
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 22, February 2021

13

Exploring the Aspects of Rework in Global Software

Development

Ritu Jain
Assistant Professor, Medi-Caps University,

Indore, MP, India

Ugrasen Suman
Professor, SCSIT, Devi Ahilya University,

Indore, MP, India

ABSTRACT
Global software development (GSD) is a software

development setting in which practitioners residing in

different countries work together as a team to accomplish a

software project. This paradigm is rapidly adopted by

numerous software companies in order to reduce cost and

time. However, these cost savings are seldom achieved due to

geographical, temporal, socio-cultural and linguistic distances.

These distances often cause misinterpretations and conflicting

perceptions about the product to be built and often induce lots

of rework. Excessive rework significantly increases risk of

project failure. However, little research has been conducted on

the aspects of rework in GSD. In order to reduce rework in

GSD, aspects of rework need to be conceptualized. Also, cost

associated with rework need to be measured. Thus, in this

paper rework cycle and its associated drivers are proposed for

GSD setting. A metric is also proposed to calculate cost of

rework in GSD. The research work has also been validated

through industrial survey.

Keywords
Global software development, rework cycle, rework cost,

rework drivers, rework metric.

1. INTRODUCTION
GSD is a prevalent software development trend adapted by

numerous software companies to accrue cost and time

savings. Overall cost of a software project can be reduced by

exploiting salary differences among members belonging to

different economies. This approach can also reduce overall

development time by facilitating round the clock development

due to differences in time zone among different locations.

However, these benefits are partially achieved due to

geographical, temporal, socio-cultural and organizational

distances. Geographical distance among team members

inhibits formal as well as informal communication, project

awareness, effective coordination, trust, and knowledge

management [1]. Temporal distance among development sites

increases feedback time, decreases synchronous

communication, limit coordination and collaboration [2].

Team members belonging to different countries have different

socio-cultural values, varied frame of references, incompatible

work ethics which can lead to in-cohesiveness and distrust. It

also limits communication and increases the probability of

misunderstandings due to differences in native language and

accent. Sometimes, team members also belong to different

organizations and thus can face issues related to mismatch of

processes, tools, and work culture, which can lead to

organizational distance. The discrepancies due to

geographical, temporal, socio-cultural, and organizational

distances often lead to ambiguities, conflicts, defects and

subsequently lots of rework during software development [1].

Approximately 40-50% of the software development effort is

being wasted on rework [5, 6, 7]. This rework can eventually

lead to failure of projects [3, 4].

Rework can be generated due to substandard software

development process, ineffective project management

techniques, and loose practitioner attitude [8, 9, 10].

Effectiveness of a software development process can be

immensely improved by reducing the rework [5]. According

to lean principles, rework is considered as one of the seven

wastes which is experienced during software development.

Boehm et al has identified avoidance of rework as one of the

main strategies to improve productivity, reduce development

time, and cost [13]. It was also found that among several

approaches for reducing software development effort,

initiatives for reducing rework provide maximum returns [5].

Still, GSD project management neither considers rework

during planning nor measures it during project execution.

Thus, it needs to be reduced in order to improve efficiency

and productivity [11, 12]. In order to reduce rework during

software development, it is necessary to understand the

concept of rework with regard to global software

development. Thus, we have proposed a rework cycle for

GSD to conceptualize the concept of rework for GSD

projects. We have also identified rework drivers which can

influence the amount of rework in GSD setting. A rework cost

metric which can be used to calculate the amount of effort

expended for rework in a module is formulated for GSD

projects. Finally, the proposed concepts are validated through

industrial survey. Thus, this research would set a ground for

researchers to further investigate the aspects of rework in

GSD. It can help practitioners to understand the aspect of

rework in GSD in order to save valuable cost, time, and effort

of GSD projects

The paper is organized as follows. Section 2 presents a brief

overview of rework in software development and summarizes

the related work. Section 3 presents the proposed rework

cycle and associated rework drivers for GSD. Section 4

describes the proposed metric for calculating cost of rework.

Section 5 presents industrial validation of the proposed

concepts and finally, section 6 provides concluding remarks.

2. BACKGROUND AND RELATED

WORK

Rework implies to an activity of redoing or modifying a work

which was implemented previously. In software development

setting, rework to some extent is inevitable. However,

excessive rework (more than 20%) could indicate problems in

software development process and project management

activities whereas, meagre rework (less than 10%) could be a

sign of inadequate reviews, inspections, testing, and

refactoring [7].

