On \(\mathcal{T}^g \)-Open Sets in Ideal Topological Semigroups

Amin Saif
Department of Mathematics, Faculty of Applied Sciences, Taiz University, Taiz, Yemen

Abdo Q.M. Alrefai
Department of Mathematics, Faculty of Education, Sheba Region University, Marib, Yemen

ABSTRACT
In this paper, we introduce and investigate a new class of \(\text{semi}^+ - \mathcal{I} \)-open sets, called \(\mathcal{T}^g \)-open sets in ideal topological semigroups. This class is consider strong form of \(\beta \mathcal{I}^g - \mathcal{I} \)-open sets and weak form of of \(\text{semi}^+ - \mathcal{I} \)-open sets and \(\beta - \mathcal{I} \)-open sets. The interior, closer and frontier operators are studied with the relative property via \(\mathcal{T}^g \)-open sets.

AMS classification: Primary 54A05, 54E35.

Keywords
open set;ideal topological space, topological semigroup.

1. INTRODUCTION
The notion of ideal topological spaces is introduced by Kuratowski, [2]. Many researcher studied about the ideal topological spaces. An idea \(\mathcal{I} \) on a topological space \((X, \tau) \) is a nonempty collection of subsets of \(X \) which satisfies the following conditions:

1. If \(A \in \mathcal{I} \) and \(B \in \mathcal{I} \) then \(A \cup B \in \mathcal{I} \).
2. If \(A \in \mathcal{I} \) then \(A^\circ \in \mathcal{I} \).

Applications to various fields were further investigated by Jankovic and Hamlett [1], Dontchev [3] and Arenas et al [4]. An ideal topological space is the concept of an ideal topological space \((X, \tau, \mathcal{I}) \) on an ideal space \(X \), and is denoted by \((X, \tau, \mathcal{I}) \).

Under the notion of ideal topological spaces, several mathematician researcher introduced the new forms of \(\mathcal{T}^g \)-open sets such as \(\beta - \mathcal{I} \)-open sets by Hatir and Noiri in 2002, [4] and \(\text{semi}^+ - \mathcal{I} \)-open sets by Ekici and Noiri in 2012, [5], are the weaker forms. Also \(\beta \mathcal{I}^g \)-open sets is strong by Ekici in 2011, [6].

This paper is organized as follows: Section 3 introduces the concept of \(\mathcal{T}^g \)-open sets in ideal topological semigroups with its relationship among other known sets. Section 4 introduces the concepts of \(\mathcal{T}^g \)-interior operator, \(\mathcal{T}^g \)-cloiser operator and \(\mathcal{T}^g \)-frontier operator. Section 5 studies the relative property via \(\mathcal{T}^g \)-open sets.

2. PRELIMINARY
For a topological space \((X, \tau) \) and \(A \subseteq X \), throughout this paper, we mean \(\text{Cl}(A) \) and \(\text{Int}(A) \) the closure set and the interior set of \(A \), respectively.

THEOREM 2.1. \(\text{If for a topological space } (X, \tau) \text{ and } A, B \subseteq X, \text{ if } B \text{ is an open set in } X \text{ then } \text{Cl}(A) \cap B \subseteq \text{Cl}(A \cap B). \)

THEOREM 2.2. \(\text{For a topological space } (X, \tau), \)

1. \(\text{Cl}(X - A) = X - \text{Int}(A) \) for all \(A \subseteq X. \)
2. \(\text{Int}(X - A) = X - \text{Cl}(A) \) for all \(A \subseteq X. \)

In the ideal topological space \((X, \mathcal{I}, \tau) \), \(\mathcal{A}'(\mathcal{I}) \) is defined by:

\(\mathcal{A}'(\mathcal{I}) = \{ x \in X : U \cap A \notin \mathcal{I} \text{ for each open neighborhood } U \text{ of } x \} \)

is called the local function of \(A \) with respect to \(\mathcal{I} \) and \(\tau \). [9]. When there is no chance for confusion \(\mathcal{A}'(\mathcal{I}) \) is denoted by \(\mathcal{A}' \). For every ideal topological space \((X, \mathcal{I}, \tau) \), there exists a topology \(\tau^* \) finer than \(\tau \), generated by the base

\(\mathcal{B}(\mathcal{I}, \tau) = \{ U - I : U \in \tau \text{ and } I \in \mathcal{I} \}. \)

Observe additionally that \(\text{Cl}^*(A) = A \cup \mathcal{A}' \), [10] defines a Kuratowski closure operator for \(\tau^* \). \(\text{Int}^*(A) \) will denote the interior of \(A \) in \((X, \tau^*) \). If \(\mathcal{I} \) is an ideal on topological space \((X, \tau) \), then \((X, \tau, \mathcal{I}) \) is called an ideal topological space.

