
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

11

Analyzing and Comparing Data Forwarding Components

in POX Software Defined Networking Controller

Mahmoud Khatib
Postgraduate Student (MSc)

Systems and Computer Networks
Dept

University of Aleppo, Syria

Souheil Khawatmi
Assistant Professor

Systems and Computer Networks
Dept

University of Aleppo, Syria

Fadel Sukkar
Professor

Artificial Intelligence and Natural
Language Dept

University of Aleppo, Syria

ABSTRACT

 Software Defined Network (SDN) decouples networks

control plane and data plane, make the controller gain the

global network topology view which can be utilized by the

controller’s forwarding applications to forwards the packets

between hosts with the helping of openflow protocol. The

POX controller and Mininet tool has been used to simulate the

underlying SDN infrastructure. This paper analyze a different

data forwarding components currently supported by the POX

controller, where three components are compared, hub,

l2_learning, and l2_multi, by measures the Round Trip Time

(RTT) and CPU usage.

Keywords
Software Defined Network(SDN), OpenFlow protocol, POX

controller, Mininet, data forwarding components, Round Trip

Time (RTT), CPU usage.

1. INTRODUCTION
The development of network technology has recently grown

rapidly, where its development has made it easier for us to

build, monitor or maintain a computer network. With the

rapid development of network technology, it has created a

new paradigm in network technology, namely software

defined network (SDN). SDN is a term that refers to a new

concept (paradigm) in designing, managing and implementing

networks, especially to support the needs and innovations in

this field, which are increasingly complex. In conventional

networks, the data plane and the control plan are combined

into one device, while in SDN networks, the data plane and

control plane are separated [1]. With the separation between

the control plane and the data plane on the SDN, network

makes it easy to build, monitor or maintain a computer

network with the provisions made. Many advanced

development of SDN has been emerged nowadays [2][3].

The OpenFlow protocol, which allows the creation of

applications for Software Defined Networks, has been a new

standard to make a network programmable based on the

protocol specification[1]. To do the network programming, an

interface is needed. That interface is known as API

(Application Programming Interface). POX Controller is one

of the SDN controller which support the OpenFlow version

1.0 only. This is one of the first controller which developed to

support SDN network.

The main goal of this paper is to analyze the POX controller

and study the forwarding components that pox supports. The

organization of this paper is constructed as follows: Section

two present the basic concepts about SDN model. Section

three discusses the OpenFlow architecture, messages Section

four explain the matching process using openflow. Section

five introduce POX controller. Section six explain the data

forwarding approaches. Section seven discuss the discovery

metrology. Section eight introduce the simulation tool that

used. Section nine analyze the forwarding components.

Section ten is reserved to the results. Finally, conclusions and

future works are drawn in the section eleven

2. SOFTWARE DEFINED NETWORK

(SDN)
The Open Networking Foundation (ONF) [3] defines the SDN

as follows: “ In the SDN architecture, the control and data

planes are decoupled, network intelligence and state are

logically centralized, and the underlying network

infrastructure is abstracted from the applications.”[4].

 The SDN is an emerging network architecture that allows a

centralized software program to control the behavior of an

entire network, which consist three layers, figure.1 illustrates

the general SDN architecture, First layer (infrastructure layer)

consists of both physical and virtual network devices. Second

layer (control layer) involve of a centralized control plane,

and considered the mid-layer that connects the application

layer and infrastructure layer. It provides centralized global

view to entire network. Third layer (application layer)

contains of network services, application that used to interact

with control layer [5]. The control layer bridges the

application layer and the infrastructure layer, via its two

interfaces. For the upward interacting with the application

layer (i.e., the Nourthbound interface) or NBI, it provide an

abstract of network functions (optimal network resources and

paths) with a programmable interface for applications to

consume the network services and configure the network

dynamically. For the downward interacting with the

infrastructure layer (the Southbound interface) or SBI, it

allows a controller to define the behavior of the hardware in

the network. The standard and most common Southbound API

is OpenFlow.

