On \mathcal{I}^{s} -Open Sets in Ideal Topological Semigroups

Amin Saif Department of Mathematics, Faculty of Applied Sciences, Taiz University, Taiz, Yemen

ABSTRACT

In this paper, we introduce and investigate a new class of $semi^* - \mathcal{I}$ -open sets, called \mathcal{I}^s -open sets in ideal topological semigroups. This class is consider strong form of $\beta^*_{\mathcal{I}}$ -open sets and weak form of of $semi^* - \mathcal{I}$ -open sets and $\beta - \mathcal{I}$ -open sets. The interior, closer and frontier operators are studied with the relative property via \mathcal{I}^s -open sets.

AMS classification: Primary 54A05, 54E35.

Keywords

open set; ideal topological space, topological semigroup.

1. INTRODUCTION

The notion of ideal topological spaces is introduced by Kuratowski, [9]. Many researcher studid about the ideal topological spaces. An idea \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies the following conditions:

1- if $A \in \mathcal{I}$ and $B \in A$ then $B \in \mathcal{I}$,

2- if $A \in \mathcal{I}$ and $B \in \mathcal{I}$ then $A \cup B \in \mathcal{I}$.

Applications to various fields were further investigated by Jankovic and Hamlett [1], Dontchev [8] and Arenas et al [6]. An ideal topological space is a topological space (X, τ) with an ideal \mathcal{I} on X, and is denoted by (X_*, τ, \mathcal{I}) .

Under the notion of ideal topological spaces, several mathematical researcher introduced the new forms of \mathcal{I}^s - open sets such as $\beta - \mathcal{I}$ -open sets by Hatir and Noiri in 2002, [4] and $semi^* - \mathcal{I}$ -open sets by Ekici and Noiri in 2012, [3], are the weaker forms. Also $\beta_{\mathcal{I}}^*$ -open sets is stronge by Ekici in 2011, [2].

This paper is organized as follows: Section 3 introduces the concept of \mathcal{I}^s – open sets in ideal topological semigroups with its relationship among other known sets. Section 4 introduces the concepts of \mathcal{I}^s –interior operator, \mathcal{I}^s –clouser operator and \mathcal{I}^s –frontior operator. Section 5 studies the relative property via \mathcal{I}^s –open sets.

2. PRELIMINARIES

For a topological space (X, τ) and $A \subseteq X$, throughout this paper, we mean Cl(A) and Int(A) the closure set and the interior set of A, respectively.

THEOREM 2.1. [7] For a topological space (X, τ) and $A, B \subseteq X$, if B is an open set in X then $Cl(A) \cap B \subseteq Cl(A \cap B)$.

Abdo Q.M. Alrefai

Department of Mathematics, Faculty of Education, Sheba Region University, Marib, Yemen

THEOREM 2.2. [7] For a topological space (X, τ) ,

In the ideal topological space $(X, \tau, \mathcal{I}), A^*(\mathcal{I})$ is defined by:

 $A^*(\mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for each open neighborhood } U \text{ of } x \}$

is called the local function of A with respect to \mathcal{I} and τ , [9]. When there is no chance for confusion $A^*(\mathcal{I})$ is denoted by A^* . For every ideal topological space (X, τ, \mathcal{I}) , there exists a topology τ^* finer than τ , generated by the base

$$\beta(\mathcal{I},\tau) = \{U - I : U \in \tau \text{ and } I \in \mathcal{I}\}.$$

Observe additionally that $Cl^*(A) = A \cup A^*$, [10] defines a Kuratowski closure operator for τ^* . $Int^*(A)$ will denote the interior of A in (X, τ^*) . If \mathcal{I} is an ideal on topological space (X, τ) , then (X, τ, \mathcal{I}) is called an ideal topological space.

THEOREM 2.3. [5] Let (X, τ, \mathcal{I}) be an ideal topological space. Then for $A, B \subseteq X$, the following properties hold:

(1)
$$A \subseteq B$$
 implies that $A^* \subseteq B^*$:

- (2) $G \in \tau$ implies that $G \cap A^* \subseteq (G \cap A)^*$;
- (3) $A^* = Cl(A^*) \subseteq Cl(A);$
- (4) $(A \cup B)^* = A^* \cup B^*;$

(5)
$$(A^*)^* \subseteq A^*$$
.

DEFINITION 2.4. A subset A of an ideal topological space (X, τ, \mathcal{I}) is called:

- (1) semi- \mathcal{I} -open set, [4] if $A \subseteq Cl^*(Int(A))$;
- (2) α_{τ}^* -open set, [4] if $A \subset Int(Cl^*(Int(A)))$;
- (3) $\beta \mathcal{I}$ -open set, [4] if $A \subseteq Cl(Int(Cl^*(A)))$;
- (4) $semi^* \mathcal{I}$ -open set, [3] if $A \subseteq Cl(Int^*(A))$.

DEFINITION 2.5. [2] A subset A of an ideal topological space (X, τ, \mathcal{I}) is called $\beta_{\mathcal{I}}^{z}$ -open set if $A \subseteq Cl(Int^{*}(Cl(A)))$.

By topological semigroup (X_*, τ) , we mean a topological space (X, τ) which is space with associated multiplication $*: X \times X \to X$ such that * is continuous function from the product space $X \times X$ into X. By ideal topological semigroup (X_*, τ, \mathcal{I}) , we mean an ideal topological space (X, τ, \mathcal{I}) with associated multiplication $*: X \times X \to X$ such that * is continuous function from the product space $X \times X$ into X. A pair (Y, \circ) is called a \mathcal{I} -subspace of ideal topological semigroup $(X_\circ, \tau, \mathcal{I})$ if Y is a subspace of X and the continuous function \circ takes the product $Y \times Y$ into Y

and $\circ(x, y) = *(x, y)$ for all $x, y \in Y$. We denote the operation of any \mathcal{I} -subspace with the same symbol used for the operation on the ideal topological semigroup under consideration. For any ideal topological space (X, τ, \mathcal{I}) , we mean by $(X_{\pi}, \tau, \mathcal{I})$ the ideal topological semigroup with operation $\pi : X \times X \longrightarrow X$, where $\pi(x, y) = x$ or $\pi(x, y) = y$ for all $x, y \in X$.

