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ABSTRACT 

Agents affected by their own future states in a one-

dimensional discrete dynamical system (1-DDS) can replicate 

two-dimensional images. A novel and practical set of two 

rules have been developed in this paper to calculate the 

number of iterations required for exact replication. It is argued 

that retrocausal updation used by 1-DDS can replicate any n-

dimensional digital object. It is shown that the way iterations 

reach a final image are different for randomly generated 

images and non-random images. This paper suggests a simple 

method for replicating and detecting non-randomness in 

images.  
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1. INTRODUCTION 
A one-dimensional cellular automaton (1-CA) is an array of 

cells, each in one of a finite number of states. At each time 

step, the state of each cell is updated using a deterministic rule 

based on the state of the neighboring cells and its own state. 

Such 1-CA’s have been extensively studied over decades. 

 

1-CA’s can replicate binary images. This is particularly useful 

in image processing and encryption applications, as in textile 

and other motif design, genetics research, spread of infectious 

diseases, security, statistical physics, artificial life and other 

fields. Previous work in this area include:  

 

- Wolfram [1] discussed self-similar patterns on 1-

CA’s. 

- Willson [2–4] studied the generation of fractals and 

fractal dimensions with linear rules. 

- Culik and Dube [5] proved that linear rules will 

always generate regular behavior on any initial 

configuration.  

- Fredkin [6] discussed fractal replicator on two-

dimensional cellular automata (2D CA). 

- Mitra and Kumar [7] discussed fractal replication on 

1-CAs with look-ahead (cell’s own future state)—

and that replication can happen at time step 2k, 

where k is a non-negative integer.  

- In [5, 7] and in Gravner and Griffeath [8], it was 

independently observed that replication occurs at 

time step 2⌈(log2(m-1))⌉ (m > 1 is the size of the initial 

configuration).  

- Finally, Inabathini and Lakshmanan [9] carried out 

a mathematical analysis and reported a method to 

calculate the value of k. by proving that an image of 

size m gets replicated exactly at step 2k where k is 

the least positive integer satisfying the relation m/ r 

≤ t = 2k. Here r is the size of the neighborhood and t 

is the time step. Many of the references to past work 

above is, indeed, reported from this paper.  

 

However, finding the value of k, such that 2k represents the 

time step at which replication happens, is still not clear from 

the work above. Even in the latest work [9], the value of k 

when the inequality m/ r ≤ t = 2k is not satisfied, remains 

unclear. In the present paper, we have used an experimental 

approach that determines the value of 2k for all values of m 

(the ‘width’) and h (the ‘height’) of an image.  

 

For cellular automata diagrams, it is customary [8] to show 

the time axis as vertically pointing downwards, while the 

agents or cells are show as a horizontal line. However, in the 

work that follows, we have represented the agents as a vertical 

column pointing upwards from 1 to h, and the time axis as 

horizontally pointing from left to right. This was done for ease 

of viewing images.  

 

The method of replication used in this paper uses agents that 

can look ahead into their future states. Images or bitmaps can 

be fractally replicated by time manipulated one-dimensional 

cellular automata [7]. Instead of modified cellular automata, a 

vertical array of agents forming a one-dimensional discrete 

dynamical system (1-DDS) were used. Each agent can be in 

one of two states, 1 and 0, represented by black and white. 

Each agent’s current state is updated by the current states of 

its two neighbors, above and below, and by its own state in 

the future. Since its own future state affects its present state, 

the system is retrocausal. The 1-DDS can update over a fixed 

number of time steps, t=1 to w, and then return to t=1. Each 

such cycle is an iteration. 

If a bitmap is placed in the future of this 1-DDS, the agents 

will react to the bits of the image and change in accordance 

with the updation rules provided. It is known that a modified 

(retrocausal) Wolfram rule 150 will replicate the image in 2n 
iterations [7], where n is a positive integer. 

In this paper we show that:  

1. The relationship between the minimum number of 

iterations required to replicate a binary bitmap, Imin, 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 26, March 2021 

7 

and the ‘size’ of the bitmap is a step function of the 

width of the bitmap, but with exceptions if the 

number of agents in the 1-DDS is an integral power 

of 2.   This corrects  earlier inadequate explanations 
[7,8,9]. 

