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ABSTRACT 
The increased use of real-time water quality monitoring using 

automated systems with sensors demands and makes it 

possible to identify unexpected values in time. Anomalies are 

brought by technical issues that are likely to prevent detection 

of problematic data manually at the incoming data rate. Use of 

machine learning approaches to detect anomalies for water 

quality data is the main focus of this article. There is analysis 

of four time series machine learning anomaly detection 

techniques: the local outlier factor, the isolation forest, the 

extended isolation forest and robust random cut forest. A 

subset data collected from deployment of sensors in a water 

treatment plant (Nyeri-Kenya) was used to carry out extensive 

analysis of experiments of the afore-mentioned techniques; 

for turbidity and pH parameters. There was successful correct 

detection of all outliers for both subsets by the local outlier 

factor algorithm, contrary to the rest of the other algorithms 

considered. As per the primary experiment, the local outlier 

factor emerged the fastest. Also, it was easier use as long as 

there was selection of optimum parameters. Moreover, 

analysis of the four techniques demonstrated that with or 

without training, it is a powerful tool for water quality 

anomaly detection and hence a feasible approach. 
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1. INTRODUCTION 
For survival, almost all aspects of life essentially need water, 

which occupies more than 70% of earth's surface [1]. Water 

quality can be safeguarded by water quality monitoring and 

management. However, determining the quality of a water 

body may be challenging majorly because water is a huge 

network consisting of linked parts such as lakes, rivers, 

creeks, estuaries and wetlands. Varying pollution levels in 

these linked parts is mainly the reason for the difficulty in 

assessing quality of water. 

The chemical, physical, biological and other contents of water 

that vary through the seasons and geographic parts are 

described by water quality [2]. Environmental factors and 

human activities impact on the water quality. The major 

determinants of available water quality and quantity are 

climate, geological and hydrological factors. Conversely, 

impact of human activities on water quality is vast and the 

degree to which they disrupt the ecosystem and restrict use of 

water varies [3]. Human and environmental health is affected 

by quality of water, therefore, determination and prevention of 

contamination issues is possible through constant monitoring 

of water. A problem in posterior analysis caused by anomalies 

in water quality are likely to cause decisions and conclusions 

that are faulty [4]. Causes of anomalies include phenomena in 

the ecology such as floods or rainfall. Anomalies are a 

constant expectation that also likely result from unexpected 

human and technical errors. For example, errors in 

communication between server and sensor node may occur, 

dirt in the sensor probe, pulling the sensor out of water for 

cleaning, malfunctioning of equipment, just to mention a few. 

In collaboration with Department of Electrical and Electrical 

Engineering, and the Center for Data Science and Artificial 

Intelligence (DSAIL) both in Dedan Kimathi University of 

Technology (DeKUT), alongside the Nyeri Water and 

Sanitation Company (NYEWASCO) all in Nyeri-Kenya, a 

raw water quality monitoring system was developed and 

deployed at the NYEWASCO water treatment plant [5]. The 

focal point of this research was finding possible approaches to 

detect anomalies automatically in time series water quality 

data. There has been development of new technologies for 

remote autonomous sensing of water systems. The main aim 

of this system was to monitor pH and turbidity for raw water. 

2. LITERATURE 

2.1 Anomalies 
Instances or situations where subsets are considered different 

from the information are regarded as novelties, anomalies, 

noise or outliers [6]. There are three classifications of 

anomalies: An individual data point away from the rest in a 

subset is referred to as point or global anomalies. For 

conditional or contextual outliers, information or data is 

anomalous in specific contextual framework, but not 

otherwise. This research is concentrating on this anomalies. 

Lastly, a collection of information or data in a particular 

subset is referred to as collective anomalies. This is illustrated 

in Figure 1 below. Finding out the sequences or patterns in 

information data that do not replicate expected output or trend 

is a process referred to as anomaly detection [7]. 
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Figure 1: Types of anomalies [7] 

2.2 Machine Learning Algorithms 
Machine learning originated from pattern recognition and is a 

technique of data analysis that explicitly gives computers the 

capability to learn minus any form of programs. Algorithms 

that can learn from data, identify patterns and make decisions 

are explored, examined, and developed. The main classes of 

machine learning algorithms include supervised, unsupervised 

or semi-supervised learning. Labelled data for training is 

required in supervised learning while unsupervised learning 

does not entail either desired classified or labeled test data. Its 

algorithms can infer a function to describe hidden data 

structures from unclassified test data short of any guidance. 