Those interfaces are API is said to be used to define the

software interaction among systems [6]. In SDN, these

systems refer to network applications and hardware such as

routers, switches and so on. The programming part of the API

is what makes it necessary for SDN.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

12

Fig 1: SDN paradigm

3. OPENFLOW PROTOCOL
 For the southbound interface of SDN, the OpenFlow protocol

is the most commonly used protocol which separates the data

plane from the control plane, is the network abstraction layer

which defines the standard protocol for communication in the

network, in other words, SDN uses the OpenFlow protocol to

allows the SDN controller to configure switches, i.e. via the

installation of packet forwarding rules [7][8][9], The protocol

also allows switches to notify the controller about special

events, e.g. the receipt of a packet that does not match any

installed rules. It allows both the controller and all the

switches to understand each other [10].

3.1.OPENFLOW ARCHITIECTURE
An OpenFlow Switch consists of one or more flow tables and

a group table, which perform packet lookups and forwarding,

and an OpenFlow channel to an external controller as shown

in figure. 2. The switch communicates with the controller and

the controller manages the switch via the OpenFlow protocol.

By using the OpenFlow protocol, the controller can add,

update, and delete flow entries in flow tables, both reactively

and proactively. Each flow table in the switch contains a set of

flow entries, each flow entry consists of match fields,

counters, and a set of instructions to apply for matching

packets as shown in Figure. 3 [11].

 Fig 2: OpenFlow Architecture

3.2. OpenFlow Messages
OpenFlow Protocol has different messages (events) that are

fired under certain condition [12]:

 Packet_In message: sent by the switch to the

controller when the switch receives a flow that does

not match with any rule in its flow table.

 Packet_Out: is initiated by the controller, used to

configure the switch, manage the switch’s flow

table.

 FlowMod message: set from the controller to the

switch in order to insert the necessary forwarding

rules. The controller specify in this message an idle

(The absolute timeout in which if there are no packets

hitting the flow for the duration, then flow is removed

from the device.) and a hard timeout (The absolute

timeout after which the flow is removed from the

device.).

4. FORWARDING MECHANISM USING

OPENFLOW
The basic packet forwarding mechanism with OpenFlow is

illustrated in figure. 3. When a switch receives a packet, it

analyzes the packet header, which is then matched against the

flow table. If there is a match found with the header field, then

the flow table entry is considered. If several such entries are

found, packets are matched based on prioritization, i.e., the

most specific entry or the wildcard with the highest priority is

selected. Then, the switch updates the counters of that

particular flow table entry. Finally, the switch performs the

actions specified by the flow table entry on the packet, e.g.,

the switch forwards the packet to a port. Otherwise, if no flow

table entry matches the packet header, the switch generally

notifies its controller about the packet (Table-Miss entry),

which is buffered when the switch is capable of buffering. To

that end, it encapsulates either the unbuffered packet or the

first bytes of the buffered packet using a PACKET-IN

message and sends it to the controller, The controller receives

the PACKET-IN notification identifies the correct action for

the packet and installs one or more appropriate entries in the

requesting switch. Buffered packets are then forwarded

according to these rules; this is triggered by setting the buffer

ID in the flow insertion message or in explicit PACKET-OUT

messages.

 Fig 3: Forwarding Mechanism

5. POX Controller
POX is a software platform developed in Python, it is began

early as a controller for an OpenFlow protocol[13][14].

However, it can nowadays, act as an OpenFlow switch, and

can be used for developing networking software (i.e. Load

Balancing, Firewall). POX controller worked as publish-

Parse

headers
Match? PKT_IN Actions

Send

Pkt_In

To the

controller

Y

N

APP1

Controller

APP2

APP3

Drop

Table-

Miss

entry

exists?
OpenFlow

Channel

Group

Table

Flow

Table

Flow
Table

Controller

OpenFlow

SBI

NBI

Application

layer

Control Layer

Data Layer

Y

N

a

Match fields priority counters instructions Timeouts Cookies

Data

plane

switch

Data

plane

switch

Data

plane

Switch

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

13

subscribe model, There are some objects which generate

events and there are some subscribers which subscribe event

through event handler. The communication between switch to

controller is coordinated through events. There are collections

of events and each event will fired under certain condition.