3. \mathcal{I}^S -OPEN SETS

DEFINITION 3.1. A subset A of an ideal topological semigroup (X_*, τ, \mathcal{I}) is said to be \mathcal{I}^s -open set if $A \subseteq Cl[Int^*(Cl^*(A))]$. The complement of \mathcal{I}^s -open set is said to be \mathcal{I}^s -closed set.

For an ideal topological semigroup (X_*, τ, \mathcal{I}) , The set of all \mathcal{I}^s -open sets in X denoted by $\mathcal{I}^sO(X_*, \tau)$ and the set of all \mathcal{I}^s -closed sets in X denoted by $\mathcal{I}^sC(X_*, \tau)$.

EXAMPLE 3.2. In an ideal topological semigroup $(X_{\pi}, \tau, \mathcal{I})$, where $X = \{a, b, c\}, \tau = \{\emptyset, X, \{a, b\}\}$ and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$. Note that

$$\mathcal{I}^s O(X, \tau) = P(X) \text{ and } \mathcal{I}^s C(X, \tau) = P(X).$$

THEOREM 3.3. Every $\beta - \mathcal{I}$ -open set is \mathcal{I}^s -open set.

PROOF. Let A be $\beta - \mathcal{I}$ -open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . Then $A \subseteq Cl(Int(Cl^*(A)))$. Since $\tau \subseteq \tau^*$ then

$$A \subseteq Cl(Int(Cl^*(A))) \subseteq Cl[Int^*(Cl^*(A))].$$

That is, A is a \mathcal{I}^s -open set. \Box

The converse of the last theorem need not be true.

EXAMPLE 3.4. In an ideal topological semigroup $(X_{\pi}, \tau, \mathcal{I})$, where $X = \{a, b, c\}$,

$$\tau = \{\emptyset, X, \{a, b\}\}$$
 and $\mathcal{I} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

the set $\{a\}$ is a \mathcal{I}^s -open set but it is not $\mathcal{I} - \beta$ -open.

THEOREM 3.5. Every $semi^* - \mathcal{I}$ -open set is \mathcal{I}^s -open set.

PROOF. Let A be $semi^* - \mathcal{I}$ -open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . Then $A \subseteq Cl(Int^*(A))$. Since $\tau \subseteq \tau^*$, then

$$A \subseteq Cl(Int^*(A)) \subseteq Cl[Int^*(Cl^*(A))].$$

That is, A is a \mathcal{I}^s -open set. \Box

The converse of the last theorem need not be true.

EXAMPLE 3.6. In an ideal topological semigroup $(X_{\pi}, \tau, \mathcal{I})$, where $X = \{a, b, c\}$,

$$\tau = \{\emptyset, X\} \text{ and } \mathcal{I} = \{\emptyset, \{a\}\}$$

the set $\{b\}$ is a \mathcal{I}^s -open set but it is not $semi^* - \mathcal{I}$ -open.

THEOREM 3.7. Every \mathcal{I}^s -open set is a β^*_{τ} -open set.

PROOF. Let A be a \mathcal{I}^s -open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . Then $A \subseteq Cl[Int^*(Cl^*(A))]$. Since $\tau \subseteq \tau^*$, then

$$A\subseteq Cl[Int^*(Cl^*(A))]\subseteq Cl[Int^*(Cl(A))].$$

That is, A is a β_{τ}^* -open set. \Box

The converse of the last theorem need not be true.

EXAMPLE 3.8. In an ideal topological semigroup $(X_{\pi}, \tau, \mathcal{I})$, where $X = \{a, b, c\}$,

$$\tau = \{\emptyset, X\} \text{ and } \mathcal{I} = \{\emptyset, \{a\}\}$$

the set $\{a\}$ is a $\beta_{\mathcal{I}}^*$ -open set but it is not \mathcal{I}^s -open.

From Theorems (3.3), (3.5) and (3.7), we have the following relation for \mathcal{I}^s -open set with the other known sets.

Fig. 1. Relation for sets 1

THEOREM 3.9. A subset A of an ideal topological semigroup (X_*, τ, \mathcal{I}) is \mathcal{I}^s -closed set if and only if $Int[Cl^*(Int^*(A))] \subseteq A$.

PROOF. A is a \mathcal{I}^s -closed set in (X_*, τ, \mathcal{I}) if and only if X - A is a \mathcal{I}^s - open set in X if and only if

$$(X - A) \subseteq Cl[Int^*(Cl^*(X - A))],$$

if and only if by using Theorem (2.2),

$$\begin{aligned} (X - A) &\subseteq Cl[Int^*(Cl^*(X - A))] \\ &= Cl[Int^*(X - Int^*(A))] \\ &= Cl[X - Cl^*(Int^*(A))] \\ &= X - Int[Cl^*(Int^*(A))] \\ &= X - Int[Cl^*(Int^*(A))]. \end{aligned}$$

if and only if $Int[Cl^*(Int^*(A))] \subseteq A$. \Box

THEOREM 3.10. Let (X_*, τ, \mathcal{I}) be a ideal topological semigroup. If A_{λ} is \mathcal{I}^s -open set for each $\lambda \in \Delta$ then $\bigcup_{\lambda \in \Delta} A_{\lambda}$ is \mathcal{I}^s -open set, where Δ is an index set.