THEOREM 2.3. \(\text{Let } (X, \tau, \mathcal{I}) \text{ be an ideal topological space. Then for } A, B \subseteq X, \text{ the following properties hold:} \)

1. \(A \subseteq B \text{ implies that } A^* \subseteq B^*; \)
2. \(G \in \tau \text{ implies that } G \cap A^* \subseteq (G \cap A)^*; \)
3. \(A^* = \text{Cl}(A^*) \subseteq \text{Cl}(A); \)
4. \((A \cup B)^* = A^* \cup B^*; \)
5. \((A^*)^* \subseteq A^*. \)

DEFINITION 2.4. A subset \(A \) of an ideal topological space \((X, \tau, \mathcal{I}) \) is called:

1. \(\text{semi} - \mathcal{I} \)-open set, [4] if \(A \subseteq \text{Cl}^*(\text{Int}(A)); \)
2. \(\alpha^*_\mathcal{I} - \mathcal{I} \)-open set, [6] if \(A \subseteq \text{Int}(\text{Cl}^*(\text{Int}(A))); \)
3. \(\beta - \mathcal{I} \)-open set, [4] if \(A \subseteq \text{Cl}^*(\text{Int}(\text{Cl}^*(A))); \)
4. \(\text{semi} - \mathcal{I} \)-open set, [4] if \(A \subseteq \text{Cl}(\text{Int}(A^*)); \)
5. \(\text{semi} - \mathcal{I} \)-open set, [4] if \(A \subseteq \text{Cl}(\text{Int}(A^*)); \)

DEFINITION 2.5. \(\text{A subset } A \text{ of an ideal topological space } (X, \tau, \mathcal{I}) \text{ is called } \beta^*_\mathcal{I} - \mathcal{I} \text{ open set if } A \subseteq \text{Cl}(\text{Int}(\text{Cl}^*(A))) \).

By topological semigroup \((X, \tau) \), we mean a topological space \((X, \tau) \) which is space with associated multiplication \(* : X \times X \to X \) such that \(* \) is continuous function from the product space \(X \times X \) into \(X \). By ideal topological semigroup \((X, \mathcal{I}, \tau) \), we mean an ideal topological space \((X, \mathcal{I}, \tau) \) with associated multiplication \(* : X \times X \to X \) such that \(* \) is continuous function from the product space \(X \times X \) into \(X \). A pair \((Y, \circ) \) is called a \(\mathcal{T} - \text{subspace} \) of ideal topological semigroup \((X, \mathcal{I}, \tau) \) if \(Y \) is a subspace of \(X \) and the continuous function \(\circ \) takes the product \(Y \times Y \) into \(Y \).
and $\sigma(x,y) = * (x,y)$ for all $x, y \in Y$. We denote the operation of any $I -$ subspace with the same symbol used for the operation on the ideal topological semigroup under consideration. For any ideal topological space (X, τ, I), we mean by (X, τ, I) the ideal topological semigroup with operation $\pi: X \times X \rightarrow X$, where $\pi(x, y) = x$ or $\pi(x, y) = y$ for all $x, y \in X$.

3. I^S-OPEN SETS

Definition 3.1. A subset A of an ideal topological semigroup (X, τ, I) is said to be I^s-open set if $A \subseteq Cl[Int^s(Cl^s(A))]$. The complement of I^s-open set is said to be I^s-closed set.

For an ideal topological set (X, τ, I), the set of all I^s-open sets in X denoted by $\mathcal{I}^sO(X, \tau)$ and the set of all I^s-closed sets in X denoted by $\mathcal{I}^sC(X, \tau)$.