POX uses OpenFlow Protocol for sounthbound interface.

OpenFlow has different events (Packet_In, Packet_OUT,Port-

status, Flow_Remove, connectionUp, etc). POX work with

Python 2.7 (it can also work fine with Python 2.6), and can

run under Linux OS, Mac OS, and Windows.

6. UNDERLYING TOPOLOGY

DISCOVRY
The topology discovery is a unique feature of SDN which

allow the controller to facilitate the applications in the

application layer [15], For instance, a forwarding application

uses the network topology to forward the network traffic to its

destination [16][17][18], In that way, A POX controller

incorporates various core components that assist in executing

various SDN applications [19]. One of the main

responsibilities of POX is to interact with OpenFlow switches

which do not support any topology discovery functionality,

and it therefore needs to be implemented as a service at the

controller. For this purpose, a separate component

(openflow.of_01) is registered to the Core as soon as the

controller is fired up (ConnectionUp event). Another

component (openflow.discovery) uses for topology

Discovery, this component use the OFDP (OpenFlow

Discovery Protocol) which is the protocol used by OpenFlow

controllers to discover the underlying topology, that sends

specially LLDP (Link Layer Discovery Protocol) packets out

of the switches, as well as packet_In and Packet_out events

are needed to discover links in a network.

7. POX FORWARDING APPROACHES
This section presents an overview of the three main

components of the forwarding functionality used in the

current POX [20]. The forwarding components requires one

specific event called "Packet In". Every time an edge switch

registers a new packet and does not have a matching table

entry for it, it sends a request to the controller, which contains

the packet header and a buffer ID. This event indicates to the

controller that there is a new flow in the network. The path

calculation can be done using any data forwarding algorithm.

It can be done in a reactive or a proactive way. After the path

had been found, The controller assigns it to the flow, then

installing table rules to match on every switch on the path by

sending a Packet_Out (hub) or ofp_flow_mod

(L2_learning,L2_multi) commands. Additionally, the

forwarding component is responsible to track every new flow

together with its route. It keeps information locally about

every flow until a "FlowRemoved" event fires up. This

happens when a switch removes a flow entry from its table,

because it was deleted or expired (idle or hard time out).

In this research, there data forwarding components in POX

controller are discussed, Hub, L2_learning, and L2_multi

components. Figure 4, illustrate the steps that hub and

L2_learning data forwarding components follow :

1- Host 1 generate a new request packet the to

destination (Host 2).

2- Initially, the flow table will be empty (no entry

found), so the data plane switch will encapsulate the

packet inside Packet_In message (apply Table-miss

entry), then inform that controller about that flow.

3- The controller will run the data forwarding

component.

4- The controller install new flow in the switch for that

flow into the flow table.

5- sent the path through Packet_Out messages to

every intermediate data plane switches on the path

to insert the entry inside the flow table.

 Fig 4: Hub and l2_learning Approach

 Figure 5, illustrate the steps L2_multi data forwarding

component follow :

1- Host 1 generate a new request packet the to

destination (Host 2).

2- First of all, the Discovery Component its imported

in the POX controller, so that the L2_multi can

utilize the topology information.

3- The Controller’s data forwarding component use

the information topology to calculate the path for

entire underlying topology.