$$\begin{split} \cup_{\lambda \in \Delta} A_{\lambda} &\subseteq \cup_{\lambda \in \Delta} Cl[Int^{*}(Cl^{*}(A_{\lambda}))] \\ &\subseteq Cl[\cup_{\lambda \in \Delta} Int^{*}(Cl^{*}(A_{\lambda}))] \\ &\subseteq Cl[Int^{*}(\cup_{\lambda \in \Delta} Cl^{*}(A_{\lambda}))] \\ &\subseteq Cl[Int^{*}(\cup_{\lambda \in \Delta} A_{\lambda} \cup (A_{\lambda}^{*}))] \\ &\subseteq Cl[Int^{*}((\cup_{\lambda \in \Delta} A_{\lambda}) \cup (\cup_{\lambda \in \Delta} A_{\lambda}^{*}))] \\ &\subseteq Cl[Int^{*}(\cup_{\lambda \in \Delta} A_{\lambda}) \cup (\cup_{\lambda \in \Delta} (A_{\lambda}^{*}))] \\ &= Cl[Int^{*}(Cl^{*}(\cup_{\lambda \in \Delta} A_{\lambda}))]. \end{split}$$

Hence $\cup_{\lambda \in \Delta} A_{\lambda}$ is \mathcal{I}^s -open set. \Box

The intersection of two \mathcal{I}^s -open sets need not be \mathcal{I}^s -open set. In Example (3.6), the sets $A = \{a, b\}$ and $B = \{a, c\}$ are \mathcal{I}^s -open sets but $A \cap B = \{a\}$ is not \mathcal{I}^s -open set.

THEOREM 3.11. Let (X_*, τ, \mathcal{I}) be an ideal topological semigroup. If U is an open set in (X_*, τ) and A is \mathcal{I}^s -open set, then $U \cap A$ is \mathcal{I}^s -open set.

PROOF. Since A is \mathcal{I}^s -open set then $A \subseteq Cl[Int^*(Cl^*(A))]$. Then by Theorems (2.1),

$$U \cap A \subseteq U \cap Cl[Int^*(Cl^*(A))] \subseteq Cl[U \cap Int^*(Cl^*(A))]$$

= $Cl[Int^*(U) \cap Int^*(Cl^*(A))]$
= $Cl[Int^*(U \cap Cl^*(A))]$
 $\subseteq Cl[Int^*(Cl^*(U \cap A))]$

Hence $U \cap A$ is \mathcal{I}^s -open set. \Box

4. \mathcal{I}^S -OPERATORS

For an ideal topological semigroup (X_*, τ, \mathcal{I}) and a subset A of X, the \mathcal{I}^s -closure set of A is defined as the intersection of all \mathcal{I}^s -closed sets containing A and is denoted by $_{\mathcal{I}^s}Cl(A)$. The \mathcal{I}^s -interior set of A is defined as the union of all \mathcal{I}^s -open sets of X contained in A and is denoted by $_{\mathcal{I}^s}Int(A)$. From Theorem (3.10), $_{\mathcal{I}^s}Cl(A)$ is a \mathcal{I}^s -closed subsets of X and $_{\mathcal{I}^s}Int(A)$ is \mathcal{I}^s -open subsets of X.

REMARK 4.1. For a subset $A \subseteq X$ of an ideal topological semigroup (X_*, τ, \mathcal{I}) , it is clear from the definition of $\mathcal{I}^s Cl(A)$ and $\mathcal{I}^s Int(A)$ that $A \subseteq \mathcal{I}^s Cl(A)$ and $\mathcal{I}^s Int(A) \subseteq A$.

THEOREM 4.2. For a subset $A \subseteq X$ of an ideal topological semigroup $(X_*, \tau, \mathcal{I}), _{\mathcal{I}^s}Cl(A) = A$ if and only if A is a \mathcal{I}^s -closed set.

PROOF. Let $_{\mathcal{I}^s}Cl(A) = A$. Then from definition of $_{\mathcal{I}^s}Cl(A)$ and Theorem (3.10), $_{\mathcal{I}^s}Cl(A)$ is a \mathcal{I}^s -closed set and so A is a \mathcal{I}^s -closed set. Conversely, we have $A \subseteq _{\mathcal{I}^s}Cl(A)$ by Remark above. Since A is a \mathcal{I}^s -closed set, then it is clear from the definition of $_{\mathcal{I}^s}Cl(A), _{\mathcal{I}^s}Cl(A) \subseteq A$. Hence $A = _{\mathcal{I}^s}Cl(A)$. \Box

THEOREM 4.3. For a subset $A \subseteq X$ of an ideal topological semigroup $(X_*, \tau, \mathcal{I}), _{\mathcal{I}^s} Int(A) = A$ if and only if A is a \mathcal{I}^s -open set.

PROOF. Let $_{\mathcal{I}^s}Int(A) = A$. Then from definiton of $_{\mathcal{I}^s}Int(A)$ and Theorem (3.10), $_{\mathcal{I}^s}Int(A)$ is a \mathcal{I}^s – open and so A is a \mathcal{I}^s – open set. Conversely,since A is \mathcal{I}^s – open set and $_{\mathcal{I}^s}Int(A) \subseteq A$ by Temark (4.1). Then $_{\mathcal{I}^s}Int(A) = A$. \Box

THEOREM 4.4. For a subset $A \subseteq X$ of an ideal topological semigroup $(X_*, \tau, \mathcal{I}), x \in {}_{\mathcal{I}^s}Cl(A)$ if and only if for all \mathcal{I}^s -open set U containing $x, U \cap A \neq \emptyset$.