Example 3.2. In an ideal topological semigroup (X, τ, I), where $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a, b\}\}$ and $I = \{\emptyset, \{a\}, \{b\}, \{a,b\}\}$. Note that

\[\mathcal{I}^sO(X, \tau) = P(X) \text{ and } \mathcal{I}^sC(X, \tau) = P(X). \]

Theorem 3.3. Every $\beta - I -$ open set is I^s-open set.

Proof. Let A be $\beta - I -$ open subset of an ideal topological semigroup (X, τ, I). Then $A \subseteq Cl[Int(Cl^s(A))]$. Since $\tau \subseteq \tau^s$ then

\[A \subseteq Cl[Int(Cl^s(A))] \subseteq Cl[Int(Cl^s(A))]. \]

That is, A is a I^s-open set.

The converse of the last theorem need not be true.

Example 3.4. In an ideal topological semigroup (X, τ, I), where $X = \{a, b, c\}$,

\[\tau = \{\emptyset, X, \{a, b\}\} \text{ and } I = \{\emptyset, \{a\}, \{b\}, \{a,b\}\} \]

the set $\{a\}$ is a I^s-open set but it is not $I - \beta -$ open.

Theorem 3.5. Every semi$I^s -$ open set is I^s-open set.

Proof. Let A be semi$I^s -$ open subset of an ideal topological semigroup (X, τ, I). Then $A \subseteq Cl[Int(Cl^s(A))]$. Since $\tau \subseteq \tau^s$ then

\[A \subseteq Cl[Int(Cl^s(A))] \subseteq Cl[Int(Cl^s(A))]. \]

That is, A is a I^s-open set.

The converse of the last theorem need not be true.

Example 3.6. In an ideal topological semigroup (X, τ, I), where $X = \{a, b, c\}$,

\[\tau = \{\emptyset, X\} \text{ and } I = \{\emptyset, \{a\}\} \]

the set $\{b\}$ is a I^s-open set but it is not semi$I^s -$ open.

Theorem 3.7. Every I^s-open set is a $\beta_2^I -$ open set.

Proof. Let A be a I^s-open subset of an ideal topological semigroup (X, τ, I). Then $A \subseteq Cl[Int(Cl^s(A))]$. Since $\tau \subseteq \tau^s$ then

\[A \subseteq Cl[Int(Cl^s(A))] \subseteq Cl[Int(Cl^s(A))]. \]

That is, A is a $\beta_2^I -$ open set.

The converse of the last theorem need not be true.

Example 3.8. In an ideal topological semigroup (X, τ, I), where $X = \{a, b, c\}$,

\[\tau = \{\emptyset, X\} \text{ and } I = \{\emptyset, \{a\}\} \]

the set $\{a\}$ is a $\beta_2^I -$ open set but it is not $I^s -$ open.

From Theorems 3.3, 3.5 and 3.7, we have the following relation for I^s-open set with the other known sets.

[Diagram showing the relations between various types of open sets]

Theorem 3.9. A subset A of an ideal topological semigroup (X, τ, I) is I^s-closed set if and only if $Int([Cl^s(Cl^s(A))] \subseteq A$.

Proof. A is a I^s-closed set in (X, τ, I) if and only if $X - A$ is a I^s-open set in X if and only if

\[(X - A) \subseteq Cl[Int(Cl^s(X - A))]. \]

if and only if by using Theorem 3.7

\[(X - A) \subseteq Cl[Int([Cl^s([Cl^s(X - A))]) = Cl[Int(X - Int(Cl^s(A))] = X - Cl[Int(Cl^s(A))] = X - Int(Cl^s(A))]. \]

if and only if $Int([Cl^s(Cl^s(A))] \subseteq A$.