2. Iterations have a physical basis if the image being 

replicated is considered a surface in toroidal 
spacetime.  

3. The progression of successive iterations towards 

replicating the final image shows differences for 

random images when compared with equivalent 
non-random images. 

It is important to note that there are many references to 

replication of images by cellular automata, but, except for [7], 

none that uses retrocausality - the ability to use future states to 

alter present ones. 

2. EXPERIMENTAL PROCESS 
The replicator used consists of a retrocausal one-dimensional 

discrete dynamical system [10] made up of agents [11]. The 

system consists of a line of discrete agents arrayed in a 

specific geometry [12]. Each agent can be in one of k finite 

states, and each agent’s state is updated on every time step 

according to a deterministic rule based on the values of the 

neighboring agents and the future state of the agent being 

updated. It is assumed that each agent has knowledge of its 

future state. In the computational experiments described 

below, we have worked with a 1-DDS that is, a single line of 

agents, placed vertically, each in one of two states – black=1 

or white=0. 

We have used the following two-state model having a 

neighborhood of radius 1: 

Number of states: k =2 

Number of neighbors above and below: r = 1 

Retrocausal Update Rule (RUR):  

Agent t+1 = (Abovet+Agentt+1+Belowt) mod 2 

This rule implies that every agent’s future state at time t+1 

exists, and is the cause of the agent’s state at time t. 

This update rule is a modification of the usual: 

Causal Update Rule (CUR):  

Agent t+1 = (Abovet+Agentt+Belowt) mod 2 

CUR is called Rule 150 according to Wolfram’s numbering 

system and is quite well known [1]. 

Since our retrocausal update rule involves the future states of 

agents in a 1-DDS, we can populate that future with a binary 

bitmap. This could be an image. If we do so and iterate the 1-

DDS over this image using RUR, we observe image 

replication as expected. If we had, instead, used CUR for 

updation, the image would have been erased by the advancing 

1-DDS. 

3. REPLICATION EFFICIENCY 
A black-and-white (binary) image of Leonardo Da Vinci was 

replicated using a retrocausal 1-DDS as described above. The 

results are shown in figure 1. 

 

Figure 1. Image replicated by a retrocausal 1-DDS over 

512 iterations 

The image used has 480(width)x585(height) pixels, and 

contains approximately 25% black pixels. It was exactly 

replicated in 512 iterations. For each iteration, how closely the 

iterated image matched the original was calculated. A plot of 

the percent match (henceforth called replication efficiency) 

against iteration number is shown in figure 2. 

Figure 2. How progressive iterations approach 100% 

replication of the original image 

Figure 2 shows that the replication efficiency reaches 100% at 

the 512th iteration. Iterated images get closer to matching 

with the original image, with peaks in replication efficiency 

every 2n iterations. Exact match, i.e., 100% is achieved at n=9, 

the 512th iteration.  

Each iteration, some shown in figure 1, involves application 

of update rule, RUR, until the end of the width of the picture, 

column 480 in this case, is reached. After this, the next 
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iteration begins at column 1. It is important to realize that the 

column numbers are units of time and the width of this image 

represents time. Since our DDS is one-dimensional, the only 

spatial dimension it has is its height which is the number of 

agents in the system, 585 in this case. The vertical height axis 

is referred to as y, and the horizontal width axis as t.  

If it is assumed that the t-axis is closed, that is, its value 

returns to zero after 480, a basis for why iterations restart 

from zero after reaching the maximum width of the image is 

established.  

The update rule involves both neighbors of the agent being 

updated. This will cause a problem at both ends of the y-axis. 

This problem can be resolved by joining the ends of the y-

axis. In other words, the y-axis is closed, and its value returns 

to zero after 585. This provides a consistent basis for applying 

RUR along the y-axis.  

The shape of a spacetime formed by a closed spatial axis, y, 

and a closed temporal axis, t, is a two-dimensional, orthogonal 

torus as shown in figure 3. The torus shape removes problems 

related to edges – whether it is the maximum and minimum 

values on the y- axis, or the future and past on the t-axis. The 

application of such toroidal spacetime to cellular automata is 

not common in the literature, however, there have been some 

attempts [13]. 