PROOF. Let $x \in {}_{\mathcal{I}^s}Cl(A)$ and U be a \mathcal{I}^s -open set containing x. If $U \cap A = \emptyset$ then $A \subseteq X - U$. Since X - U is a \mathcal{I}^s -closed set containing A, then ${}_{\mathcal{I}^s}Cl(A) \subseteq X - U$ and so $x \in {}_{\mathcal{I}^s}Cl(A) \subseteq X - U$. Hence this is contradiction, because $x \in U$. Therefore $U \cap A \neq \emptyset$. Conversely, Let $x \notin {}_{\mathcal{I}^s}Cl(A)$. Then $X - {}_{\mathcal{I}^s}Cl(A)$ is a \mathcal{I}^s -open set containing x. Hence by hypothesis, $[X - {}_{\mathcal{I}^s}Cl(A)] \cap A \neq \emptyset$. But this is contradiction, because $X - {}_{\mathcal{I}^s}Cl(A) \subseteq X - A$ by Remark (4.1). \Box

THEOREM 4.5. For a subset $A \subseteq X$ of an ideal topological semigroup (X_*, τ, \mathcal{I}) , $x \in {}_{\mathcal{I}^s}Int(A)$ if and only if there is \mathcal{I}^s -open set U such that $x \in U \subseteq A$.

PROOF. Let $x \in I^s Int(A)$ and take $U = I^s Int(A)$. Then by Theorem (3.10) and definition of $I^s Int(A)$ we get that U is a I^s -open set and by Remark (4.1), $x \in U \subseteq A$. Conversely, Let there is I^s -open set U such that $x \in U \subseteq A$. Then by definition of $I^s Int(A)$, $x \in U \subseteq I^s Int(A)$. \Box

THEOREM 4.6. For a subsets $A, B \subseteq X$ of an ideal topological semigroup (X, τ, \mathcal{I}) , the following hold:

(1) If $A \subseteq B$ then $_{\mathcal{I}^s}Cl(A) \subseteq _{\mathcal{I}^s}Cl(B)$; (2) $_{\mathcal{I}^s}Cl(A) \cup _{\mathcal{I}^s}Cl(B) \subseteq _{\mathcal{I}^s}Cl(A \cup B)$; (3) $_{\mathcal{I}^s}Cl(A \cap B) \subseteq _{\mathcal{I}^s}Cl(A) \cap _{\mathcal{I}^s}Cl(B)$; (4) $_{\mathcal{I}^s}Cl(A) \subseteq Cl(A)$.

PROOF. 1. Let $x \in {}_{\mathbb{I}^s}Cl(A)$. Then by Theorem (4.4), for all \mathcal{I}^s -open set U containing $x, U \cap A \neq \emptyset$. Since $A \subseteq B$, then $U \cap B \neq \emptyset$. Hence $x \in {}_{\mathbb{I}^s}Cl(B)$. That is, ${}_{\mathbb{I}^s}Cl(A) \subseteq {}_{\mathbb{I}^s}Cl(B)$. 2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, then by part (1), we get ${}_{\mathbb{I}^s}Cl(A) \subseteq {}_{\mathbb{I}^s}Cl(A \cup B)$ and ${}_{\mathbb{I}^s}Cl(B) \subseteq {}_{\mathbb{I}^s}Cl(A \cup B)$. Then ${}_{\mathbb{I}^s}Cl(A) \cup {}_{\mathbb{I}^s}Cl(B) \subseteq {}_{\mathbb{I}^s}Cl(A \cup B)$.

3. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then by part (1), we get $_{\mathbb{I}^s}Cl(A \cap B) \subseteq _{\mathbb{I}^s}Cl(A)$ and $_{\mathbb{I}^s}Cl(A \cap B) \subseteq _{\mathbb{I}^s}Cl(B)$. Then $_{\mathbb{I}^s}Cl(A \cap B) \subseteq _{\mathbb{I}^s}Cl(A) \cap _{\mathbb{I}^s}Cl(B)$.

4. It is clear from Theorem (4.4) and from every open set U is $\mathcal{I}^s-\text{open set.}\quad \Box$

In the last theorem $_{\mathcal{I}^s}Cl(A \cup B) \neq _{\mathcal{I}^s}Cl(A) \cup _{\mathcal{I}^s}Cl(B).$

EXAMPLE 4.7. In Example (3.8), the sets $A = \{a\}$ and $B = \{b\}$ are \mathcal{I}^s -closed sets in $(X_{\pi}, \tau, \mathcal{I})$. Then

 ${}_{\mathcal{I}^s}Cl(A)\cup{}_{\mathcal{I}^s}Cl(B)=A\cup B=\{a,b\}$

and

$$_{\mathcal{I}^s}Cl(A \cup B) = _{\mathcal{I}^s}Cl(\{a, b\}) = X.$$

THEOREM 4.8. For a subsets $A, B \subseteq X$ of an ideal topological semigroup (X_*, τ, \mathcal{I}) , the following hold:

(1) If $A \subseteq B$ then $_{\mathcal{I}^s}Int(A) \subseteq _{\mathcal{I}^s}Int(B)$;

(2) $_{\mathcal{I}^s}Int(A) \cup _{\mathcal{I}^s}Int(B) \subseteq _{\mathcal{I}^s}Int(A \cup B);$

(3) $_{\mathcal{I}^s}Int(A \cap B) \subseteq _{\mathcal{I}^s}Int(A) \cap _{\mathcal{I}^s}Int(B);$

(4) $Int(A) \subseteq {}_{\mathcal{I}^s}Int(A)$.