Theorem 3.10. Let (X, τ, I) be a ideal topological semigroup. If A_λ is I^s-open set for each $\lambda \in \Delta$ then $\cup_{\lambda \in \Delta} A_\lambda$ is I^s-open set, where Δ is an index set.
PROOF. Since $A \lambda$ is T^\ast-open set for each $\lambda \in \Delta$ then $A \lambda \subseteq Cl(Int^\ast(Cl'(A \lambda)))$ for each $\lambda \in \Delta$. Then
\[
\bigcup_{\lambda \in \Delta} A \lambda \subseteq \bigcup_{\lambda \in \Delta} Cl(Int^\ast(Cl'(A \lambda))) \\
\subseteq Cl\left[\bigcup_{\lambda \in \Delta} Int^\ast(Cl'(A \lambda))\right] \\
\subseteq Cl\left[\bigcup_{\lambda \in \Delta} Int^\ast(Cl'(A \lambda))\right] \\
\subseteq \bigcup_{\lambda \in \Delta} Cl\left[\bigcup_{\lambda \in \Delta} Int^\ast(Cl'(A \lambda))\right] \\
\subseteq Cl\left[\bigcup_{\lambda \in \Delta} Int^\ast(Cl'(A \lambda))\right].
\]
Hence $\bigcup_{\lambda \in \Delta} A \lambda$ is T^\ast-open set.

The intersection of two T^\ast-open sets need not be T^\ast-open set. In Example 5.6, the sets $A = \{a, b\}$ and $B = \{a, c\}$ are T^\ast-open sets but $A \cap B = \{a\}$ is not T^\ast-open set.

THEOREM 3.11. Let (X, τ, Δ) be an ideal topological semigroup. If U is an open set in (X, τ, Δ) and A is T^\ast-open set, then $U \cap A$ is T^\ast-open set.

PROOF. Since A is T^\ast-open set then $A \subseteq Cl[Int^\ast(Cl'(A))]$. Then by Theorems 3.10, $U \cap A \subseteq U \cap Cl[Int^\ast(Cl'(A))] \subseteq Cl[U \cap Int^\ast(Cl'(A))] = Cl[Int^\ast(U \cap Int^\ast(Cl'(A)))] = Cl[Int^\ast(U \cap Cl'(A))] \subseteq Cl[Int^\ast(Cl'(U \cap A))]$. Hence $U \cap A$ is T^\ast-open set.

4. T^\ast-OPERATORS

For an ideal topological semigroup (X, τ, Δ) and a subset A of X, the T^\ast-closure set of A is defined as the intersection of all T^\ast-closed sets containing A and denoted by $T^\ast Cl(A)$. The T^\ast-interior set of A is defined as the union of all T^\ast-open sets of X contained in A and denoted by $T^\ast Int(A)$. From Theorem 3.10, $T^\ast Cl(A)$ is a T^\ast-closed subsets of X and $T^\ast Int(A)$ is T^\ast-open subsets of X.

REMARK 4.1. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, Δ), it is clear from the definition of $T^\ast Cl(A)$ and $T^\ast Int(A)$ that $A \subseteq T^\ast Cl(A)$ and $T^\ast Int(A) \subseteq A$.

THEOREM 4.2. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, Δ), $T^\ast Cl(A) = A$ if and only if A is a T^\ast-closed set.

PROOF. Let $T^\ast Cl(A) = A$. Then from definition of $T^\ast Cl(A)$ and Theorem 3.10, $T^\ast Cl(A)$ is a T^\ast-closed set and so A is a T^\ast-closed set. Conversely, we have $A \subseteq T^\ast Cl(A)$ by Remark above. Since A is a T^\ast-closed set, then it is clear from the definition of $T^\ast Cl(A)$, $T^\ast Cl(A) \subseteq A$. Hence $A = T^\ast Cl(A)$.

THEOREM 4.3. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, Δ), $T^\ast Int(A) = A$ if and only if A is a T^\ast-open set.

PROOF. Let $T^\ast Int(A) = A$. Then from definition of $T^\ast Int(A)$ and Theorem 3.10, $T^\ast Int(A)$ is a T^\ast-open set and so A is a T^\ast-open set. Conversely, since A is a T^\ast-open set and $T^\ast Int(A) \subseteq A$ by Remark 4.1, then $T^\ast Int(A) = A$.

THEOREM 4.4. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, Δ), $x \in T^\ast Cl(A)$ if and only if for all T^\ast-open set U containing x, $U \cap A \neq \emptyset$.