On the other hand, semi-supervised learning lies between 

supervised and unsupervised learning [7]. These are illustrated 

in Figure 2 below. 

 
Figure 2: Machine learning algorithms categories: a) 

Supervised Learning, b) Unsupervised Learning 

2.3 Anomaly Detection Algorithms 
Local density gives a base for nearest neighbors anomaly 

detection techniques which are built on the algorithm of k-

nearest neighbors algorithm. Clustering-based anomaly 

detection is unsupervised learning. There is an assumption by 

these algorithms that similar objects tend to belong to similar 

groups (clusters) and that distance determines the similarity. 

Categorization of data into different classes with labels is 

done by the classification technique. Anomaly detection 

involves only two distinct classes: normal class and abnormal 

class. Calculation of deviations from common statistical 

properties of a distribution and flagging of abnormal points 

with deviations above a threshold is done by statistical 

methods. The commonly used properties for such calculations 

are mean, median, mode, and quantiles. Random forests is the 

learning algorithm that functions by construction of decision 

trees' multitude at training time and class outputting (i.e. class 

mode-classification; prediction of mean-regression). This 

algorithm classifies and regresses individual trees. [7]. The 

local outlier factor and random forests are chosen because of 

the following reasons [8]: 

 Time series data with only one variable such as 

water quality data is not suitable for clustering. 

 There is a requirement of model training and labeled 

data for neural networks and support vector 

machine (SVM) algorithms.  

 Training a generic model for classification is 

difficult and different results for the same data point 

may be generated by different models. 

 LOF is based on K-NN and extensions of LOF are 

other nearest neighbors-based algorithms.  

 

2.3.1 Local Outlier Factor 
Local outlier factor (LOF) is an unmonitored outlier detection 

algorithm that compares the local density of information data 

to its neighbors [9]. This was the number one algorithm based 

on local density and k-neighborhood. It was the first algorithm 

based on k-neighborhood and local density. LOF is the 

anomaly score of each sample in the training data set and it 

indicates the degree of its outlier-ness as shown in figure 3. 

 
Figure 3: Local Outlier Factor (LOF) outlier-ness degree 

Determination of the local neighborhood of LOF is based on 

the number of nearest neighbors. The following descriptions 

are used for the completion of the whole process by the LOF. 

The k-distance (p), is well-defined to be the distance         
amid p and an object     so that for at least k instances 

         it stands that                 , and for at most 

k - 1 instance          it stands that               . 
The k-distance neighborhood of instance   is a subset with 

instances whose distances are not greater than the  -distance 

from it [9]. With regard to instance  , the definition of 

reachability distance of instance p is: 

                                         1 

Figure 4 shows examples of reachability distance for     . 

Between these two instances, the reachability distance, when 

they are far away from each other, is their actual distance (like 

  and     ); but, the reachability distance is             of 

  if they are close enough (like   and     ). Consequently, 

there can be a significant reduction of the statistical 
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fluctuations of        for all of the     close to  . The 

parameter k controls the strength of this smoothing effect and 

therefore, the reachability distances likenesses become more 

within the same neighborhood for higher the values of k [9]. 

 
Figure 4: Example of reachability distance for k=4 [9] 

For object             , the local reachability density of 

point p is defined as: 

                
                                  

            
        2 

Where; 

        stipulates a least numeral of objects 

                       represents the reachability 

distance of object p with respect to 

object o  

For object             , the definition of LOF of p is: 

                
             

            

            

            
       3 

Where, 

               is the local reachability density of p 

                represents the local reachability 

density of p’s        -nearest neighbors 

For a given dataset, the following five calculations are 

obtained in the order outlined below:  

i. The distances between every two instances. 

ii. The distances between the     nearest neighbors 

to  . 

iii. All the k-nearest neighbors of p. 

iv. The reachability density (lrd) of p. 

v. The LOFs (anomalies) of p. 

 

2.3.2 Isolation Forest 
Isolation Forest (IF) used in this research refers to an 

unsupervised algorithm that can be used to determine the 

existence anomalies in a dataset [10]. The algorithm was 

designed to detect anomalies depending on their isolation, and 

not density or distance measures. Besides, the IF analyzes 

mobile time series data to identify change points and outliers. 

The algorithm uses normal data specific anomalies and few 

anomalies in each dataset as quantitative attributes detecting 

outliers. 