4- the controller insert the whole paths for the packets

in the network by modifying the flow tables of all

data plane switches on the path by sent Flow_Mod

messages, where each entry is contains hard and

idle timeout fields

Fig 5: l2_multi Approach

Forwarding

component

Hub

L2_learing

Packet

PKT_In

RUN

Algorithm

1

3

2

4

POX Controller

Forwarding

component

Discovery

Compone

nt

L2_multi 2

3

4

1

POX Controller

H1 H2

H1 H2

packet

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

14

8. MININET TOOL
Mininet [21] is an open source network emulator that supports

the OpenFlow protocol for SDN architecture. With Python

language, Mininet is simple to use and has a great flexibility.
It is very powerful LINUX based, uses virtualization

approach to create a realistic network of virtual hosts,

switches, controllers, and links, and uses process-based

virtualization to emulate entities on a single OS kernel by

running real code. Moreover, it is used by many researchers

because the design that works properly in the Mininet can

usually move directly to practical networks composed of real

hardware devices.

Mininet provide two ways to use:

 Command Line Interface (CLI): To control and

manage the virtual network from a single console

 Application programming Interface (API): The

Python API allows to create custom topologies

based on scripts.

9. IMPLEMENTATION
Firstly, the underlying topology that contain data plane

switches will simulate.

a. Implementation of the simulation

scenario
Mininet’CLI was used to create a Tree topology, Mininet

implementation of the simulation scenario. The simulation

scenario consists of a six OpenFlow switches with linear

topology (S1, S2, S3,S4,S5,S6,S7) connected to six hosts (h1,

h2, h3, h4, h5, h6,h7,h8) and to a controller POX.

This controller has three created components called Hub and

l2_learning, and l2_milti. Figure 6 shows the topology of

implementation the simulation scenario.

Fig 6: Network Topology

To create the simulation scenario, two terminals are

open, one for Mininet and another for the POX. In the

Mininet terminal it was used the commands of Table 1 to

build a topology.

Table 1 . Implementation of Hub Component In POX

$ sudo mn –topo tree,3 -- controller remote ,ip=127.0.0.1,

port=6533

The parameters used in table are described below:

 mn: it starts the CLI Mininet.

 --topo tree,3: it creates a topology with 7 switches

and 8 virtual hosts.

 --controller remote: it sets the openflow switch to

connect to a remote controller.

 -- ip=127.0.0.1: its loopback address which means

that the POX controller running on the same VM.

 --port=6533: POX controller’s port number.

b. Implementation of data forwarding

components

Secondly, POX controller will run by implement

the data forwarding components.

I. Hub
In this section, a hub component has been present, its works at

reactive mode, where every packet come to a data plane, i,e.

Switch is sent to the controller by ConnectionUP event that

represent the a moment when connection between the

controller and switch was established after a handshake

process, At this point, the controller requests the switch to

egress this packet from all ports except the port where it was

received, it generate OpenFlow OFPT_PACKET_OUT

message on each received PacketIn event. Table 2 shows the

hub application code.

Table 2 . Hub Application Code In POX

from pox.core import core

import pox.openflow.libopenflow_01 as of

from pox.lib.util import dpidToStr

log = core.getLogger()

def _handle_ConnectionUp (event):

 msg = of.ofp_flow_mod()

 msg.actions.append(of.ofp_action_output(port

of.OFPP_FLOOD))

 event.connection.send(msg)

 log.info("Hubifying %s", dpidToStr(event.dpid))

def launch ():

 core.openflow.addListenerByName("ConnectionUp",

_handle_ConnectionUp)

 log.info("Hub running.")

connectionUP function : a handler for connectionup events

its invoked when a switch first connects to the controller.

In POX any component is invoked by the Launch

functionWhen the application is started, this function is

automatically invoked, and is a function that POX calls to tell

the component to initialize itself.

 In the terminal for the POX, previously opened, you must

access the directory/pox and run the Hub component, as

shown in Table 3. The file should be in the folder

/pox/forwarding/hub.py, and run the following instruction:

Table 3 . Implementation of Hub Component In POX

 Sudo ~/pox/pox.py forwarding.hub

II. L2_Learning
The L2_Learning component in POX acts as a layer 2 switch,

this means that it able to deals and learns the different sources

based on their MAC addresses and maps them to their

corresponding incoming port, thus it is learns the paths to the

hosts, checks the parameters and destination address then

forwards the packets accordingly, as well as its keeps tracks

of where the host with MAC address is located and

accordingly sends packets towards the destination and does

not flood it out through all ports.