PROOF. Let $x \in T^\ast Cl(A)$ and U be a T^\ast-open set containing x. If $U \cap A = \emptyset$ then $A \subseteq X - U$. Since $X - U$ is a T^\ast-closed set containing A, then $T^\ast Cl(A) \subseteq X - U$ and so $x \in T^\ast Cl(A) \subseteq X - U$. Hence this is contradiction, because $x \in U$. Therefore $U \cap A \neq \emptyset$. Conversely, let $x \notin T^\ast Cl(A)$. Then $x \notin T^\ast Cl(A)$ is a T^\ast-open set containing x. Hence by hypothesis, $[X - T^\ast Cl(A)] \cap A \neq \emptyset$.

THEOREM 4.5. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, Δ), $x \in T^\ast Int(A)$ if and only if x is in T^\ast-open set such that $x \in U \subseteq A$.

PROOF. Let $x \in T^\ast Int(A)$ and take $U = T^\ast Int(A)$. Then by Theorem 3.10, we have that U is a T^\ast-open set and by Remark 4.1, $x \in U \subseteq A$. Conversely, Let there is T^\ast-open set U such that $x \in U \subseteq A$. Then by definition of $T^\ast Int(A)$, $x \in U \subseteq T^\ast Int(A)$.

THEOREM 4.6. For a subsets $A, B \subseteq X$ of an ideal topological semigroup (X, τ, Δ), the following hold:

1) If $A \subseteq B$ then $T^\ast Cl(A) \subseteq T^\ast Cl(B)$;
2) $T^\ast Cl(A) \cup T^\ast Cl(B) \subseteq T^\ast Cl(A \cup B)$;
3) $T^\ast Cl(A \cap B) \subseteq T^\ast Cl(A) \cap T^\ast Cl(B)$;
4) $T^\ast Cl(A) \subseteq T^\ast Cl(B)$.

PROOF. Let $x \in T^\ast Cl(A)$. Then by Theorem 4.4, for all T^\ast-open set U containing x, $U \cap A \neq \emptyset$. Since $A \subseteq B$, then $U \cap B \neq \emptyset$. Hence $x \in T^\ast Cl(B)$.

2. Since $A \subseteq A \cup B$ and $B \subseteq A \cup B$, then by part (1), we get $T^\ast Cl(A) \subseteq T^\ast Cl(A \cup B)$ and $T^\ast Cl(B) \subseteq T^\ast Cl(A \cup B)$. Then $T^\ast Cl(A) \cup T^\ast Cl(B) \subseteq T^\ast Cl(A \cup B)$.

3. Since $A \cap B \subseteq A$ and $A \cap B \subseteq B$, then by part (1), we get $T^\ast Cl(A \cap B) \subseteq T^\ast Cl(A)$ and $T^\ast Cl(A \cap B) \subseteq T^\ast Cl(B)$. Then $T^\ast Cl(A \cap B) \subseteq T^\ast Cl(A \cap B)$. Hence $T^\ast Cl(A \cap B) = T^\ast Cl(A \cap B)$.

4. It is clear from Theorem 4.4 and from every open set U is T^\ast-open set.

In the last theorem $T^\ast Cl(A \cup B) \neq T^\ast Cl(A) \cup T^\ast Cl(B)$.

EXAMPLE 4.7. In Example 3.3, the sets $A = \{a\}$ and $B = \{b\}$ are T^\ast-closed sets in (X, τ, Δ). Then $T^\ast Cl(A) \cup T^\ast Cl(B) = A \cup B = \{a, b\}$ and

$T^\ast Cl(A \cup B) = T^\ast Cl((a, b)) = X$.

THEOREM 4.8. For a subsets $A, B \subseteq X$ of an ideal topological semigroup (X, τ, Δ), the following hold:

1) If $A \subseteq \emptyset$ then $T^\ast Int(A) \subseteq T^\ast Int(B)$;
2) $T^\ast Int(A) \cup T^\ast Int(B) \subseteq T^\ast Int(A \cup B)$;
3) $T^\ast Int(A \cap B) \subseteq T^\ast Int(A) \cap T^\ast Int(B)$;
4) $T^\ast Int(A) \subseteq T^\ast Int(B)$.

PROOF. Similar for Theorem 4.6.

In the last theorem $T^\ast Int(A \cap B) \neq T^\ast Int(A) \cap T^\ast Int(B)$.