Figure 3. Toroidal spacetime with one temporal and one 

spatial axis 

An image or a group of pixels (bitmap) wrapped such that it 

fits exactly onto a torus such as the one shown in figure 3, 

would enable update rule RUR to apply over the time axis in 

the direction of the future until it covers the circumference of 

the time axis and returns to zero. This would complete a 

single iteration and the process would repeat, thereby 

replicating the image or bitmap repeatedly as shown in figures 

1 and 2. We would have a physical analogue for the process 

of replication, provided we assume that any bitmap creates a 

toroidal spacetime around which it is draped.  

It is also important to note that the bitmaps we are working 

with are two-dimensional, while the DDS we are using to 

replicate the bitmaps with are one-dimensional. Our 1-DDS is 

essentially a binary string, a column of agents, each in one of 

two states. The update rule RUR produces a new binary string 

at each time step. These strings when laid side by side 

produces a two-dimensional image. In other words, we are 

interpreting the time axis as an additional spatial axis to 

visualize an “image”. What we are referring to as an “image” 

is a memory of past states of the column of agents, frozen as a 

spatial axis. 

4. MINIMUM ITERATIONS NEEDED 
The minimum number of iterations required for exact 

replication is called Imin, as multiples of Imin iterations will 

also produce exact replications. We know from the 

experiments above that Imin =2n, where n is a positive integer. 

In the earlier paper [7], it was suggested that Imin is related to 

the area of the image, and two special cases were discussed. 

However, no general method was suggested for calculating 

Imin for an image of width (w) and height (h). In this paper, we 

will derive such a method.  

We need to know if Imin is related to the height of the image 

on the y-axis, the width of the image on the t-axis, or both. To 

do this, we will need to compare the Imin values for equivalent 

images of different heights and widths. We generated images 

consisting of random black and white dots to conduct these 

experiments.  

First, it was checked whether an image consisting of random 

pixels would be equivalent to a non-random image with the 

same number of pixels. The image of Leonardo in figure 1 

consists of 480x585 pixels (black or white dots) with 25% 

black pixels. A random bitmap was created by distributing the 

same number of black pixels randomly over an image of the 

same dimensions. This was replicated using the RUR on a 1-

DDS.  Figure 4 shows the replication efficiency between 

iterations 400-512. 

Figure 4. Comparison of replication efficiencies for 

random and non-random images 

The match percent data for the Leonardo image of Figure 1 

showed a 76% correlation with that for the equivalent random 

bitmap used for Figure 4. More importantly perhaps, the 

peaks in both graphs are at identical powers of 2. We 

concluded that while the matching progresses differently for 

the two images, the number of iterations required for exact 

replication are identical. This was noticed for several images 

compared with equivalent random bitmaps. This difference 

between random and non-random images seems to indicate 

that height, width, and pixel density are not the only 

determinants that shape the replication efficiency graph. The 

distribution of pixels, whether random or non-random, affects 

the shape of the graphs in figure 4, even though they don’t 

affect the value of Imin.  

Hence, for the purpose of determining the relationship 

between Imin and the height and width of an image, random 

images were used for the experiments below.  

Experiment 1: The y-axis height(h) of the image was varied 
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from 1 to 256 in steps of 1, while keeping the width (w) 

constant at 25. At each step, an equivalent random image was 

generated and iterated using RUR until exact replication was 

achieved. The results are shown in figure 5 up to h=69. 

Figure 5. Iterations needed to reach 100% replication for 

images with varying heights and fixed width 

Figure 5 shows that an image of width t=25 units will require  
⌈       ⌉=32 iterations to replicate irrespective of its 

height, except when h is an integral power of 2 and is 
⌈       ⌉=32 or less. In our example, h meets these 

conditions for values 2,4,8,16, and 32. At these exact values, 

Imin=h/2.  Several other experiments confirmed these findings. 

The dependence of Imin is on the range of powers of 2 that the 

height and width of an image are in. 

Experiment 2: The t-axis width(t) of the image was varied 

from 1 to 256 in steps of 1, while keeping the height (h) 

constant at 25. At each step an equivalent random image was 

generated and iterated using RUR until exact replication was 

achieved. The results are shown in figure 6 upto width=67. 