The absorbing thing that must be noticed in this component is

how it work with Flow_Mod messages that inserts entries to

the flow table of an OpenFlow Switch. Table 4 shows the

L2_learning application code.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

15

Table 4 . l2_learning Application Code In POX

self.macToPort[packet.src] = event.port

if not self.transparent:

if packet.type == packet.LLDP_TYPE or

packet.dst.isBridgeFiltered():

drop()

return

if packet.dst.isMulticast():

flood()

else:

if packet.dst not in self.macToPort:

log.debug("Port for %s unknown -- flooding" %

(packet.dst,))

flood()

else:

port = self.macToPort[packet.dst]

if port == event.port:

log.warning("Same port for packet from %s -> %s on %s.

Drop." %

(packet.src, packet.dst, port), dpidToStr(event.dpid))

drop(10)

return

log.debug("installing flow for %s.%i -> %s.%i" %

(packet.src, event.port, packet.dst, port))

msg = of.ofp_flow_mod()

msg.match = of.ofp_match.from_packet(packet)

msg.idle_timeout = 10

msg.hard_timeout = 30

msg.actions.append(of.ofp_action_output(port = port))

msg.buffer_id = event.ofp.buffer_id

self.connection.send(msg)

The first step is to update the address/port hash table (that is

self.macToPort[packet.src] = event.port). This will associate

the MAC address of the sender to the switch port on which the

packet has been received by the switch. Certain types of the

packets are dropped. Multicast traffic is properly flooded. If

the destination of the packet is not available in the

address/port hash table, the packet is also flooded. If the input

and output ports are the same, then the packet will be dropped

to avoid loop (if port == event.port:). Finally, a proper flow

table entry gets installed inside the flow table of the

OpenFlow switch. In summary, the l2_learning.py program

implements the required logic and algorithm to change the

behavior of our OpenFlow switch to an Ethernet learning

switch one.

The instruction of execution is the same of the Hub

component, in the terminal for the POX; you must access the

directory /pox and run the L2_learning component, as shown

in Table 5. The file should be in the folder

/pox/forwarding/l2_learning.py, and run the following

instruction:

Table 5 . Hub Application Code In POX
Sudo ~/pox/pox.py forwarding.L2_Learning

III. L2_mulity
The idea behind this module is to have a forwarding Database

(forwarding map) for a whole underlying topology. In order

to build that map, this module dependent on Discovery

module (openflow.discovery) to creates a full map of all the

network links (path_map). To avoid having to rebuild the

forwarding map on each time the link goes down; L2_multi

component does not creates any routes, and openflow packet-

forwarding rules are set up on demand, when traffic between

two hosts is first seen (not counting LLDP packets). After

learn the topology, the controller will install openflow rules so

that all the traffic is forward by shortest path, by that point,

the network is stable as well as all the routes between each

pair has been found.

After the created Underlying topology, the POX controller

will be able to remotely connect to It. Table 6 shows the

topology discovery process that happened after connects the

Mininet’topology to the POX controller, it can be notice that

after the connection is established (connection_up event is

fired up) openflow.of_01component has runs, as well as

OFDP protocol that discovers the links between data plane

switches.

 Table 6. Underlying topology discovery
INFO:openflow.of_01:[00-00-00-00-00-04 1] connected