The IF algorithm begins with data training that includes tree 

diagrams construction [10]. First, an N-dimension dataset 

leads to a random subsample that constructs a binary tree 

labelled as Algorithm 1. During the process, branching 

happens by selecting the dimension    randomly where 

with                . Then, the algorithm selects another 

random value v from the range of random values. The point is 

branched leftwards for a smaller value than v for the stated 

dimension. If it exceeds v, the point is branched rightwards in 

the tree. The tree is split twice on the current node using a 

similar procedure. A single data point is isolated or a specific 

depth limit is achieved by this recursive branching course. 

This is repeated to construct another random tree for another 

sub-sample. A large ensemble of trees is created to complete a 

process that is collectively termed as forest training. The 

algorithm runs a contestant data argument selected from the 

trees after the process moves onto the scoring step. An outlier 

score is given to each data point depending on the depth 

reached by each candidate data point on the tree, as illustrated 

in figure 5. A radial line signifies each tree in the model: red 

characterizes an outlier whereas the blue radial line represents 

a nominal point [10].  

 

 
Figure 5: The schematic diagram of a particular tree (a), 

and the forest (b) [11] 

Every occurrence x in the anomaly detection is assigned an 

outlier score s useful in analysis. The outlier score s and 

occurrence x can be formulated as: 

        
 
       

        4 

Where,        represents the depth mean-value every 

datapoint x reaches in every tree and      represents the 

normalizing factor (mean depth for Binary Search Tree (BST) 

searches that are not successful).  

              
      

 
   5 

Where       in this case represents the harmonic number 

                     (Euler’s constant) and n is the total 

sum of change points used in building the trees [10]. 

Figure 2.9 (a) below represents the anomalous datapoint 

branching process where branching occurs until the point in 

question (red point) is isolated. Three random cuts were used 

to arrive at the desired isolation point. In Figure 6 (b), the 

branching process for a nominal is illustrated, where the 

branching process requires multiple cuts to identify the point 

and isolate since it sits deep in the initial dataset. The tree 

depth limit is achieved before the point is reached. The line 

numbers in the figure demonstrate the order of the branching 

process. 

 
Figure 6: Branching process for an anomalous data (a) 

and a nominal point (b) [11] 

The IF algorithm utilizes two input parameters: ψ (size of the 

sub-sample) and t representing the sum of trees. The 

parameter ψ determines the data size used for training. Three 

algorithm procedures are used to determine the anomaly score 

as: the iForest        [10], the iTree        [10], and the 

PathLength        [10]. 
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2.3.3 Extended Isolation Forest 
The extended isolation forest (EIF) facilitates the 

improvement of outlier score consistency and reliability. The 

EIF identifies various slopes for making branching cuts and 

then randomly assigns intercept values within the training 

dataset. This EIF phenomenon is different from the usual 

random attribute-random value method used by Isolation 

Forest (IF) [11]. 

Figure 7 (a) below demonstrates the branching process of 

determining an outlier. As earlier stated, branching continues 

till the desired point is determined, and this process took three 

cuts to isolate the required point. The next figure 7 (a) shows 

how the branching process is used to arrive at the nominal 

point. The point is nearly at the center of the dataset, and 

therefore, several random cuts are required to isolate it. 

However, the depth limit is achieved before the isolation of 

the point for this scenario. 

 
Figure 7: Branching in the EIF [11] 

In the normal IF algorithm, two types of information are 

necessary for branch cut to be achieved: the coordinates, and 

the random value from the dataset. Conversely, the EIF 

branch cut needs two pieces of information: the random slope-

intercept from the training dataset and the branch cut slope. 

Choosing a random slope from a branch cut in an N-

dimension dataset is like selecting a normal vector         
uniformly per unit of an N-sphere. This can be achieved 

through drawing random numbers for every n-coordinate from 

a normal distribution         and uniform N-sphere selection 

points are reached as a result. The        intercept can be obtained 

from a uniform dataset used at each point of branching [11]. 