PROOF. Similar for Theorem (4.6). \Box

In the last theorem $_{\mathcal{I}^s}Int(A \cap B) \neq _{\mathcal{I}^s}Int(A) \cap _{\mathcal{I}^s}Int(B).$

EXAMPLE 4.9. In Example (3.8), the sets $A = \{b, c\}$ and $B = \{a, c\}$ are \mathcal{I}^s -open sets in (X, τ, \mathcal{I}) . Then

$$_{\mathcal{I}^s}Int(A)\cap _{\mathcal{I}^s}Int(B)=A\cap B=\{c\}$$

and

$$_{\mathcal{I}^s}Int(A\cap B) = _{\mathcal{I}^s}Int(\{c\}) = \emptyset.$$

THEOREM 4.10. For a subset $A \subseteq X$ of an ideal topological semigroup (X_*, τ, \mathcal{I}) , the following hold:

(1)
$$_{\mathcal{I}^s}Int(X-A) = X - _{\mathcal{I}^s}Cl(A);$$

(2) $_{\mathcal{I}^s}Cl(X-A) = X - \mathcal{I}^sInt(A).$

PROOF. 1. Since $A \subseteq_{\mathcal{I}^s} Cl(A)$ then $X -_{\mathcal{I}^s} Cl(A) \subseteq (X - A)$. Since $X -_{\mathcal{I}^s} Cl(A)$ is a \mathcal{I}^s -open set in (X_*, τ, \mathcal{I}) then

$$X - \mathcal{I}^s Cl(A) = \mathcal{I}^s Int[X - \mathcal{I}^s Cl(A)] \subseteq \mathcal{I}^s Int(X - A).$$

For the other side, let $x \in {}_{\mathbb{I}^s} Int(X - A)$. Then there is \mathcal{I}^s -open set U such that $x \in U \subseteq X - A$. Then X - U is a \mathcal{I}^s -closed set containing A and $x \notin X - U$. Hence $x \notin {}_{\mathbb{I}^s} Cl(A)$, that is, $x \in X - {}_{\mathbb{I}^s} Cl(A)$.

2. Since $\mathcal{I}_s Int(A) \subseteq A$ then $X - A \subseteq X - \mathcal{I}_s Int(A)$. Since $X - \mathcal{I}_s Int(A)$ is a \mathcal{I}^s -closed set in (X_*, τ, \mathcal{I}) then

$$_{\mathcal{I}^s}Cl(X-A) \subseteq _{\mathcal{I}^s}Cl[X-_{\mathcal{I}^s}Int(A)] = X - _{\mathcal{I}^s}Int(A).$$

For the other side, let $x \in {}_{\mathcal{I}^s}Int(X - A)$. Then there is \mathcal{I}^s -open set U such that $x \in U \subseteq X - A$. Then X - U is a \mathcal{I}^s -closed set containing A and $x \notin X - U$. Hence $x \notin {}_{\mathcal{I}^s}Cl(A)$, that is, $x \in X - {}_{\mathcal{I}^s}Cl(A)$. \Box

THEOREM 4.11. For a subset $A \subseteq X$ of an ideal topological space (X_*, τ, \mathcal{I}) , the following hold:

(1) If I is an open set X then $_{\mathcal{I}^s}Cl(A) \cap I \subseteq _{\mathcal{I}^s}Cl(A \cap I)$.

(2) If I is an closed set X then $_{\mathcal{I}^s}Int(A \cup I) \subseteq _{\mathcal{I}^s}Int(A) \cup I$.

PROOF. 1. Let $x \in {}_{\mathcal{I}^s}Cl(A) \cap I$. Then $x \in {}_{\mathcal{I}^s}Cl(A)$ and $x \in I$. Let V be any \mathcal{I}^s -open set in (X_*, τ, \mathcal{I}) containing x. By Theorem (3.11), $V \cap I$ is \mathcal{I}^s -open set containing x. Since $x \in {}_{\mathcal{I}^s}Cl(A)$ then by Theorem (4.4), $(V \cap I) \cap A \neq \emptyset$. This implies, $V \cap (I \cap A) \neq \emptyset$. Hence by Theorem (4.4), $x \in {}_{\mathcal{I}^s}Cl(A \cap I)$. That is, ${}_{\mathcal{I}^s}Cl(A) \cap I \subseteq {}_{\mathcal{I}^s}Cl(A \cap I)$.

1. Since I is a closed set X then by the part (1) and Theorem (4.10),

$$\begin{split} X - [_{\mathcal{I}^s} Int(A) \cup I] &= [X - _{\mathcal{I}^s} Int(A)] \cap [X - I] \\ &= [_{\mathcal{I}^s} Cl(X - A)] \cap [X - I] \\ &\subseteq _{\mathcal{I}^s} Cl[(X - A) \cap (X - I)] \\ &\subseteq _{\mathcal{I}^s} Cl(X - A) \cap _{\mathcal{I}^s} Cl(X - I) \\ &= _{\mathcal{I}^s} Cl(X - A) \cap (X - I) \\ &= (X - _{\mathcal{I}^s} Int(A)) \cap (X - I) \\ &= (X - _{\mathcal{I}^s} Int(A)) \cup I. \end{split}$$

Hence $_{\mathcal{I}^s} Int(A \cup I) \subseteq _{\mathcal{I}^s} Int(A) \cup I$. \Box

For a subset A of an ideal topological semigroup (X_*, τ, \mathcal{I}) , the set

$$_{\mathcal{I}^s}\Gamma(A) = _{\mathcal{I}^s}Cl(A) - _{\mathcal{I}^s}Int(A)$$

is called \mathcal{I}^s -frontier set of A in (X_*, τ, \mathcal{I}) .