INFO:openflow.of_01:[00-00-00-00-00-06 2] connected

INFO:openflow.of_01:[00-00-00-00-00-03 4] connected

INFO:openflow.of_01:[00-00-00-00-00-01 3] connected

INFO:openflow.of_01:[00-00-00-00-00-05 6] connected

INFO:openflow.of_01:[00-00-00-00-00-02 5] connected

INFO:openflow.discovery:link detected: 00-00-00-00-00-04.1 -> 00-

00-00-00-00-01.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-04.2 -> 00-

00-00-00-00-03.1

INFO:openflow.discovery:link detected: 00-00-00-00-00-04.3 -> 00-

00-00-00-00-05.1

INFO:openflow.discovery:link detected: 00-00-00-00-00-06.1 -> 00-

00-00-00-00-02.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-06.2 -> 00-

00-00-00-00-03.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-06.3 -> 00-

00-00-00-00-05.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-03.1 -> 00-

00-00-00-00-04.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-03.2 -> 00-

00-00-00-00-06.2

INFO:openflow.discovery:link detected: 00-00-00-00-00-01.1 -> 00-

00-00-00-00-02.1

INFO:openflow.discovery:link detected: 00-00-00-00-00-01.2 -> 00-

00-00-00-00-04.1

INFO:openflow.discovery:link detected: 00-00-00-00-00-05.1 -> 00-

00-00-00-00-04.3

INFO:openflow.discovery:link detected: 00-00-00-00-00-05.2 -> 00-

00-00-00-00-06.3

INFO:openflow.discovery:link detected: 00-00-00-00-00-02.1 -> 00-

00-00-00-00-01.1

INFO:openflow.discovery:link detected: 00-00-00-00-00-02.2 -> 00-

00-00-00-00-06.1

L2_mutli component uses The Floyd-Warshall to calculate the

shortest path between each pairs, which is a form of the

distance-vector algorithm optimized when a full network map

is available. The Floyd-Wallshall is an algorithm for

calculating the shortest path where the algorithm can find all

the distances from each node (all pairs shortest path) which

means that it can be used to calculate the smallest weight of

all paths connecting a pair of points, and do it all at once for

all pairs of points, Table 7 shows the psudo code for floyed-

warshall algorithm that finds the intermediate nodes such that

the distance between all the source–destination pairs is

minimized.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

16

Table 7. Floyed-Warshall algorithm

Floyd-Warshall

SWs = switches.values()

Path_map= D

 initialization

for k = 1 to SWs

for i = 1 to SWs

for j = 1 to SWs

if dij > dik + dkj

then dij = dik + dkj

return D

10. RESULTS AND DISCUSSION
After running the data forwarding components, the network

turned to be monitored by the POX controller. Analyzing

network behavior with some commands in the CLI of

Mininet, different results has been obtained as below:

Ping tool was used to measure the Round Trip Time (RTT),

also known as ping time, that tells the time required to send a

packet towards a specific destination and receive a response.

In this experiment, the ping command has execute where

ICMP (Internet Control Message Protocol) packets have

transmitted in three different scenarios for three data

forwarding components, hub, l2_learnining, and l2_multi,

from host1 to host4, host1 to host6, and host1 to host8. The

purpose of the ICMP measurement is to evaluate the

additional delay introduced by the controller for the first

Packet_in messages of a flow, this additional delay comes

from the communication between switch and controller, that

because at the beginning data plane switch’s flow tables are

empty, therefore first response is always the longest in terms

of delay compared to others delay, But its variable for each

component. The POX’s behavior has been Analyzed by

measure RTT through a ping transaction In two cases:

 Case 1: When ARP Tables and Flow Tables are

empty.

 Case 2: When ARP Tables are empty and Flow

Tables initialized.

 Figure 7 illustrate the RTT time for the first packet response

for the three components In case 1:
 hub component: the delay is the smallest, which are

host1 to host4 : 14.5 ms, host1 to host6 : 79 ms,

and host1 to host8 : 83.1, that because there is no

complicated processes, it just flooding frames,

thought it will be bigger as the topology grows.

 l2_learninng component: the delay is bigger than

hub component, which are host1 to host4 : 86.1 ms,

host1 to host6 : 184 ms, and host1 to host8 : 271.