14

Figure 1 Negative Impact of Rework in Software

Development

A project is considered as successful, if it is completed

according to the planned schedule as well as budget and

satisfies customers. However, excessive rework results into

cost and schedule overrun. Recurrent rework deteriorates

quality and thus, impedes customer satisfaction. It also

adversely affects team morale and eventually reduces its

productivity [7]. Thus, rework negatively affects the

succeeding factors of a project. Figure 1 illustrates the

negative impact of rework in software development setting.

Scant research has been performed on aspects of rework in

software engineering whereas, in GSD, aspects of rework is

still unexplored. Several researchers have investigated rework

for traditional software development setting. Tonnellier et al.

illustrated a model for rework, quantified it with the help of

mathematical formulation, and suggested a metric for Thales

Airborne Systems [14]. Basili et al. characterized and

modeled the cost of rework for a library of reusable

components. The model proposed by them predicts the rework

cost associated with the component version and classifies it

into either low rework cost or high rework cost category [15].

Damm et al. presented a case study-based model, which

analyzes anomaly metrics to reduce rework in software

development projects. This model detects group of anomalies

that could have been prevented or fixed less costly. It

identifies improvement areas for rework reduction [16].

However, none of the research in software engineering

domain has explicitly investigated the concept of rework cycle

and cost associated with it for GSD projects. Thus, this paper

attempts to explore these aspects of rework in GSD. It would

draw attention of researchers as well as practitioners to further

investigate this software waste to improve the effectiveness of

GSD process.

3. THE REWORK CYCLE
Even though rework is a recurrent software development

activity in GSD, existing project planning and monitoring

methods neither acknowledge nor measure it. In order to

articulate the concept of rework in GSD, we have proposed

the concept of vicious rework cycle during flow of work in a

global software project.

Figure 2 The Rework Cycle in GSD projects

Figure 2 presents the proposed rework cycle. It portrays that

rework in GSD projects can be detected during work is being

done and after work is completed through quality assurance

and defect detection activities. Defects can be induced in

correct work product (correctly completed work) due to

dependencies of correct modules with modules being

reworked. This type of rework is coined as Cascading rework.

3.1. Workflow of Rework Cycle
In a GSD project, dispersed team members collaborate

together to accomplish a planned work. While completing the

work (indicated in Fig. 2 by Work in Transit), quality

assurance activities verify whether the work is being

performed according to the original specifications and

standards. In case of any discrepancy, it has to be reworked

and thus, it is transferred to discovered rework. Otherwise,

after completion, the work would be considered complete.

However, the completed work may contain undiscovered

errors. Thus, it is composed of correct work product and work

product with undiscovered rework. Correct work product is

work without errors, whereas work product with undiscovered

rework is completed work with undetected errors in it. Defect

discovery methods discern defects from undiscovered rework.

As soon as errors are detected, this undiscovered rework will

get transformed into discovered rework that needs to be again

accomplished along with other ongoing works. While

performing rework, some errors may again be introduced in

work being done (work in transit) which would either be

detected during the work or after the work has been

completed.

Furthermore, while correcting the detected errors in

discovered rework, changes may be needed in correctly

implemented work (indicated by correct work product). In

this process, some errors may be incorporated in this correct

work product and some part of it could also turn into

undiscovered rework. Hence, this transformation of work into

rework at three points can occur several times during GSD

project. This vicious cycle of work transforming into rework

is a fact of life in every software development project, but its

recurrence and effects are higher in GSD projects. GSD

rework drivers are the factors which influence rework in

distributed software projects.

3.2. GSD Rework Drivers
These rework drivers can be categorized into causal factors

and process factors which are discussed as follows.

3.2.1. GSD Causal Factors
Geographical, temporal, socio-cultural, linguistic, and

Planned

Work

Work in Transit

Discovered Rework

GSD Rework Drivers

Correct Work Product

Work Product with

Undiscovered

Rework

Cascading

Rework

Rework
Discovery

Rework Discovery

Completed Work

Rework

Cost Schedule Team motivation Quality

Customer Satisfaction Productivity

15

organizational distance act as causal factors for rework in

GSD projects.

3.2.1.1. Geographical distance (GD)
When individuals are geographically distant, they seldom

have opportunity to communicate face to face and must often

depend on synchronous or asynchronous communication

channels, such as telephone calls, video conferencing, or

emails which is not as effective as face-to-face discussions

[17]. It could increase rework as it hampers informal

communication, work visibility, coordination, knowledge

management, information exchange, and progress monitoring

[1, 18, 19].