THEOREM 4.12. For a subset $A \subseteq X$ of an ideal topological space (X_*, τ, \mathcal{I}) , the following hold:

$$(1) \ _{\mathcal{I}^{s}}Cl(A) = _{\mathcal{I}^{s}}\Gamma(A) \cup _{\mathcal{I}^{s}}Int(A);$$

$$(2) \ _{\mathcal{I}^{s}}\Gamma(A) \cap _{\mathcal{I}^{s}}Int(A) = \emptyset;$$

$$(3) \ _{\mathcal{I}^{s}}\Gamma(A) = _{\mathcal{I}^{s}}Cl(A) \cap _{\mathcal{I}^{s}}Cl(X - A).$$
PROOF. 1. $_{\mathcal{I}^{s}}\Gamma(A) \cup _{\mathcal{I}^{s}}Int(A) = (_{\mathcal{I}^{s}}Cl(A) - _{\mathcal{I}^{s}}Int(A)) \cup _{\mathcal{I}^{s}}Int(A)$

$$= [_{\mathcal{I}^{s}}Cl(A) \cap (X - _{\mathcal{I}^{s}}Int(A))] \cup _{\mathcal{I}^{s}}Int(A)$$

$$= [_{\mathcal{I}^{s}}Cl(A) \cup _{\mathcal{I}^{s}}Int(A)] \cap [(X - _{\mathcal{I}^{s}}Int(A)) \cup _{\mathcal{I}^{s}}Int(A)]$$

$$= {}_{\mathcal{I}^s} Cl(A) \cap X = {}_{\mathcal{I}^s} Cl(A).$$

2. From the definition of $_{\mathcal{I}^s}\Gamma(A)$.

3. By Theorem (4.10),

$${}_{\mathcal{I}^s}\Gamma(A) = {}_{\mathcal{I}^s}Cl(A) - {}_{\mathcal{I}^s}Int(A) = {}_{\mathcal{I}^s}Cl(A) \cap (X - {}_{\mathcal{I}^s}Int(A))$$

= ${}_{\mathcal{I}^s}Cl(A) \cap {}_{\mathcal{I}^s}Cl(X - A).$

COROLLARY 4.13. For a subset $A \subseteq X$ of an ideal topological space $(X_*, \tau, \mathcal{I}), {}_{\mathcal{I}^s}\Gamma(A)$ is \mathcal{I}^s -closed set in (X_*, τ, \mathcal{I}) .

PROOF. By Theorem (3.10) and the part (3) of the last Theorem. $\hfill\square$

THEOREM 4.14. For a subset $A \subseteq X$ of an ideal topological space (X_*, τ, \mathcal{I}) , the following hold:

(1) *A* is a \mathcal{I}^s -open if and only if $_{\mathcal{I}^s}\Gamma(A) \cap A = \emptyset$;

(2) *A* is a \mathcal{I}^s -closed if and only if $_{\mathcal{I}^s}\Gamma(A) \subseteq A$;

(3) A is both \mathcal{I}^s - open and \mathcal{I}^s - closed if and only if $_{\mathcal{I}^s}\Gamma(A) = \emptyset$.

PROOF. 1. Let A be a \mathcal{I}^s -open set. Then $_{\mathcal{I}^s}Int(A) = A$. Then by Theorem (4.12),

$$\tau^{s}\Gamma(A) \cap A = \tau^{s}\Gamma(A) \cap \tau^{s}Int(A) = \emptyset.$$

Conversely, suppose that $\mathcal{I}^s \Gamma(A) \cap A = \emptyset$. Then

$$A - {}_{\mathcal{I}^s}Int(A)) = [A \cap {}_{\mathcal{I}^s}Cl(A)] \cap [A - {}_{\mathcal{I}^s}Int(A))]$$

= $A \cap ({}_{\mathcal{I}^s}Cl(A) - {}_{\mathcal{I}^s}Int(A))$
= $A \cap {}_{\mathcal{I}^s}\Gamma(A) = \emptyset.$

That is, $\mathcal{I}^s Int(A) = A$. Hence A is a \mathcal{I}^s -open set. 2. Let A be a \mathcal{I}^s -closed set. Then $\mathcal{I}^s Cl(A) = A$. Then

$$_{\mathcal{I}^s}\Gamma(A) = _{\mathcal{I}^s}Cl(A) - _{\mathcal{I}^s}Int(A) = A - _{\mathcal{I}^s}Int(A) \subseteq A.$$

Conversely, suppose that ${}_{\mathcal{I}^s}\Gamma(A) \subseteq A$. Then by Theorem (4.12),

 $_{\mathcal{I}^s}Cl(A) = _{\mathcal{I}^s}Int(A)) \cup _{\mathcal{I}^s}\Gamma(A) \subseteq _{\mathcal{I}^s}Int(A)) \cup A \subseteq A.$

That is, $_{\mathcal{I}^s}Cl(A) = A$. Hence A is \mathcal{I}^s -closed set. 3. Let A be both \mathcal{I}^s -closed set and \mathcal{I}^s -open set. Then $_{\mathcal{I}^s}Cl(A) = A = _{\mathcal{I}^s}Int(A)$. Therefore,

$$\tau^{s}\Gamma(A) = \tau^{s}Cl(A) - \tau^{s}Int(A) = A - A = \emptyset.$$

Conversely, suppose that $_{\mathcal{I}^s}\Gamma(A) = \emptyset$. Then $_{\mathcal{I}^s}Cl(A) - _{\mathcal{I}^s}Int(A) = \emptyset$. Since

 $_{\mathcal{I}^s}Int(A) \subseteq _{\mathcal{I}^s}Cl(A).$

Then

$$_{\mathcal{I}^s}Cl(A) = _{\mathcal{I}^s}Int(A).$$

Since

$$_{\mathcal{I}^s}Int(A) \subseteq A \subseteq _{\mathcal{I}^s}Cl(A). Then _{\mathcal{I}^s}Cl(A) = A = _{\mathcal{I}^s}Int(A).$$

That is, $_{\mathcal{I}^s}Cl(A) = A$. Hence A is both \mathcal{I}^s - closed set and \mathcal{I}^s -open set. \Box

5. RELATIVE PROPERTY

By bitopological semigroup we mean a triple (X_*, τ, ρ) consists two topo logical semigroups (X_*, τ) and (X_*, ρ) . A subset $A \subseteq X$ is said to be $\tau\rho$ -open set in a bitopological semigroup (X_*, τ, ρ) if $A \subseteq {}_{\tau}Cl[_{\rho}Int(_{\rho}Cl(A))]$. The complement of $\tau\rho$ -open set is said to be $\tau\rho$ -closed set. THEOREM 5.1. A subset $A \subseteq X$ is a \mathcal{I}^s -open set in ideal topological semigroup (X_*, τ, \mathcal{I}) , if and only if it is a $\tau\tau^*$ -open set in bitopological semigroup (X_*, τ, τ^*) .

