployed at a local water treatment company in Kenya, as 

shown in Figure 8, in the raw water section on the 4th of 

November 2020 to the 4th of January 2020 as shown in Figure 

8. The device successfully collected raw water pH and 

turbidity every 30 minutes for 60 days. 

 
Fig 8: The Central Measurement Node deployed 

3.4 System Energy Management 
The general power utilization includes that of the focal 

measurement sensor hub, and the LoRaWAN transceiver 

module that sends data on water quality, and it operated at 

about 50mA at 5V working voltage per minute. Regular 

sensors expend large amounts of power. Many coordinated 

circuits, including the STM32 Nucleo board, did not 

adequately supply the power of such intensities. Interfacing 

these sensors and the Nucleo board power pins directly 

constantly could harm it.      To overcome this, an H-Bridge 

motor control circuit utilizing the L293D Motor Driver IC to 

connect the sensors and the Nucleo board was deployed. This 

also enabled sleep mode for 58 minutes within an hour of 

operation of the node. 

 

 

3.5 Data and the Anomaly Detection 

Algorithm Development 
In this section, the anomaly detection techniques of the local 

outlier factor (LOF) and the robust random cut forest (RRCF) 

are evaluated thoroughly. A subset of the dataset, with 291 

records was extracted considering a region with graphically 

notable anomalies, and used as the ground truth. A section of 

the dataset between 11th and 18th November 2020 (7 days) was 

used. It was then manually examined and all the outlier 

instances identified and later analyzed using the algorithms as 

depicted in Figure 9. The findings for every parameter, with 

each algorithm are discussed in the results section. 

 
Fig 9: Anomaly Detection Algorithms Evaluation Process 

4. RESULTS AND DISCUSSION 

4.1 LoRa Connectivity and Range 

Evaluation 
The value range of typical LoRa RSSI is -120 dBm to -

30dBm. At 100m away from the gateway, a mean strength of 

-102.7 dBm was recorded, while at 200m, the mean signal 

strength was -106.5 dBm. A complete record of the computed 

mean RSSI values for every test location are plotted in Figure 

10. The best strength was realized at test location 3 (300m), 

while it is notable that this value decreased (worsens) as we 

moved to test locations away from the gateway. Outlier RSSIs 

were realized in test locations 3, 4, 8, and 9 and they are 

plotted as individual points. The highest notable degree of 

dispersion (spread) and skewness in the RSSI is easily 

observed with test locations 1, 2, 4 and 5, whereas test 

location 8 depicts the contrary. 

 
Fig 10: The Received Strength Whisker and Box Plots for 

the 10 Test Locations 

4.2 Sensors Calibration 

4.2.1 The pH Sensor 
For three standard solutions, values of both the pHmeter and 
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our sensor probes were recorded. A plot of the results (Figure 

11) gave a correlation co-efficient approximately equal to one 

to ascertain proper calibration procedures. 

 
Fig 11: pH Standard Solutions comparison of our probe 

against a standard calibrated pHmeter 

4.2.2 Turbidity Sensor 
During validation of the measurements of the Gravity 

DFRobot Arduino sensors using a turbidimeter as a primary 

instrument, the results were obtained and graphed in Figure 

12. With a correlation co-efficient of one, the probe was 

considered effectively calibrated. 

 
Fig 12: Turbidity Standard Solutions comparison of our 

probe against a standard calibrated turbidimeter 

4.3 Anomaly Detection Algorithms 

4.3.1 Dataset 
Table 1 below shows a subsection of the 2,658 records of both 

turbidity and pH that were collected in the period of 60 days. 

Table 1: Turbidity and pH Dataset 
      time turbidity pH 

0 2020-11-04 11:00:31.822439+00:00 21.063435 7.34 

1 2020-11-04 11:01:22.124333+00:00 20.868153 7.33 

2 2020-11-04 11:01:51.663062+00:00 20.584553 7.32 

3 2020-11-04 11:02:29.373718+00:00 21.185328 7.33 

4 2020-11-04 11:03:45.517010+00:00 21.063435 7.32 

... ... ... ... 

2653 2021-01-04 07:53:20.987423+00:00 10.611506 7.35 

2654 2021-01-04 08:23:37.035804+00:00 17.975997 7.35 

2655 2021-01-04 08:53:53.104009+00:00 17.734662 7.34 

2656 2021-01-04 09:24:09.578901+00:00 15.094176 7.36 

2657 2021-01-04 09:54:25.214766+00:00 14.611506 7.36 

2658 rows × 3 columns 

The output plot diagram for turbidity data in Figure 13 clearly 

shows that there are several instances which are far from the 

others and therefore, anomalies are evident. The subset under 

testing is highlighted. 