3.2.1.2. Temporal distance (TD)
It can be imposed by difference in time zones, working hours,

holidays, and weekends [2]. Due to temporal difference,

individuals can use synchronous communication tools only

during temporal overlap and often have to wait for an issue to

be resolved, as the relevant person may be unavailable at that

time [17]. Thus, it increases feedback time, decreases

frequency of synchronous communication, limits coordination

and collaboration, and obstructs knowledge sharing [19, 20].

3.2.1.3. Socio-cultural distance (SD)
When individuals from different nations and with diverse

backgrounds collaborate, they may get frustrated due to

difference in frame of reference, inconsistencies related to

usage of terminologies and incongruous work practices [17].

These differences may lead to misunderstandings. Team

mates belonging to high-wage economy feel threatened to

train and share information with their lower-wage economy

counterparts, which in turn leads to “them and us” culture [1].

3.2.1.4. Linguistic distance (LD)
 Linguistic difference among team members belonging to

different nations hamper formal as well as informal

communication and increase the probability of

misunderstandings due to differences in accent [1].

3.2.1.5. Organizational distance (OD)
Organizational distance may result into incompatibilities

related to processes, standards, tools, and work practices [1].

Diverse process maturity and experience levels can cause

misunderstandings and rework [20].

3.2.2. GSD Process Factors
 In GSD projects, process factors are facets related to GSD

process and project management which, if not contemplated

carefully would induce rework. Among these factors, some

become active only in GSD projects, whereas others influence

rework in every software development project but become

more dominant in GSD.

3.2.2.1. Communication, Coordination and

Collaboration Management (3CM)
 Formal as well as informal communication during software

development is required for generating awareness, solving

issues, monitoring and coordinating development work. It is

also needed for making decisions, creating and maintaining

relations [21]. However, inadequate informal discussions,

lack of face-to-face meetings, restricted synchronous

communication cause difficulties in establishing a unified

understanding about remote members as well as project.

Communication deficiency also impedes interpersonal

relationships, knowledge management, and often leads to

coordination breakdown [3, 22].

In GSD projects, coordination issues, such as inadequate

shared vision, diverse processes, limited informal interaction,

and weak professional as well as social relationships

adversely affect task allocation, management of project

related knowledge, and process synchronization.

Misunderstandings and rework caused due to the

aforementioned issues lead to high coordination costs [23].

Varied national as well as corporate cultures, languages, and

protocols reduce cohesion, cooperation, and trust.

Collaboration within distributed teams requires adequate tool

support, trainings, cross-site delegation, and frequent visits of

management people to offshore locations [24, 25]. Inadequate

communication, coordination, and collaboration mechanism in

GSD setting may induce rework. Frequency, timeliness, and

tools for communication decide the amount of rework induced

in distributed teams [2, 26, 27]. Techniques implemented for

coordination and collaboration dictates the cost of delay,

clarification, and rework in GSD projects [2].

3.2.2.2. Process Management (PM)
 Execution as well as management of GSD projects is more

challenging as compared to collocated projects. Moreover,

processes and techniques initially designed for collocated

projects do not consider the negative impact caused by GSD

distances. Ineffective planning, inadequate experience, and

negligence of these distances can doom GSD projects to

failure. Thus, meticulously planned process and project

management strategy is required to avoid rework in these

projects [1, 18].

3.2.2.3. Knowledge Management (KM)
Effective management of knowledge is particularly essential

in distributed projects. However, geographical and temporal

distances restrict knowledge sharing whereas; socio-cultural

and organizational distances could induce varied

interpretation and obstruct distribution [18]. High attrition rate

of offshore members, abrupt shrinking and expansion of teams

also hamper knowledge management.

3.2.2.4. Team Management (TM)
Members of GSD project team belong to different nations,

may be an employee of different organizations, may have

dissimilar native languages, and can be temporally separated.

These dissimilarities among the members of same team could

crop up misunderstandings, fear, distrust, conflicts,

incoherence, and weak personal relations [18].

3.2.2.5. Vendor Capability (VC)
 In offshore outsourcing, it is difficult for client to choose

and monitor members of vendor team, however, feasibility of

vendor can be checked on the basis of CMMI level, prior

GSD experience, domain expertise, and professional

certifications of team members [1, 18]. In GSD setting,

incapable vendor can induce lots of rework.