EXAMPLE 4.9. In Example 3.3, the sets $A = \{b, c\}$ and $B = \{a, c\}$ are T^\ast-open sets in (X, τ, Δ). Then $T^\ast Int(A) \cap T^\ast Int(B) = A \cap B = \{c\}$ and

$T^\ast Int(A \cap B) = T^\ast Int(\{c\}) = \emptyset$.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.23, March 2021
THEOREM 4.10. For a subset $A \subseteq X$ of an ideal topological semigroup (X, τ, I), the following hold:

1. $\tau \text{Int}(X - A) = X - \tau \text{Cl}(A)$;
2. $\tau \text{Cl}(X - A) = X - \tau \text{Int}(A)$.

Proof. 1. Since $A \subseteq \tau \text{Cl}(A)$ then $X - \tau \text{Cl}(A) \subseteq (X - A)$. Since $X - \tau \text{Cl}(A)$ is a τ^*-open set in (X, τ, I) then $X - \tau \text{Cl}(A) = \tau \text{Int}[X - \tau \text{Cl}(A)] \subseteq \tau \text{Int}(X - A)$.

For the other side, let $x \in \tau \text{Int}(X - A)$. Then there is τ^*-open set U such that $x \in U \subseteq X - A$. Then $X - U$ is a τ^*-closed set containing A and $x \notin X - U$. Hence $x \notin \tau \text{Cl}(A)$, that is, $x \in X - \tau \text{Cl}(A)$. 2. Since $\tau \text{Int}(A)$ is τ^*-closed set in A then $X - A \subseteq X - \tau \text{Int}(A)$. Since $X - \tau \text{Cl}(A)$ is a τ^*-closed set in (X, τ, I) then $\tau \text{Cl}(X - A) \subseteq \tau \text{Cl}[X - \tau \text{Int}(A)] = X - \tau \text{Int}(A)$.

For the other side, let $x \in \tau \text{Cl}(X - A)$ then there is τ^*-open set U such that $x \in U \subseteq X - A$. Then $X - U$ is a τ^*-closed set containing x and $x \notin X - U$. Hence $x \notin \tau \text{Cl}(A)$, that is, $x \in X - \tau \text{Cl}(A)$. □

THEOREM 4.11. For a subset $A \subseteq X$ of an ideal topological space (X, τ, I), the following hold:

1. If I is an open set in X then $\tau \text{Cl}(A) \cap I \subseteq \tau \text{Cl}(A \cap I)$.
2. If I is a closed set then $\tau \text{Int}(A \cup I) \subseteq \tau \text{Int}(A) \cup I$.

Proof. 1. Let $x \in \tau \text{Cl}(A) \cap I$. Then there is τ^*-open set in (X, τ, I) containing x. By Theorem 3.11, $V \cap I$ is τ^*-open set containing x. Since $x \in \tau \text{Cl}(A)$ then by Theorem 4.4, $(V \cap I) \cap A \neq \emptyset$. This implies, $V \cap (I \cap A) \neq \emptyset$. Hence by Theorem 4.4, $x \in \tau \text{Cl}(A \cap I)$. That is, $\tau \text{Cl}(A) \cap I \subseteq \tau \text{Cl}(A \cap I)$. 1. Since I is a closed set X then by the part (1) and Theorem 4.10,

$$X - \tau \text{Int}(A \cup I) = X - \tau \text{Int}(A) \cup I.$$ 2. From the definition of $\tau \text{Cl}(A)$.

3. By Theorem (4.10),

$$\tau \text{Cl}(A) = \tau \text{Cl}(A - \tau \text{Int}(A)) = \tau \text{Cl}(A) \cap (X - \tau \text{Int}(A)) = \tau \text{Cl}(A) \cap \tau \text{Cl}(X - A).$$

COROLLARY 4.13. For a subset $A \subseteq X$ of an ideal topological space (X, τ, I), $\tau \text{Cl}(A)$ is τ^*-closed set in (X, τ, I).

Proof. By Theorem 4.10 and the part (3) of the last Theorem.

THEOREM 4.14. For a subset $A \subseteq X$ of an ideal topological space (X, τ, I), the following hold:

1. A is a τ^*-open if and only if $\tau \text{Cl}(A) \cap A = \emptyset$;
2. A is a τ^*-closed if and only if $\tau \text{Cl}(A) \subseteq A$;
3. A is both τ^*-open and τ^*-closed if and only if $\tau \text{Cl}(A) = \emptyset$.