 
Fig 13: Turbidity Dataset for the Sixty (60) days 

Similarly, water pH data in Figure 14 below shows existence 

of outliers. The subset that was considered as the test data is 

shown in the round corner box. 

 
Fig 14: pH Dataset for the Sixty (60) days 

4.3.2 pH 

4.3.2.1 Local Outlier Factor  
The local outlier factor algorithm was used to detect the water 

pH outliers shown in Table 2. In Figure 15, the red stars 

diagram are the 63 instances detected as anomalies in the pH 

data using the number of neighbors,        . The algorithm 

took 21 milliseconds to determine the anomalies. There were 

no notable false alarms as well as undetected outliers. 

Choosing an optimal k was essential for detection 

performance. For a value of k too small or very large, the error 

went up due to under-fitting. 

Table 2: pH outliers as detected by the LOF algorithm 

time                    pH 

2020-11-11 01:11:34.389403+00:00 7.39  

2020-11-11 03:42:54.674932+00:00 7.36  

2020-11-11 18:12:35.713854+00:00 7.40  

2020-11-11 23:15:16.261228+00:00 7.36  

2020-11-12 00:15:48.373825+00:00 7.36  

... ... ... 

2020-11-17 05:17:04.412038+00:00 7.37  

2020-11-17 06:47:52.593118+00:00 7.34  

2020-11-17 14:53:25.015789+00:00 7.36  

2020-11-17 18:25:17.425846+00:00 7.36  

2020-11-17 22:57:41.959856+00:00 7.34  

63 rows × 2 columns 
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Fig 15: A plot of LOF pH outliers 

4.3.2.2 The Robust Random Cut Forest 
The pH anomalies detected by the RRCF are shown in Table 

3 and were plotted as shown in Figure 16. It was not easy find 

a feasible threshold to split the outliers and therefore the top 

61 records having the highest outlier scores were identified. A 

significant number of point outliers from the beginning of the 

subset, that were detected by the LOF algorithm were not 

detected; such as the pH record 7.39 [2020-11-11 

01:11:34.389403+00:00]. Also, this method takes too longer 

for the detection process (2.51 seconds) compared the LOF 

algorithm which only took milliseconds. 

Table 3: pH outliers as detected by the RRCF algorithm 

time                    pH 

2020-11-11 18:12:35.713854+00:00 7.40  

2020-11-11 23:15:16.261228+00:00 7.36  

2020-11-12 00:15:48.373825+00:00 7.36  

2020-11-12 00:46:04.433087+00:00 7.39  

2020-11-12 01:16:20.473824+00:00 7.36  

... ... ... ... 

2020-11-17 05:17:04.412038+00:00 7.37  

2020-11-17 06:47:52.593118+00:00 7.34  

2020-11-17 14:53:25.015789+00:00 7.36  

2020-11-17 18:25:17.425846+00:00 7.36  

2020-11-17 22:57:41.959856+00:00 7.34  

61 rows × 3 columns 

 

 
Fig 16: A plot of RRCF pH anomaly scores 

4.3.3 Turbidity 

4.3.3.1 The Local Outlier Factor 
For the turbidity outliers, the algorithm detected a total of 75 

outliers as highlighted in Table 4. These anomalies are plotted 

as shown in Figure 17. The red stars are the 75 instances 

detected as anomalies in the turbidity data with the value of 

number of neighbors        . It took the LOF algorithm 

38.9 ms to complete this process. Once again, finding an 

optimal value of k was essential for detection performance, 

just as it was the case for the pH data. There were no notable 

false alarms as well as undetected outliers. 

Table 4: Turbidity outliers as detected by the LOF 

algorithm 

time                   turbidity 

2020-11-12 21:57:18.752276+00:00 33.856159  

2020-11-12 22:27:34.814333+00:00 35.975997  

2020-11-12 22:57:50.858115+00:00 39.486692  

2020-11-12 23:28:06.931813+00:00 38.856159  

2020-11-12 23:58:22.991919+00:00 37.611506  

... ... ... 

2020-11-17 21:57:09.848484+00:00 50.094176  

2020-11-17 22:27:25.894124+00:00 59.856159  

2020-11-17 22:57:41.959856+00:00 77.975997  

2020-11-17 23:27:58.035168+00:00 88.856159  

2020-11-17 23:58:14.065228+00:00 100.975997  

75 rows × 2 columns 

 

 
Fig 17: A plot of LOF turbidity outliers  

4.3.3.2 The Robust Random Cut Forest 
It was not easy to find a feasible threshold to split the outliers 

and therefore the top 67 outlier records having the highest 

scores were listed in Table 5, taking 7.1 seconds. These 

results were plotted as shown in Figure 18. A significant 

number of point outliers that were detected by the LOF 

algorithm were not detected. False alarms are also contained 

in this list: For example, for turbidity record 19.856159 NTU 

[2020-11-11 18:12:35.713854+00:00], whose value is almost 

equal to the next value (only 30 minutes apart) is marked as 

an outlier. Also, this method took longer for the detection 

process compared to the LOF algorithm which only took a 

fraction of a second. 