3.2.2.6. Customer Management (CM)
Customers and developers may have different viewpoints

regarding conflicting requirements. Insufficient involvement

or unawareness of customer regarding the requirements, and

articulation problems may lead to volatile requirements. These

issues could generate rework in GSD environment [1, 19].

Classification of GSD Rework Drivers into Causal and

Process factors is illustrated in Figure 3. Rework induced due

to GSD distances can obstruct successful execution of

processes in GSD projects. The following causal factors for

rework in GSD cannot be reduced or removed, but their

effects can be mitigated by regulating the process factors.

16

Figure 3 Rework Drivers in GSD

4. COST OF REWORK
Lord Kelvin, a mathematical physicist and engineer said “If

you cannot measure, you cannot improve it” is perhaps the

best motivation behind using metrics [29]. Rework can

substantially increase the effort required to complete a project.

We have proposed a metric for calculating additional cost

incurred due to rework. The cost of rework can be measured

in terms of additional effort expended due to rework.

Rework cost of a module is sum of effort spent for rework in

that module and effort needed to modify the dependent

modules, which could again provoke rework in their

dependent modules (cascading rework). Thus, cost of rework

in module Mi, Cr (Mi) can be calculated using a recurrence

relation as shown below:

Cr (Mi) =

Where,

Crm (Mi): Effort spent to perform rework in the module Mi.

Here, Crm (Mi) = Cri (Mi) + Crw (Mi)

Cri (Mi): Effort of isolating and analyzing extent of rework

for module Mi

Crw (Mi): Effort of implementing rework in module Mi

 : Sum of rework cost of all the modules Mj having

direct dependencies with module Mi.

The rework cost would depend upon the following rework

cost drivers in GSD projects:

 Dependencies: Number and strength of dependencies

between implemented modules would influence cost of

rework. Large number of strongly dependent modules

would induce cascading changes, thus increase

cascading rework.

 Recurrent modifications: Recurrent modifications in a

module would rupture the underlying design of module

and increase the effort needed for rework.

 Project configuration: Size of a user story, complexity

of a user story, and underlying technology influence

rework cost [29].

 Quality assurance processes: Adequate amount of

quality assurance processes (such as inspections and

reviews) performed during software development would

aid in detecting errors early in development cycle, and

in turn will reduce the cost of rework.

 Duration of incremental release: Very short iterations

(for example, 1.5-2.5-week duration) can increase

schedule pressure which would pressurize members to

complete the tasks without focusing on quality, and

consequently induce rework in later iterations.

Appropriately sized releases can help in detecting errors

early; thus, reduce amount as well as cost of rework

[30].

 Frequency of meetings: Regular distributed meetings of

onshore and offshore members improve project

visibility, detect, and avoid misunderstandings timely

[18].

5. INDUSTRIAL VALIDATION
The concepts proposed by us are validated with the help of

software practitioners. For this, we have performed an

industrial survey through questionnaire. In section 5.1, we

have discussed design of questionnaire as well as survey and

in section 5.2 survey results are discussed.

5.1. Questionnaire Design and Survey
The questionnaire created for industrial survey consists of

three sections; namely, introduction, rework, and professional

details. The introduction section briefly describes the intention

of questionnaire and concisely explains rework. Rework

section contains questions which help in the verification of

concepts proposed by us. First question is related to

verification of factors which influence rework. In question 2,

cost drivers for rework in GSD projects are verified. Question

3 is used to verify the concept of rework cycle and cascading

rework. Here, respondents are asked to verify whether rework

can be cascaded to previously correct and complete dependent

modules which could further induce rework in their dependent

modules, thus forming a rework cycle. In question 4, their

advice was requested about the rework cost metric

(summation of two efforts Cri, Crw for calculating cost of

rework). At the end of questionnaire, they were asked to fill

their personal and professional details such as name, e-mail id,

company’s name/CMM level, job function, and years of

experience in software industry as well as GSD industry.

The questionnaire was created using survey monkey and is

verified by two software practitioners and an experienced

researcher of GSD domain. The link of questionnaire was sent

to software practitioners through email and WhatsApp. In

total, 34 responses were received from software industry,

which were analyzed to interpret the survey results.

5.2. Result of Industrial Survey
Interesting results have been received from software industry

which is analyzed in subsequent subsections. In Section 5.2.1,

contextual information of respondents is briefly described.