Proof. 1. Let A be a τ^*-open set. Then $\tau \text{Int}(A) = A$. Then by Theorem 4.13,

$$\tau \text{Cl}(A) \cap A = \tau \text{Cl}(A) \cap \tau \text{Int}(A) = \emptyset.$$ Conversely, suppose that $\tau \text{Cl}(A) \cap A = \emptyset$. Then $A - \tau \text{Int}(A) = [A \cap \tau \text{Cl}(A)] \cap [A - \tau \text{Int}(A)] = A \cap (\tau \text{Cl}(A) - \tau \text{Int}(A)) = A \cap \tau \text{Cl}(A) = \emptyset$.

That is, $\tau \text{Int}(A) = A$. Hence A is a τ^*-open set. 2. Let A be a τ^*-closed set. Then $\tau \text{Cl}(A) = A$. Then

$$\tau \text{Cl}(A) = \tau \text{Cl}(A - \tau \text{Int}(A)) = A - \tau \text{Int}(A).$$ Conversely, suppose that $\tau \text{Cl}(A) \subseteq A$. Then by Theorem 4.12,

$$\tau \text{Cl}(A) = \tau \text{Cl}(A) \cup \tau \text{Gamma}(A) \subseteq \tau \text{Int}(A) \cup A \subseteq A.$$ That is, $\tau \text{Cl}(A) = A$. Hence A is τ^*-closed set. 3. Let A be both τ^*-closed set and τ^*-open set. Then $\tau \text{Cl}(A) = A = \tau \text{Int}(A)$. Therefore,

$$\tau \text{Cl}(A) = \tau \text{Cl}(A) - \tau \text{Int}(A) = A - A = \emptyset.$$ Conversely, suppose that $\tau \text{Gamma}(A) = \emptyset$. Then $\tau \text{Cl}(A) - \tau \text{Int}(A) = \emptyset$. Since

$$\tau \text{Int}(A) \subseteq \tau \text{Cl}(A).$$ Then

$$\tau \text{Cl}(A) = \tau \text{Int}(A).$$ Since

$$\tau \text{Int}(A) \subseteq A \subseteq \tau \text{Cl}(A).$$ Then $\tau \text{Cl}(A) = A = \tau \text{Int}(A)$.

That is, $\tau \text{Cl}(A) = A$. Hence A is both τ^*-closed set and τ^*-open set. □

5. RELATIVE PROPERTY

By bitopological semigroup we mean a triple (X, τ, ρ) consists two topological semigroups (X, τ) and (X, ρ). A subset $A \subseteq X$ is said to be $\tau \rho$-open set in a bitopological semigroup (X, τ, ρ) if $A \subseteq \tau \rho \text{Int}(\tau \rho \text{Cl}(A))$. The complement of $\tau \rho$-open set is said to be $\tau \rho$-closed set.
THEOREM 5.1. A subset $A \subseteq X$ is a T^*-open set in ideal topological semigroup (X, τ, I), if and only if it is a $\tau^*\tau$-open set in bitopological semigroup (X, τ, τ).

PROOF. It is clear from the definitions and $Cl'(A) = \tau Cl(A)$.

THEOREM 5.2. A subset A of a bitopological semigroup (X, τ, ρ) is $\tau\rho$-closed set, if and only if $\tau Int[Cl'(Int(A))] \subseteq A$.

PROOF. A is a $\tau\rho$-closed set in X, if and only if $X - A$ is a $\tau\rho$-open set in X, if and only if

$$(X - A) \subseteq Cl[(\rho Int(Cl(X - A))],$$

and if only by using Theorem (4.10).

THEOREM 5.3. Let Y be an open subset of an ideal topological semigroup (X, τ, I). If A is a T^*-open set in (X, τ, I) then $A \cap Y$ is a $\tau|_Y \tau^*\tau$-open set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$.