When the two types of information are received, the 

branching process for splitting data for a particular point x 

proceeds as follows: 

 
                      6 

 

The data point     is passed to the left branch of the process if 

condition is achieved. However, it is passed to the right 

branch if that condition is not fulfilled. The algorithm 

procedure of anomaly score determination resembles that of 

IF. However, the iTree        [10] is advanced to become the 

iTree        [11] 

 

2.3.4 Robust Random Cut Forest 
This anomaly detection algorithm on streaming data was 

proposed in 2016 [12]. Developing the machine learning 

model is done using current records in the stream. Neither 

older records nor statistics from previous executions are used 

by RRCF. The common procedure of anomaly detection using 

RRCF is as follows: 

i. A bunch of random instances is taken by RRCF 

(Random). 

ii. It then cuts them into the same number of instances 

and creates trees (Cut). 

iii. Finally, all of the trees together are considered by 

determining whether a particular instance is an 

anomaly (Forest). 

On a point set  , a robust random cut tree (RRCT) is 

generated as follows: 

i. A random element relational to 
  

    
 where    

                  is chosen. 

ii. Choose                               
iii. Let                 ,         and 

recurse on S1 and S2  

Figure 8 shows how RRCF cut instance happens into pieces 

recursively. When each point is isolated, the cutting is 

stopped.  

 
Figure 8: Random Cut Tree [12] 

Deletion (ForgetPoint Algorithm) [12] and insertion 

(ForgetPoint Algorithm) [12] operations can be used to 

dynamically maintain robust random cut trees when 

anomalies on stream data are detected using RRCF.  For 

deletion; if   were drawn from the distribution         then 

the ForgetPoint algorithm produces a tree    which is drawn 

at random from the probability distribution             . 
On the other hand, for insertion; given   drawn from 

distribution         and       produce a    drawn from 

           ,the InsertPoint algorithm is used.   

3. METHODOLOGY 
The adopted methodology is represented by the block diagram 

in Figure 9. In this section, the anomaly detection techniques 

of the LOF, IF, EIF and the RRCF were evaluated thoroughly. 

A subset of the dataset, with 447 records was extracted 

considering a region with graphically notable anomalies, and 

used as the ground truth. A section of the dataset between 25th 

November and 5th December 2020 (10 days) was used. It was 

manually examined and all the outlier instances identified and 

later analyzed using the algorithms as depicted in Figure 9. 

The findings for every parameter, with each algorithm are 

discussed in the results section. 

 
Figure 9: Anomaly Detection Algorithms Evaluation 

Process 
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4. RESULTS AND DISCUSSION 

4.1 The Turbidity and pH Datasets 
Table 1 below shows a subsection of the 2,658 records of both 

turbidity and pH data that were collected in the period of 60 

days. 

 

Table 1: Turbidity and pH Dataset 

time turbidity pH 

2020-11-04 11:00:31.822439+00:00 21.063435 7.34 

2020-11-04 11:01:22.124333+00:00 20.868153 7.33 

2020-11-04 11:01:51.663062+00:00 20.584553 7.32 

2020-11-04 11:02:29.373718+00:00 21.185328 7.33 

... ... ... 

2021-01-04 08:23:37.035804+00:00 17.975997 7.35 

2021-01-04 08:53:53.104009+00:00 17.734662 7.34 

2021-01-04 09:24:09.578901+00:00 15.094176 7.36 

2021-01-04 09:54:25.214766+00:00 14.611506 7.36 

2658 rows × 3 columns 

A plot diagram for turbidity subset data in Figure 10 shows a 

number of contextual anomalies. 

 
Figure 10: Turbidity subset data for the 10 days 

Similarly, water pH data in Figure 11 below shows existence 

of contextual outliers. 

 
Figure 11: pH subset data for the 10 days 

 

4.2 pH Subset 

4.2.1 Local Outlier Factor  
The LOF algorithm was used to detect the water pH 

anomalies shown in table 2 and plotted in figure 12,  where 

the red stars diagram are the 131 point outliers with the 

number of neighbors,        . The algorithm took 27 

milliseconds to determine these anomalies. Choosing an 

optimal k was essential for detection performance. For a value 

too small or very large, the error went up due to under-fitting. 

 

Table 2: pH outliers as detected by the LOF algorithm 

time pH 

2020-11-25 00:36:05.490773+00:00 7.37  

2020-11-25 01:36:37.639205+00:00 7.37  

2020-11-25 02:37:09.730382+00:00 7.34  

2020-11-25 03:37:41.850160+00:00 7.36  

2020-11-25 07:09:34.270053+00:00 7.37  

... ... ...  