Factors influencing amount of rework in distributed projects

are discussed in section 5.2.2. Section 5.2.3 discloses the

impact of the cost drivers on cost of rework in GSD projects.

Section 5.2.4 presents the views of software professionals

about the existence of rework cycle whereas, section 5.2.5

discusses their perception towards the effort components

involved in cost of rework.

5.2.1. Contextual Information of Respondents
Contextual information of respondents provides a general

picture about the individuals who have filled the

questionnaire. Here, a brief summary of contextual

information of respondents is presented. 65% of the

respondents have software industry experience greater than 9

years, whereas 23% of them have experience of 6-9 years.

 Rework

GSD Process Factors

3CM

PM

KM

TM

VC

CM

GSD Causal Factors

GD

TD

SD

LD

OD

17

Rest 12% respondents have experience between 3.5 to 5 years.

Out of these respondents, 44% practitioners are working in

GSD projects from last 8 to 14 years, whereas 38% have GSD

experience between 3.5 to 7 years and rest of them have at

least 2 years of GSD experience. This indicates that

respondents are well experienced and capable of providing

useful insights for the researched topic. Respondents are

working as technical architect, solution architect, project

manager, business analyst, team lead, consultant, or test

engineer in renowned software companies. Thus, the

responses exhibit diverse perspectives for rework in GSD

industry.

5.2.2. Impact of Rework Drivers on Amount of

Rework The result of survey reveals that the identified GSD

rework drivers increase the amount of rework in GSD as

shown in Figure 4. It can be seen that GSD process factors

(3CM, process management, knowledge management, team

management, vendor capability and customer management)

highly influence the rework as compared to causal factors

(GSD distances). From the results, it can also be inferred that

effect of GSD causal factors can be nullified by improving

and establishing effective processes for GSD projects, which

can further reduce rework during development activities.

Figure 4 Impact of Rework Drivers on Amount of Rework

in GSD

5.2.3. Cost Drivers for Rework in GSD
The result of industrial survey for verification of factors

that influence the cost of rework is shown in Figure 5.

Most of the respondents believe that high dependencies,

recurrent modifications, complex user stories, as well as

complicated underlying technology increase the cost

associated with rework. 71% respondents have opinion that

large sized story can increase cost of rework in contrast to

27% who believe that size of story doesn’t affect cost of

rework.

Figure 5 Impact of Factors which Influences Rework Cost

in GSD

Respondents of the survey have two contradictory opinions

about very short incremental release as 60% respondents

believe that it increases rework while 24% respondents

believe that it would decrease cost of rework. We have

discussed the results of industrial survey with few software

practitioners having approximately 13 years of GSD

experience. They have disclosed that rework cost would

actually depend upon the length of iteration, as iteration of 4

to 6 weeks normally decreases cost of rework as it would

promote regular feedbacks from customer and thus, issues

would be identified early as compared to traditional waterfall

approach. Contradictory to this, if the iteration length

squeezes to 3 days to 1.5 week, it could increase rework due

to excessive pressure exerted on team members to accomplish

the decided work before release.

Similarly, regular meetings can also increase or decrease the

rework depending upon their frequency. Daily or twice a day

long meeting can increase rework, as developer would get less

time for development and a reasonable amount of time would

be wasted in the meetings, which would increase work

pressure resulting into rework. In contrast, very short daily

scrums or alternate day short meetings would maintain their

awareness and knowledge about project and aids in timely

resolution of issues, which can decrease rework cost. As

project awareness and knowledge management are also

challenges that are usually faced by GSD practitioners.

5.2.4. Rework Cycle
Rework in some module can be cascaded to previous correctly

implemented dependent modules, which could further induce

rework in their dependent modules. This can result into

vicious rework cycle. Figure 6 reveals that 6% respondents

always waste their effort due to rework cycle. It can be

interpreted that 53% respondents agree that sometimes it is

possible to encounter rework cycle during software

development, whereas 32% of respondents advocate that they

usually encounter rework cycle whereas 9% respondents have

rarely encountered such situation. Thus, it validates the

concept of rework cycle and the proposed underlying theory

of rework cost metric. Discussion with the software

practitioners reveal the fact that the probability as well as

extent of cascaded rework can be significantly reduced, if the

dependent modules to be affected by rework is identified

cautiously; design is modular; dependencies are well

0

5

10

15

20

25

N
u

m
b

er
 o

f
re

sp
o

n
d

en
ts

Greatly Increases Rework

Moderately Increases Rework

Slightly Increases Rework

Doesn't affect amount of rework

0

5

10

15

20

25

30

35

Increases Doesn't Affect Decreases Don't Know

18

identified; developers are highly competent; and any kind of

ambiguities are timely resolved.