Since this component act like a switch behavior,

that learns the path as the packets arrive at the

switch (learns mac addresses) as well as installing

entries in flow tables through Flow-Mod messages,

as Table 2 and figure 4 shown. In a nutshell this

component have some logic that incuse the

response time for first packet.

 l2_multi component: the delay is the highest, which

are host1 to host4 : 304 ms, host1 to host6 : 841

ms, and host1 to host8 : 1100 ms. Considering that

this component has to apply a shortest path

algorithm (Floyed-Warshall algorithm) to calculate

the shortest paths between each pairs, and store the

path in n-multi dimensional dictionary (path_map),

along with installing the paths to each intermediate

switches through Flow-Mod messages, as figure 5

shown.

Fig 7. Case 1

Figure 8 illustrate the RTT time for the first packet response

for the three components In case 2, After delete the ARP

Tables for host1, different results has been obtained as below:

 hub component: the delay had increased, which are

host1 to host4 : 10.2 ms, host1 to host6 : 5 ms, and

host1 to host8 : 3.37, because the switch have to

ask the POX controller via Packet_In message to

rebuilt the flow table.

 l2_learninng component: the delay is smaller than

Hub component, which are host1 to host4 : 0.118

ms, host1 to host6 : 0.293 ms, and host1 to host8 :

0.513 ms. Since this component learnt already the

paths, there is no need to interact with the POX

controller.

 l2_multi component: the delay is nearly as

l2_learming component, which are host1 to host4 :

0.182 ms, host1 to host6 :0.264 ms, and host1 to

host8 : 0.296 ms. The Floyed-Warshall is early

calculates the paths between hosts and stories them,

hence the switch does have to consulates the POX

controller, it just forward the packets according to

flow table entries.

Fig 8. Case 2

In the second experiment, ten ICMP packets have transmitted

from host1 to host4, host1 to host6, and host1 to host8, and

the minimum, maximum, and average values determined

Figure 9 demonstrate Hub component where minimum RTTs

are (host1-host4) 0.125ms, (host1-host6) 0.072ms (host1-

host8) 0.098ms: average RTTs are (host1-host4) 0.165 ms,

(host1-host6) 0.181 ms, and (host1-host8) 0.208 ms, and

maximum RTTs are (host1-host4) 0.436 ms, (host1-host6)

0.751 ms, and (host1-host8) 0.766 ms.

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

17

Fig 9. Hub component

Figure 10 indicate l2_learning component minimum RTTs are

(host1-host4) 0.12ms, (host1-host6) 0.132ms (host1-host8),

0.069 ms: average RTTs are (host1-host4) 0.227 ms, (host1-

host6) 0.212 ms, and (host1-host8) 0.239 ms, and maximum

RTTs are (host1-host4) 1.078 ms, (host1-host6) 0.855 ms, and

(host1-host8) 1.236 ms.

Fig10. l2_learning

Figure 11 illustrate l2_multi component, where the minimum

RTTs are (host1-host4) 0.059 ms, (host1-host6) 0.104 ms

(host1-host8) 0.101, average RTTs are (host1-host4) 15,842

ms, (host1-host6) 18.593 ms, and (host1-host8) 0.208 ms,

and maximum RTTs are (host1-host4) 157.335 ms, (host1-

host6) 184.614 ms, and (host1-host8) 196.085 ms.

Fig 11. l2_multi

We can conclude that multi component have the largest delay,

that due to the complex logic, then l2_learning, and finally the

hub component that floods the packets.

In the third experiment, The CPU usage is measured for the

initial flow establishment for tree topology contain 31 data

plane switch and 32 hosts. Figure 12 shows that l2_learning

and l2_multi have higher CPU usage the hub component. The

possible reason is that those components have to do some

logic, not just floods the packets as hub component do.

Fig 12. CPU usage for flow setup

11. CONCLUSIONS AND FUTURE

WORK
In this paper, the three existing data forwarding algorithm in

POX controller components has been investigated and

compared. This comparison helps better understand the

forwarding approaches in POX and future enhancement. The

first experimental shows that l2_multi component has better

delay because its uses a shortest path algorithm, although it

needs high time to setup the paths. Second experimental

emphasize the previous results, l2_learning and l2_multi have

high delay due to it require to implement a algorithm to find

the paths, while hub component only flood the packets to

every ports. Finally, in the third experimental shows the CPU

usage that needs each component for initial flow setup. In

future, l2_multi component will be expanded, so it can find

alternative paths, and simulate much bigger topology.