2020-12-04 16:32:22.136635+00:00 7.36  

2020-12-04 17:32:54.254236+00:00 7.36  

2020-12-04 21:04:46.681849+00:00 7.36  

2020-12-04 21:35:02.740644+00:00 7.36  

2020-12-04 23:05:50.927469+00:00 7.36  

131 rows × 2 columns 

 
Figure 12: A plot of LOF pH outliers 

4.2.2 Isolation Forest and Extended Isolation 

Forest 
Both the IF and EIF demonstrated high precision and 

reliability when the ψ was considerably increased gradually to 

the desired value of      . It was also observed that the 

number of trees t directly controlled the ensemble size.  It was 

also found that the ideal paths converged at        . 

Anomalies were assigned scores and over 300 points for 

turbidity data were marked as anomalies at 0.6. It was very 

difficult to find a feasible threshold for improvement. For 

instance, most of the anomalies were considered as inliers if 

0.7 was set as the threshold score; but several of normal points 

were still considered as anomalies when 0.65 was set as 

threshold, and therefore determining top anomalies was 

impossible. However, a plot of top 50 instances based on the 

score in (Figure 13), which shows that the IF worked better 

than the EIF for turbidity data and found more anomalies with 

less false anomalies. This process took 3.66 seconds for IF 

algorithm and 3.99 seconds for the EIF algorithm. 
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Figure 13: A plot of IF and EIF pH outliers 

4.2.3 The Robust Random Cut Forest 
Table 3 below shows the pH anomalies with their scores that 

were detected by the RRCF and were plotted as shown in 

Figure 14. The top 61 records having the highest outlier 

scores were identified since it was difficult finding a feasible 

threshold to split them. Some point anomalies seem to have 

inconsistent scores; such as the pH record 7.37 occurs twice in 

quick succession at [2020-11-25 00:36:05.490773+00:00] and 

at [2020-11-25 01:36:37.639205+00:00], only 1 hour apart, 

but they are assigned variant scores. This process took 11.2 

seconds. 

Table 3: pH outliers as detected by the RRCF algorithm 

with their scores 

time pH Score 

2020-11-25 00:36:05.490773+00:00 7.37 1.000 

2020-11-25 01:36:37.639205+00:00 7.37 2.000 

2020-11-25 02:37:09.730382+00:00 7.34 2.625 

2020-11-25 03:37:41.850160+00:00 7.36 3.150 

2020-11-25 07:09:34.270053+00:00 7.37 6.375 

... ... ... ...   

2020-12-04 16:32:22.136635+00:00 7.36 2.325 

2020-12-04 17:32:54.254236+00:00 7.36 1.925 

2020-12-04 21:04:46.681849+00:00 7.36 1.625 

2020-12-04 21:35:02.740644+00:00 7.36 1.625 

2020-12-04 23:05:50.927469+00:00 7.36 1.625 

135 rows × 3 columns 

 

 
Figure 14: A plot of RRCF pH anomalies and their scores 

4.3 Turbidity Subset 

4.3.1 The Local Outlier Factor 
The turbidity subset was subjected to the LOF algorithm and a 

total of 28 point outliers in table 4 were found and plotted as 

shown in Figure 15. The optimal value of number of 

neighbors       . It took the LOF algorithm 52 milliseconds 

to complete this process. 

Table 4: Turbidity outliers as detected by the LOF 

algorithm 

time turbidity 

2020-11-26 18:51:43.794443+00:00 19.856159 

2020-11-27 15:32:42.207766+00:00 21.606544 

2020-11-29 22:01:36.359777+00:00 67.975997 

2020-11-29 22:31:52.410155+00:00 78.975997 

2020-11-29 23:02:08.469977+00:00 70.856159 

…. …. 

2020-12-02 05:31:02.868901+00:00 33.975997 

2020-12-02 06:01:18.928168+00:00 26.975997 

2020-12-02 06:31:34.994928+00:00 25.975997 

2020-12-04 23:05:50.927469+00:00 19.849407 

2020-12-04 23:36:06.982840+00:00 38.768413 

28 rows × 2 columns 

 

 
Figure 15: A plot of LOF turbidity outliers 

4.3.2 The Extended Isolation Forest and the 

Extended Isolation Forest 
A desired value of       was used with ideal paths 

converging at        . Anomalies were assigned scores and 

over 200 points for pH subset data were processed as 

anomalies above 0.65 and in this case it was very difficult to 

find a feasible threshold for improvement and therefore 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 26, March 2021 

53 

determining top anomalies was impossible. A plot of top 50 

instances based on the score in (Figure 16), which shows that 

the EIF worked better than the IF and it found more anomalies 

with less false anomalies. This process took 4.48 seconds for 

IF algorithm and 5.08 seconds for the EIF algorithm. 