Figure 6 Survey Result for Occurrence of Rework Cycle in

GSD

5.2.5. Cost of Rework
Rework cost of a module is sum of effort exerted to isolate

and analyze rework and effort for accomplishing rework.

Figure 7 illustrates that 88% of respondents either strongly

agree or agree with this cost calculation whereas 12% neither

agree nor disagree with the concept and none of them

disagreed. This result in combination with result discussed in

Section 5.2.4 jointly validates the proposed cost metric.

Figure 7 Survey Results for Rework Cost Metric

6. FINAL CONSIDERATIONS

6.1. Discussion
Based on the result of industrial survey, we have derived

several inferences.

● GSD rework drivers influence amount of rework in GSD

projects. We have categorized these factors into causal

factors and process factors. The result of survey indicates

that process factors greatly influence rework in

distributed projects. However, causal factors interfere

with the proper functioning of these process factors in

GSD setting. Thus, both these factors directly or

indirectly influence rework in distributed projects.

● Cost drivers influence the effort needed to perform

rework in a module. High dependencies, recurrent

modifications, large and complicated user stories,

complex technology, very short release cycle, and very

frequent meetings (daily or twice a day) can increase the

cost associated with rework, whereas quality assurance

activities, optimal sized release cycle, short regular

meetings or alternate day meetings can reduce the cost of

rework.

● Result of survey verifies that rework in a module can be

cascaded to previously implemented modules and can

induce rework cycle.

● Survey result verifies that the rework cost of a module is

sum of effort spent for rework in that module and effort

needed to modify the dependent modules.

6.2. Conclusion
Global software development is a prevailing trend which has

fascinated most of the software companies across the world

whereas, rework is a dominant software development waste

that need to be avoided or reduced to improve the

effectiveness of software development. But, in order to avoid

and reduce rework, it need to be conceptualized for GSD

setting. Measurement of effort associated with rework is also

necessary as it also contributes to the overall software

development effort. Thus, in this research work, we have

investigated the aspects of rework in GSD. A rework cycle is

proposed and rework drivers which induce rework in GSD are

explored. A metric to calculate cost of rework for GSD

projects is also proposed. Cost drivers which can influence

rework cost are also identified. The research has been

validated through industrial survey. This study could aid in

improving the effectiveness of GSD processes by reducing

rework. This study would provide a platform for further

research in this domain.

7. REFERENCES
[1] R. Jain, U. Suman, A Systematic Literature Review on

Global Software Development Life Cycle, ACM

SIGSOFT Softw. Eng. Notes. 40 (2) (2015) 1-14.

[2] J.A. Espinosa, E. Carmel, The Impact of Time

Separation on Coordination in Global Software Teams:

A Conceptual Foundation. Softw. Process Improv.

Pract. 8 (4) (2004) 249-266.

[3] M.A. Babar, M. Zahedi, Global Software Development:

A Review of the State-Of The-Art, IT University

Technical Report Series, IT University of Copenhagen.

(2007- 2011).

[4] J.D. Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter,

An Empirical Study of Global Software Development:

Distance and Speed, in Proc. IEEE ICSE '01. (2001) 81-

90.

[5] B. Boehm, V.R. Basili, Software Defect Reduction Top

10 List, Ieee Software. 34(1)(2001) 135-137.

[6] M.S. Krishnan, The Role of Team Factors in Software

Cost and Quality: An Empirical Analysis, Information

Technology & People, 11(1) (1998) 20-35.

[7] R.E. Fairley, M.J. Willshire, Iterative Rework: The

Good, the Bad, and the Ugly, IEEE Computer. 38(9)

(2005) 34-41.

[8] Geneca, Doomed from the Start? Why a Majority of

Business and IT Teams Anticipate Their Software

Development Projects Will Fail. Winter 2010/2011,

Industry Survey (2011).

[9] V. Ramdoo, G. Huzooree, Strategies to Reduce

Rework in Software Development on an Organization in

Mauritius. International Journal of Software

Engineering & Applications. 6(5) (2015) 9-20.

[10] K. Schwalbe, Information Technology Project

Management. 8th ed. Cengage Learning, (2015).