Figure 6. Iterations needed to reach 100% replication for 

images with varying widths and fixed height 

Figure 6 shows that for images with widths less than height, 

an image of fixed height (25 units in this case) will require 2n 

iterations for an exact match, (where n is a positive integer) 

such that 2n-1<=w<2n.  

We can also write this as   ⌈       ⌉. For example in 

Figure 6, for values of w<h, Imin=24 for widths where 

23<=w<24.  

In general, Imin= 
⌈       ⌉, except when h is a positive integral 

power of 2, as seen from experiment 1.  

Imin is a step function of width, except when the height is an 

integral power of 2. To check this, heights of 63,64,65 and 

128 were tested. Figure 7 shows the results. At h=63 where 

25<h<=26 and at h=65 where 26<h<=27, Imin changes as a step 

function of width. However, at h=64, Imin becomes 

independent of width and remains constant at 32 which is 25. 

Similarly, at h=128, Imin becomes independent of width and 

remains constant at 64 which is 26. The individual graphs for 

each height is shown on the top of Figure 7, followed by the 

combined graph. 

 

Figure 7. Relationship of Imin with width for different 

heights 

Next, widths that were 63, 64 and 65 were tested. These are 

shown in Figure 8. As expected, at widths of 63 and 64 where 

25<=w<26, Imin is 26. At a width of 65, where 26<=w<27, Imin 

jumps to 27. Also, as expected, this process is disrupted when 

the height is an integral power of 2, if its value does not 

exceed  ⌈       ⌉ . 

Figure 8. Relationship of Imin with height for different 

widths 

We can generalize these results into the following rules:  

For a bitmap of dimensions w (width), h (height) and a 

positive integer n: 

1.       
⌈       ⌉, for all values of w when h≠2n, or 

when     ⌈       ⌉ 
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2.       
⌈       ⌉, for all values of h=2n when 

h<= ⌈       ⌉ 

Imin is always determined by the integral powers of 2 on the 

time axis (w), except when the number of agents making up 

the 1-DDS, the y axis (h) value, is a positive integral power of 

2 and is less than the upper end of the integral powers of 2 

that w lies in. Hence, Imin can be made independent of w by 

adjusting the dimensions of a bitmap so that its h value (that 

is, the number of agents in the 1-DDS) is a positive integral 

power of 2, less than  ⌈       ⌉ . 

We can use these rules to predict the value of Imin for a bitmap 

of any dimensions. 

5. EXPERIMENTAL VERIFICATION 
We used the rules above to predict the Imin values for bitmaps 

of different dimensions. In all cases the predictions matched 

the number of iterations required to replicate the bitmaps. To 

illustrate this, three examples of image replication are 

reported below. 

Example 1: A bitmap image of an elephant of dimensions 

w=272, h=177 was replicated. 

Figure 9. Replication of an elephant image 

Since h is not an integral power of 2, Rule 1 above will apply 

and this predicts an Imin of 512, which matched the 

experimental result as shown in Figure 9. 

Example 2: A bitmap image of a person of dimensions 

w=156, h=256 was replicated. 

Figure 10. Replication of a person image 

Since h in integer power of 2, Rule 2 above will apply and 

predicts an Imin of 128 which matched the experimental result 

as shown in Figure 10. 

Example 3: A bitmap image of a butterfly of dimensions 

w=275, h=256 was replicated. 

Figure 11. Replication of a butterfly image 

Since h in integer power of 2, Rule 2 above will apply and 

predicts an Imin of 128 which matched the experimental result 

as shown in Figure 11. 

6. DISCUSSION 

6.1 Replication of n-dimensional objects 
In the work described above, two-dimensional bitmap images 

were replicated. Such replication is possible for any digitally 

represented object because all such objects of any number of 

dimensions can be represented as a one-dimensional binary 

string [14]. Any such binary string can be ‘folded’ into a 

rectangle of sides h and w and replicated in 2n iterations by 1-

DDS using the retrocausal update rule RUR in a toroidal 

spacetime. The replicated bitmap can then be ‘unfolded’ into 

the original binary string and finally, converted to the original 

digital object.  

Example: We converted a word-processed document in the 

.docx format into a binary string folded into a rectangular 

bitmap of dimensions w=256 and h=371 (figure 12). 