PROOF. It is clear from the definitions and $Cl^*(A) = {}_{\mathcal{I}}Cl(A)$. \Box

THEOREM 5.2. A subset A of a bitopological semigroup (X_*, τ, ρ) is $\tau \rho$ -closed set, if and only if $_{\tau}Int[_{\rho}Cl(_{\rho}Int(A))] \subseteq A$.

PROOF. A is a $\tau \rho$ -closed set in X, if and only if X - A is a $\tau \rho$ -open set in X, if and only if

$$(X - A) \subseteq {}_{\tau}Cl[{}_{\rho}Int({}_{\rho}Cl(X - A))],$$

if and only if by using Theorem (4.10).

$$(X - A) \subseteq {}_{\tau}Cl[{}_{\rho}Int({}_{\rho}Cl(X - A))] \\ = {}_{\tau}Cl[{}_{\rho}Int({}_{\rho}Cl(X - A))] \\ = {}_{\tau}Cl[{}_{\rho}Int(X - {}_{\rho}Int(A))] \\ = {}_{\tau}Cl[X_{-\rho}Cl({}_{\rho}Int(A))] \\ = X - {}_{\tau}Int[{}_{\rho}Cl({}_{\rho}Int(A))] \\ = X - {}_{\tau}Int[{}_{\rho}Cl({}_{\rho}Int(A))],$$

if and only if ${}_{\tau}Int[{}_{\rho}Cl({}_{\rho}Int(A))] \subseteq A.$

THEOREM 5.3. Let Y be an open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . If A is a \mathcal{I}^s -open set in (X_*, τ, \mathcal{I}) then $A \cap Y$ is a $\tau|_Y \tau^*|_Y$ -open set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$.

PROOF. Since A is \mathcal{I}^s -open set in (X_*, τ, \mathcal{I}) , then $A \subseteq Cl[Int^*(Cl^*(A))]$. By Theorems (2.1)and (4.10), we obtain

$$\begin{split} A \cap Y &\subseteq Cl[Int^*(Cl^*(A))] \cap Y \\ &= Cl[Int^*(Cl^*(A))] \cap Y \cap Y \\ &\subseteq Cl[Int^*(Cl^*(A)) \cap Y] \cap Y \\ &= Cl|_Y[Int^*(Cl^*(A)) \cap Y] \\ &= Cl|_Y[Int^*(Cl^*(A)) \cap Int^*(Y)] \\ &= Cl|_Y[Int^*(Cl^*(A) \cap Y)] \\ &= Cl|_Y[Int^*(Cl^*(A \cap Y) \cap Y)] \\ &\subseteq Cl|_Y[Int^*(Cl^*(A \cap Y) \cap Y)] \\ &\subseteq Cl|_Y[Int^*|_Y(Cl^*(A \cap Y) \cap Y)] \\ &= Cl|_Y[Int^*|_Y(Cl^*(A \cap Y) \cap Y)]. \end{split}$$

Hence $A \cap Y$ is a $\tau|_Y \tau^*|_Y$ -open set in $(Y, \tau|_Y, \tau^*|_Y)$. \Box

COROLLARY 5.4. Let Y be an open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . If A is a \mathcal{I}^s -closed set in (X_*, τ, \mathcal{I}) then $A \cap Y$ is a $\tau|_Y \tau^*|_Y$ -closed set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$.

PROOF. Let A be a \mathcal{I}^s -closed set in (X_*, τ, \mathcal{I}) . Then X - A is a \mathcal{I}^s -open set in (X_*, τ, \mathcal{I}) . By the last Theorem, $Y - A = (X - A) \cap Y$ is a $\tau|_Y \tau^*|_Y$ -open set in $(Y, \tau|_Y, \tau^*|_Y)$. Hence

 $Y - (Y - A) = Y - (Y \cap (X - A)) = Y \cap [(X - Y) \cup A] = A \cap Y$

is a $\tau|_Y \tau^*|_Y$ -closed set in $(Y, \tau|_Y, \tau^*|_Y)$. \Box

THEOREM 5.5. Let Y be an open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . If A is a $\tau|_Y \tau^*|_Y$ -open set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$, then A is \mathcal{I}^s -open set I in (X_*, τ, \mathcal{I}) . PROOF. Since A is a $\tau|_Y \tau^*|_Y$ -open set in $(Y, \tau|_Y, \tau^*|_Y)$ then $A \subseteq Cl|_Y[Int^*|_Y(Cl^*|_Y(A))]$. Then by Theorems (2.1), (4.10),

$$\begin{split} A &\subseteq Cl|_{Y}[Int^{*}|_{Y}(Cl^{*}|_{Y}(A))] = Cl[Int^{*}|_{Y}(Cl^{*}|_{Y}(A))] \cap Y \\ &\subseteq Cl[Int^{*}|_{Y}(Cl^{*}|_{Y}(A)) \cap Y] = Cl[Int^{*}|_{Y}(Cl^{*}|_{Y}(A))] \\ &= Cl[Int^{*}(Cl^{*}|_{Y}(A))] = Cl[Int^{*}(Cl^{*}|(A) \cap Y)] \\ &\subseteq Cl[Int^{*}(Cl^{*}(A \cap Y))] = Cl[Int^{*}(Cl^{*}(A))] \\ &= Cl[Int^{*}(Cl^{*}(A))]. \end{split}$$

Hence A is a \mathcal{I}^s -open set I in (X_*, τ, \mathcal{I}) . \Box

COROLLARY 5.6. Let Y be an open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) . If A is a $\tau|_Y \tau^*|_Y$ -closed set in bitopological space $(Y, \tau|_Y, \tau^*|_Y)$, then A is \mathcal{I}^s -closed set I in (X_*, τ, \mathcal{I}) .