6%

32%

53%

9%

0%

Always

Usually

Sometimes

Rarely

Never

33%

55%

12%

0% 0%

Strongly Agree

Agree

Neither Agree

Nor Disagree
Disagree

Strongly Disagree

19

[11] C. Deephouse, T. Mukhopadhyay, D.R. Goldenson, M.I.

Kellner, Software Processes and Project Performance,

J. Manag Inf Syst.12 (3) (1995) 187-205.

[12] T. Sedano, P. Ralph, C. Péraire, Software Development

Waste, In Proc. IEEE ICSE '17, (2017) 130-140.

[13] B.W. Boehm, P.N. Papaccio, Understanding and

Controlling Software Costs. IEEE Trans. Softw. Eng.

14(10) (1988) 1462-1477.

[14] E. Tonnellier, O. Terrien, Ed., Rework: Models and

Metrics An Experience Report at Thales Airborne

Systems, ser. Complex Systems Design & Management.

Berlin, Heidelberg: Springer. (2012) 119-131.

[15] V.R. Basili, S.E. Condon, K.E.I. Emam, R.B. Hendrick,

W. Melo, Characterizing and Modeling the Cost of

Rework in a Library of Reusable Software Components.

In Proc. ICSE’ 97, (1997) 282-291.

[16] L. Damm, L. Lundberg, C. Wohlin, A Model for

Software Rework Reduction through a Combination of

Anomaly Metrics. J. Syst. Softw. 81 (11) (2008), 1968-

1982.

[17] D.C. Gumm, Distribution Dimensions in Software

Development Projects: A Taxonomy, IEEE Software.

23(5) (2006) 45-51.

[18] R. Jain, U. Suman, A Project Management Framework

for Global Software Development, ACM SIGSOFT

Softw. Eng. Notes. 43 (1) (2018) 1-10.

[19] R. Jain, U. Suman, An Adaptive Agile Process Model

for Global Software Development, IJCSE. 9 (6) (2018)

436-445.

[20] J.D. Herbsleb, Global Software Engineering: The Future

of Socio-technical Coordination, In Proc. FOSE’07,

(2007) 188-198.

[21] M. Paasivaara, C. Lassenius, J. Pyysiäinen,

Communication Patterns and Practices in Software

Development Networks. In Proc: 10th International

Product Development Management Conference,

European Institute for Advanced Studies in

Management, Brysseli, (2003) 783-798.

[22] V. Gomes, S. Marczak, Problems? We All Know We

Have Them. Do We Have Solutions Too? A Literature

Review on Problems and Their Solutions in Global

Software Development, in Proc. IEEE ICGSE’12, Porto

Alegre, Brazil (2012) 154-158.

[23] P.J. Ågerfalk, B. Fitzgerald, H. Holmström, B. Lings,B.

Lundell, EÓ Conchúir, A Framework for Considering

Opportunities and Threats in Distributed Software

Development. in Proc. International Workshop on

Distributed Software Development (2005) 47-61.

[24] M. Bass, J.D. Herbsleb, C. Lescher, Collaboration in

Global Software Projects at Siemens: An Experience

Report, In Proc. IEEE ICGSE’07 (2007) 33-39.

[25] B. Sengupta, S. Chandra, V. Sinha, A research agenda

for distributed software development, In proc. ACM

ICSE’06 (2006) 731-740.

[26] H.L. Iacovou, R. Nakatsu, A Risk Profile of Offshore-

Outsourced Development Projects, Commun. ACM

51(6) (2008) 89-94.

[27] X. Wang, F. Maurer, R. Morgan, J. Oliveira, Tools for

Supporting Distributed Agile Project Planning, Agility

Across Time and Space, Springer, Berlin, Heidelberg.

(2010) 183-199.

[28] E. Kupiainen, M.V. Mäntylä, J. Itkonen, Using metrics

in Agile and Lean Software Development - A

Systematic Literature Review of Industrial Studies. Inf.

Softw. Technol. 62,C, (2015) 143-163.

[29] R. Baggen, J.P. Correia, K. Schill, J. Visser,

Standardized code quality benchmarking for improving

software maintainability, Software Qual. J. 20 (2012)

287-307.

[30] A. Gopal, T. Mukhopadhyay, M.S. Krishnan, The role

of software processes and communication in offshore

software development. Commun. ACM. 45(4) (2002)

193-200.

IJCATM : www.ijcaonline.org