 

Figure 12. A” .docx” file converted into a binary bitmap 

image 

This image was replicated in 256 iterations using the RUR as 

predicted by Rule 1 above. When ‘unfolded’ and renamed, the 

original document was recovered. 

6.2 Effect of iteration on meaning 
Random images and meaningful non-random images show 

differences in replication graphs as seen in figure 4. RUR 
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based Iterations seem to either destroy or create meaning. An 

example is shown in figure 13.  

Figure 13. The effect of a single iteration on two, nearly 

identical, images 

Images A and B in figure 13 are different by about 17%, and 

nearly identical visually. Image A is the original image while 

image B is the result of 511 iterations, using RUR, on image 

A. A single iteration destroys all meaning in image A while a 

single iteration on image B produces an exact replication of 

the original image. Each pixel in these images are states of 

agents in a 1-DDS as described before. Figure 13 shows that 

the states of a few agents in a 1-DDS can affect the results of 

an iteration to exceptionally large extents.  

The progression of iterations over time are irreversible. If an 

agent has a value of 1 at time t, it is not possible to determine 

what its value at time t-1 was. This is because the updation 

rule is such that the same state can be produced by different 

combinations of the states of itself and its upper and lower 

neighbors in the previous time step. Hence, RUR is 

deterministic in the forward, past to present to future, 

direction of time, but not the other way about.  

Further, it is not possible to derive the image from its 

replication efficiency graph. For example, the difference 

between the replication efficiency graphs for an image being 

studied and an equivalent random image may suggest that the 

image being studied is a non-random image, but, in the 

absence of the original image, the replication efficiency graph 

alone cannot tell us what that image was. Further research 

may uncover a method to retrieve an image from a replication 

efficiency graph.  

The process of replication of non-random images appears to 

be one where iterations create and destroy meaning in cycles, 

until the final image is reached.  

Meaning in binary strings is not understood clearly although 

some attempts have been made (e.g., [15]). 

6.3 Applicability to other cyclical systems 
The worldwide COVID-19 virus pandemic [16] shows 

cyclical patters that can be compared with 1-DDS iteration 

efficiency graphs. The growth of infections shows peaks and 

troughs over time, heading upwards. This is typical of the 

behavior of replication efficiency in bitmap replication by 

retrocausal agents in a 1-DDS. Figure 14 shows such a 

comparison.  

 

Figure 14. COVID-19 infections worldwide compared to a 

replication graph of 1-DDS 

Correlation does not imply causation and it is highly unlikely 

that the same mechanism is at work in both cases, however, 

that possibility cannot be ruled out. We found a 75% 

correlation between the graphs in Figure 14. However, if we 

construct an equivalent random bitmap for the image in 

Figure 14, the correlation between the Covid data and this 

equivalent random bitmap is found to be only 20%. This is 

shown in Figure 15.  

Figure 15. Worldwide Covid cases between 31st May and 

16th June 2020, compared with replication efficiency of an 

image and its equivalent random bitmap 

 Virus infection numbers involve neighborhood interactions to 

determine future states. If the mechanism of the spread of the 

Covid virus is like that of a 1-DDS replicating an image, 

Figure 15 tells us that image is non-random. If this is so, the 

Imin values for replication can be made constant and 

independent of time by changing the number of agents 

involved, as shown in section 4. 

While unlikely and speculative, we could imagine that the 

graph of infections in figures 14 and 15 suggest a retrocausal 

1-DDS iterating over time to replicate an image, or a pattern.  

7. CONCLUSIONS 
We conclude that any digital object can be replicated by one-

dimensional discrete dynamical systems using a retrocausal 

iterative rule where its own future determines its present state. 
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The minimum number of iterations required to replicate an 

object using this method can be calculated by applying two 

simple rules. 

One consequence of this work shows that the minimum 

number of iterations required to replicate a digital object ( 

converted into a one-dimensional binary string) using a 1-

DDS can be controlled and made independent of the 

dimension of the object by suitably altering the number of 

agents that constitute the 1-DDS. 

Finally, we find that the replication efficiency graphs of 

random and non-random images as iterations proceed towards 

exact replication, are significantly different from each other, 

thereby offering a means, perhaps, for distinguishing between 

random and non-random (‘meaningful’) images. 
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