THEOREM 5.7. Let Y be an open subset of an ideal topological semigroup (X_*, τ, \mathcal{I}) and A be a subset of Y. Then $_{\mathcal{I}^s}Cl|_Y(A) = {}_{\mathcal{I}^s}Cl(A) \cap Y.$

PROOF. Let $x \in {}_{I^s}Cl|_Y(A)$ and I be a \mathcal{I}^s -open set in X containing x. By Theorem (5.3), $I \cap Y$ is a $\tau\tau^*$ -open set in bitopological semigroup $(Y,\tau|_Y,\tau^*|_Y)$ containing x and since $x \in {}_{I^s}Cl|_Y(A)$, then $I \cap A = (I \cap Y) \cap A \neq \emptyset$. Hence by Theorem (4.4), $x \in {}_{I^s}Cl(A)$ and since $x \in Y$, this implies $x \in {}_{I^s}Cl(A) \cap Y$. That is, ${}_{I^s}Cl|_Y(A) \subseteq {}_{I^s}Cl(A) \cap Y$. On the other side, let $x \in {}_{I^s}Cl(A) \cap Y$ and O be a $\tau\tau^*$ -open set in bitopological semigroup $(Y,\tau|_Y,\tau^*|_Y)$ containing x. By Corollary (5.6), O is \mathcal{I}^s -open set in (X_*,τ,\mathcal{I}) . Since $x \in {}_{I^s}Cl(A)$, then $O \cap A \neq \emptyset$. That is, $x \in {}_{I^s}Cl|_Y(A)$. Hence ${}_{I^s}Cl(A) \cap Y \subseteq {}_{I^s}Cl|_Y(A)$.

THEOREM 5.8. Let (X_*, τ, τ^*) and $(Y, \rho, \tau^{*'})$ be two ideal topological semigroups. A subset $A \times B \subseteq X_* \times Y$ is $(\tau \times \rho)(\tau^* \times \rho_{\tau^{*'}})$ -open set in bitopological semigroup $(X_* \times Y, \tau \times \rho, \tau^* \times \rho_{\tau^{*'}})$ if and only if A is a \mathcal{I}^s -open set in (X_*, τ, τ^*) and B is a \mathcal{I}^s -open set in $(Y, \rho, \tau^{*'})$.

PROOF. It is clear that,

$${}_{\tau \times \rho}Cl[{}_{\tau^* \times \rho_{\tau^{*'}}}Int({}_{\tau^* \times \rho_{\tau^{*'}}}Cl(A \times B))]$$

$$= {}_{\tau \times \rho}Cl[{}_{\tau^* \times \rho_{\tau^{*'}}}Int({}_{\tau^*}Cl(A) \times {}_{\rho_{\tau^{*'}}}Cl(B))]$$

$$= {}_{\tau \times \rho}Cl[{}_{\tau^*}Int({}_{\tau^*}Cl(A)) \times {}_{\rho_{\tau^{*'}}}Int({}_{\rho_{\tau^{*'}}}Cl(B))]$$

$$= {}_{\tau}Cl[{}_{\tau^*}Int({}_{\tau^*}Cl(A))] \times {}_{\rho}Cl[{}_{\rho_{\tau^{*'}}}Int({}_{\rho_{\tau^{*'}}}Cl(B))].$$

We have $A \times B \subseteq C \times D$, if and only if $A \subseteq C$ and $B \subseteq D$. \Box

6. **REFERENCES**

- [1] D. Jankovic, and T. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97(4), (1990), 295-310.
- [2] E, Ekici, On *AC_L*-sets, *BC_L*-sets, β^{*}_L-sets and decompositions of continuity in ideal topological spaces, Creat. Math. Inform; 20(1), (2011), 47-54.
- [3] E. Ekici and T. Noiri, *-hyporconnected ideal topological space, Analele Stiintifice Ale Universitatii Al. I. Cuza Din Iasi-Serie Nona-Matematica, 1, (2012), 121-129.
- [4] E. Hatir and T. Noiri, On decompositions of continuity via idealization, Acta Math. Hungar, 96, (2002), 341-349.
- [5] E. Hatir, A note on $\delta \alpha I$ -open sets and semi* I-open sets, Math. Commun. 16, (2011), 433-445.
- [6] F. Arenas, J. Dontchev and M. Puertas, Idealization of some weak separation axioms, Acta. Math. Hungar, 89(1), (2000), 47-53.

International Journal of Computer Applications (0975 - 8887) Volume 174 - No.23, March 2021

- [7] F. Helen, Introdution to general topology, Boston, Universety of Massachutts (1968).
- [8] J. Dontchev, Strong B-sets and another decomposition of continuity, Acta Math. Hungar, 75(3), (1997), 259-265.
- [9] K. Kuratowski, Topology, Academic Press, New York, (1), (1966).
- [10] R. Vaidyanathaswamy, The localization theory in set topology,Proc. Indian Acad. Sci. Sect. A; 20, (1944), 51-61.