PROOF. Since A is T^*-open set in (X, τ, I), then $A \subseteq Cl[Cl'(Cl'(A))]$. By Theorems (2.1) and (4.10), we obtain

$$(A \cap Y) \subseteq Cl[Cl'(Cl'(A))] \cap Y$$

Hence $A \cap Y$ is a $\tau|_Y \tau^*\tau$-open set in $(Y, \tau|_Y, \tau^*|_Y)$.

COROLLARY 5.4. Let Y be an open subset of an ideal topological semigroup (X, τ, I). If A is a T^*-closed set in (X, τ, I) then $A \cap Y$ is a $\tau|_Y \tau^*\tau$-closed set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$.

PROOF. Let A be a T^*-closed set in (X, τ, I). Then $X - A$ is a T^*-open set in (X, τ, I). By the last theorem, $Y - (X - A) = Y - Y \cap (X - A) = Y \cap (X - Y) \cap A = A \cap Y$ is a $\tau|_Y \tau^*\tau$-closed set in $(Y, \tau|_Y, \tau^*|_Y)$.

THEOREM 5.5. Let Y be an open subset of an ideal topological semigroup (X, τ, I). If A is a $\tau|_Y \tau^*\tau$-open set in bitopological semigroup $(Y, \tau|_Y, \tau^*|_Y)$, then A is T^*-open set I in (X, τ, I).

PROOF. Since A is a $\tau|_Y \tau^*\tau$-open set in $(Y, \tau|_Y, \tau^*|_Y)$ then $A \subseteq Cl[Cl'(Cl'(Y))]$. Then by Theorems (2.1), (4.10).

$$(A \cap Y) \subseteq Cl[Cl'(Cl'(Y))] \cap Y$$

Hence A is a T^*-open set in I in (X, τ, I).

COROLLARY 5.6. Let Y be an open subset of an ideal topological semigroup (X, τ, I). If A is a $\tau|_Y \tau^*\tau$-closed set in bitopological space $(Y, \tau|_Y, \tau^*|_Y)$, then A is T^*-closed set in (Y, τ, I).

THEOREM 5.7. Let Y be an open subset of an ideal topological semigroup (X, τ, I) and A be a subset of Y. Then $\tau Cl'(A) = \tau Cl(A) \cap Y$.

PROOF. Let $x \in \tau Cl'(A)$ and I be a T^*-open set in X containing x. By Theorem (5.1) if $Y \cap \tau Cl'(A)$ is a τ^*-open set in bitopological space $(Y, \tau|_Y, \tau^*|_Y)$ containing x and since $x \in \tau Cl'(A)$, then $I \cap A = (I \cap Y) \cap A \neq \emptyset$. Hence by Theorem (4.4), $x \in \tau Cl(A)$ and since $x \in Y$, this implies $x \in \tau Cl(A) \cap Y$. That is, $\tau Cl'(A) \subseteq \tau Cl(A) \cap Y$. On the other side, let $x \in \tau Cl(A) \cap Y$ and O be a τ^*-open set in bitopological space $(Y, \tau|_Y, \tau^*|_Y)$ containing x. By Corollary (5.5), O is T^*-open set in (X, τ, I). Since $x \in \tau Cl(A)$, then $O \cap A \neq \emptyset$. That is, $x \in \tau Cl'(A)$. Hence $\tau Cl(A) \cap Y \subseteq \tau Cl'(A)$.

THEOREM 5.8. Let (X, τ, ρ) and (Y, ρ, ρ') be two ideal topological semigroups. A subset $A \times B \subseteq \tau \times \rho \times B \times \rho'$-open set in bitopological semigroup $(X, \tau, \rho) \times (Y, \rho, \rho')$ if and only if A is a T^*-open set in (X, τ, ρ) and B is a T^*-open set in (Y, ρ, ρ').

PROOF. It is clear that,

$$\tau \rho Cl[\tau \rho \rho' Cl(\tau \rho Cl(A \times B))] = \tau \rho Cl[\tau \rho \rho' Cl(\tau \rho Cl(A \times B))] = \tau \rho Cl[\tau \rho \rho' Cl(\tau \rho Cl(A \times B))] = \tau \rho Cl[\tau \rho \rho' Cl(\tau \rho Cl(A \times B))]$$

We have $A \times B \subseteq C \times D$, if and only if $A \subseteq C$ and $B \subseteq D$.

6. REFERENCES