Table 5: Turbidity outliers as detected by the RRCF 

algorithm 

time                    turbidity  

2020-11-11 18:12:35.713854+00:00 19.856159  

2020-11-12 09:20:37.353014+00:00 8.856159  

2020-11-12 17:55:10.311827+00:00 10.734662  

2020-11-12 21:27:02.699108+00:00 22.975997  

2020-11-12 21:57:18.752276+00:00 33.856159  
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 ... ... 

2020-11-17 19:56:05.608199+00:00 25.094176  

2020-11-17 20:26:21.676559+00:00 39.975997  

2020-11-17 20:56:37.735037+00:00 46.210696  

2020-11-17 22:57:41.959856+00:00 77.975997  

2020-11-17 23:58:14.065228+00:00 100.975997  

67 rows × 3 columns 

 
Fig 18: A plot of RRCF turbidity anomaly scores 

From table 6 and table 7, the LOF algorithm successfully 

detects all the 63 anomalies in the time series water pH subset 

data as well all the 75 anomalies in the time series turbidity 

data. The RRCF algorithm suffers from 19 false anomalies as 

well as missing 27 outliers in the turbidity subset. The case is 

similar for 2 undetected point anomalies in the pH subset data. 

Additionally, the LOF algorithm is much faster than the 

RRCF algorithm on detecting anomalies for both turbidity and 

pH data. While the LOF algorithm only took milliseconds, the 

RRCF algorithm consumed a number of seconds, for both the 

subsets. 

Table 6: pH Dataset Algorithms Performance Evaluation 
Algorithm Anomalies False 

Anomalies 

Undetected 

Anomalies 

Execution 

Time 

LOF 63 0 0 21 ms 

RRCF 61 0 2 2.51s 

 
Table 7: Turbidity Dataset Algorithms Performance 

Evaluation 
Algorithm Anomalies False 

Anomalies 

Undetected 

Anomalies 

Execution 

Time 

LOF 75 0 0 38.9 ms 

RRCF 67 19 27 7.1s 

 

5. CONCLUSION 
This article presents the development of a low-cost sensor 

nodes network that can be used to perform automated water 

quality monitoring on raw water in water treatment plants. 

First and foremost, there were LoRa technology studies on 

range of coverage and connectivity using the RSSI parameter 

of the transceiver signals in the DeKUT.  The best RSSI was 

realized in places near the gateway (100m away), which was a 

mean strength of -102.7 dBm, while the least was recorded at 

the furthest point of testing (1 km), whose mean signal 

strength was -113.7 dBm. The proposed sensor node contains 

two water quality sensor probes that can be used to monitor 

water quality. These include the DFRobot gravity Arduino 

turbidity sensor and the DFRobot's Gravity Analog pH sensor. 

The developed system is cheap, power saving, lightweight, 

and it can comfortably remotely transmit data using LoRa 

technology. Besides, this paper presents a comprehensive 

evaluation of two different machine learning anomaly 

detection algorithms on two parameters from a water sensor 

node at the NYEWASCO water treatment plant raw water 

section. The subset data that was used in algorithm evaluation 

had 291 records for both parameters, extracted from the 2,658 

that were collected over the deployment period. The LOF 

algorithm emerged superior to the RRCF algorithm in 

contamination event detection and hence a practical water 

contamination detection algorithm that can trigger alarms to 

alert the analyzers when contamination is detected. The 

framework is more suitable to implement in large-scale to 

collect and analyze raw water quality data in water supply 

firms, and water authorities. 

We recommend that further work can be done on LoRa 

technology connectivity and range evaluation to come with a 

wireless propagation model in a rural set up of DeKUT. This 

can incorporate other factors which include free space 

attenuation, shadowing, reflection and transmission, 

diffraction, among others. The developed water quality 

management system can be installed in multiple locations in 

water distribution networks to gather water quality data and 

classify sensor responses in practical deployment. This is 

because water is a vast network of interconnected bodies such 

as rivers, lakes, swamps, dams and other sources, and if these 

linked parts contain different levels of pollution, assessing 

water quality may be a complicated endeavor. Moreover, 

more water quality can be incorporated to the developed 

system and this can make it usable in drinking water quality 

parameter monitoring. Besides turbidity and water pH, other 

water quality parameters include: Total Dissolved Solids, 

Oxygen Reduction Potential, Temperature, Electrical 

Conductivity, Dissolved Oxygen, Free Residual Chlorine, 

Nitrates, to mention just but a few. Additionally, further 

investigation on the productivity of anomaly detection 

algorithms given several types of contaminants present in 

water should be done. 
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