12. REFERENCES
[1] Mulyana, E. SDN-RG Community Books. Bandung:

GitBook, 2014.

[2] Marcel Caria, Admela Jukan, and Marco Hoffman,” A

performance study of network migration to SDN-enabled

Traffic Engineering “, Globecom 2013-Communication

Qos, Reliability and Modeling Symposium 2012.

[3] Heleno Isolani p, “Interactive Monitoring, Visualization,

and Configuration of OpenFlow-based SDN” IEEE

International Symposium on Integrated Network

Management, 2015.

[4] Open Networking Foundation. Available from:

https://www.opennetworking.org/, last online : 2019/3/4.

[5] Azodolmolky S. Software defined networking with

OpenFlow: Packt Pub, Birmingham, UK . 2013

[6] Fishnet Security, “SDN APIs: A New Vocabulary for

Network

Engineers”,https://www.fishnetsecurity.com/6labs/blog/s

dn-apis-new-vocabulary-network-engineers

[7] D. Kreutz, F. M. Ramos, P. E. Verissimo, C. E.

Rothenberg, S. Azodolmolky, S. Uhlig, Softwaredefined

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 27, March 2021

18

networking: A comprehensive survey, Proc. of the IEEE

103 (1) (2015) 14-76.

[8] H. Kim, N. Feamster, Improving network management

with software defined networking, IEEE

Communications Magazine 51 (2) (2013) 114-119.

[9] F. Hu, Q. Hao, K. Bao, A survey on software-defined

network and openflow: From concept to implementation,

IEEE Communications Surveys & Tutorials 16 (4)

(2014) 2181-2206.

[10] Sumanth B. Designing an Openflow Controller for data

delivery with end-to-end QoS over Software Defined

Networks: Computer Science and Engineering;

Conference in Hollywood, CA, USA 2016.

[11] Lara, A.; Kolasani, A.; Ramamurthy, B. Network

Innovation Using OpenFlow: A Survey.IEEE Commun.

Surv. Tutor. 2013,16, 1–20.

[12] https://opennetworking.org/wp-

content/uploads/2014/10/openflow-spec-v1.3.2.pdf

[13] POX, “Pox openflow controller,” 2014, Accessed:

Sept.2014.[Online].Available:

http://www.noxrepo.org/pox/about-pox.

[14] Python Software Foundation, “Python language

reference, version

[15] S. Shenker, M. Casado, T. Koponen, and N. McKeown,

"The future of networking, and the past of protocols,"

Open Networking Summit, vol. 20, 2011.

[16] V. Kotronis, X. Dimitropoulos, and B. Ager,

"Outsourcing the routing control logic: Better Internet

routing based on SDN principles," in Proceedings of the

11th ACM Workshop on Hot Topics in Networks, 2012,

pp. 55-60.

[17] C. Staff, "A purpose-built global network: Google's

move to SDN," Communications of the ACM, vol. 59,

pp. 46-54, 2016.

[18] O. A. Mahdi, A. W. A. Wahab, M. Y. I. Idris, A. A.

Znaid, Y. R. B. Al-Mayouf, and S. Khan, "WDARS: A

Weighted Data Aggregation Routing Strategy with

Minimum Link Cost in Event-Driven WSNs."

[19] J. C. Mogul, A. AuYoung, S. Banerjee, L. Popa, J. Lee,

J. Mudigonda, et al., "Corybantic: towards the modular

composition of SDN control programs," in Proceedings

of the Twelfth ACM Workshop on Hot Topics in

Networks, 2013, p. 1

[20] Pox Source code at https://github.com/noxrepo/pox.

[21] [21]Mininet. An Instant Virtual Network on your

Laptop.2014, Accessed: Sept. 2014[Online]Available:

http://mininet.org.

IJCATM : www.ijcaonline.org