 
Figure 16: A plot of IF and EIF turbidity outliers 

4.3.3 The Robust Random Cut Forest 
A feasible threshold to split the outliers was difficult to find 

and therefore the top 25 outlier records having the highest 

scores were listed in table 5, taking 11.2 seconds. These 

results were plotted as shown in Figure 17. Similar to pH 

subset results, some point anomalies seem to have 

inconsistent scores; such as the turbidity records [2020-12-03 

05:43:53.865925+00:00] 18.4387 and [2020-12-03 

11:47:06.617958+00:00] 18.7684 are almost equal and occur 

in the same day but have scores highly variant from each 

other (51 and 44 respectively). 

 

Table 5: Turbidity outliers and their scores as detected by 

the RRCF algorithm 

 time turbidity  Score 

2020-11-26 03:43:41.930323+00:00 15.6115 29.2252 

2020-11-26 17:51:11.650345+00:00 18.5503 44.6488 

2020-11-26 18:51:43.794443+00:00 19.8561 29.2479 

2020-11-27 15:32:42.207766+00:00 21.6065 45.5557 

2020-11-29 19:30:16.090586+00:00 10.9759 43.5028 

….. … …. 

2020-12-02 21:39:36.851682+00:00 16.7346 34.9220 

2020-12-03 05:43:53.865925+00:00 18.4387 51.3195 

2020-12-03 11:47:06.617958+00:00 18.7684 44.9016 

2020-12-03 13:48:10.853753+00:00 19.4795 57.0429 

2020-12-04 23:05:50.927469+00:00 19.8494 46.4757 

25 rows × 3 columns 

 
Figure 17: A plot of RRCF turbidity anomalies and their 

scores 

From table 6 and table 7, the LOF algorithm successfully 

detects all the 63 anomalies in the time series water pH subset 

data as well all the 75 anomalies in the time series turbidity 

data. The RRCF algorithm suffers from 19 false anomalies as 

well as missing 27 outliers in the turbidity subset. The case is 

similar for 2 undetected point anomalies in the pH subset data. 

Additionally, the LOF algorithm is much faster than the 

RRCF algorithm on detecting anomalies for both turbidity and 

pH data. While the LOF algorithm only took milliseconds, the 

RRCF algorithm consumed a number of seconds, for both the 

subsets. 

 

Table 6: pH Dataset Algorithms Performance Evaluation 
Algorithm Anomalies False 

Anomalies 

Undetected 

Anomalies 

Execution 

Time 

LOF 131 0 0 21 ms 

IF - - - 1.88s 

EIF - - - 1.25s 

RRCF 135 4 0 2.51s 

 

Table 7: Turbidity Dataset Algorithms Performance 

Evaluation 
Algorithm Anomalies False 

Anomalies 
Undetected 
Anomalies 

Execution 
Time 

LOF 28 0 0 38.9 ms 

IF - - - 3.66s 

EIF - - - 3.91s 

RRCF 25 7 10 7.1s 

 

5. CONCLUSION 
This paper presents a comprehensive evaluation of four 

different machine learning anomaly detection algorithms on 

two parameters from a water sensor node at a water treatment 

plant raw water section. A subset data that was used in 

algorithm evaluation had 447 records for both parameters, 

extracted from the 2,658 that were collected over the 

deployment period. The LOF algorithm emerged superior to 

the IF, EIF and RRCF algorithms in contamination or 

anomaly event detection and hence a practical water 

contamination detection algorithm that can trigger alarms to 

alert the analyzers when contamination is detected. It is faster 

and involves less resources like memory and hence less 

computational resources as well. Moreover, the IF, the EIF 

and the RRCF algorithms exhibited inconsistent results 
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(scores) for some specific points in the dataset. 

More water quality parameters can be subjected to the 

analysis done besides turbidity and water pH; these include: 

Total Dissolved Solids, Oxygen Reduction Potential, 

Temperature, Electrical Conductivity, Dissolved Oxygen, 

Free Residual Chlorine, Nitrates, to mention just but a few. 

Additionally, more anomaly detection algorithms can be 

assessed too to give a more robust and detailed report on 

anomaly detection algorithms. 
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