
International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Universal Set of Reversible Quaternary Logic Gates

Milton Ernesto Romero Romero
University of Mato Grosso do Sul

Campo Grande-Brazil CEP 7907-900

Diogo Anache de Souza
University of Mato Grosso do Sul

Campo Grande-Brazil CEP 79070-900

Evandro Mazina Martins
University of Mato Grosso do Sul

Campo Grande-Brazil CEP 79070-900

ABSTRACT
Reversible computing is of great interest due to the fact that the
next generation of high performance computers must decrease
heat dissipation in order to be practical, and irreversible gates
dissipate energy into the environment because of the loss of
information. This paper takes advantage of Multiple Valued Logic
(MVL) quaternary universal set, that reduces integrated circuits
(IC) interconnections, decreasing IC area, and with reversible gates
that minimizes IC dissipation. The reversible computation permits
both forward and backward computations, keeping the information
entropy constant and decreasing heat dissipation, according to
Landauer principle. The reversible gates are designed as an
extension of the set of gates: Extended AND (eANDi: eAND1,
eAND2, eAND3), Maximum (MAX) and Successor (SUC) already
proposed in the literature. The voltage mode gates are implemented
by means of three cascaded subsystems: the first subsystem
discriminates 0,1,2,3 logical levels; the second subsystem performs
the logic to implement each operator functionality; and the third
subsystem set the right voltage output corresponding to 0,1,2,3
logical levels. Simulations with only 25, 18, 32, 10 and 32
CMOS transistors, respectively, utilizing AustriamicrosystemsTM

technology with Cadence VirtuosoTM tool demonstrate correct
circuit behavior. These implementations present, for the irreversible
circuits presented in the literature, fewer number of transistors.

Keywords
Reversible Computing, Universal Quaternary Set, Multiple Valued
Logic

1. INTRODUCTION
Power consumption is a fundamental factor that must be addressed
to build high performance systems. Among the possible paths
to cope with this issue are: quantum (reversible) computing,
classic reversible computing, nanotechnology, dark silicon concept,
Multiple Valued Logic (MVL).
Quantum computing first discussed by Feynman [1] leads to the
utilization of superposition and entanglement to perform reversible
computation. In [2] the authors make a design of quantum Feynman
and Toffoli gates with analysis of energy dissipation and in [3]
an MVL circuit using Fredkin gates as a computational circuit
suitable for reversible quantum computing is proposed. In [4] the
synthesis of reversible gates in sequential circuits is proposed and
nanotechnology is addressed in [5, 6] and the dark silicon concept
is discussed in [7].

Quantum or classic reversible computing permits both forward and
backward computations and aids to decrease energy dissipation
by keeping constant entropy. In [8–11] the reversible computation
is addressed. The optimization in reversible sequential circuits
is proposed in [12, 13] and a methodology to the design of
reversible circuits is shown in [14]. In [15] the reversible logic
is demonstrated with adiabatic CMOS transistors and in [16] the
reversible logic with the minimum of garbage signals is shown.
In [17] the reversible logic is proposed using the adiabatic logic.
Additional developments, addressed in [18], show the synthesis of
reversible circuits based on Exclusive OR gate sum of products
and [19] shows the implementation of reversible gate using the
transistor with XOR Gate. An implementation at the transistor level
for reversible digital circuit is found in [20] and [21] demonstrates a
new reversible 2:4 decoder design. Design, synthesis, applications
and state of the art in reversible gates are illustrated in [22, 23].
Multiple Valued Logic (MVL) allows the synthesis of digital
circuits by increasing the domain to quaternary D = {0, 1, 2, 3}
digital representation. The MVL idea was introduced by Post
[24] and Lukasiewicz [25] for the ternary algebra, with further
developments in [26] that discuss the status of the MVL. Note that
a quaternary digit corresponds to two binary bits. MVL decreases
the number of interconnections, pads and power consumption,
as well as the total area of the Integrated Circuit (IC), as the
interconnections are about 70% of the total area [27,28]. In [29] the
MVL universal set of operators for any B base, that is, an algebra,
minimization tools and synthesis methodology, is presented. In [30]
a universal set of CMOS ports for the synthesis of digital logic
circuits of multiple values is presented and a quaternary analog to
digital converter application is addressed in [31]. Design based on
ternary logic can be seen in [32].
All the above technologies help to cope with the energy issue and,
in this environment, the purpose of this work is to demonstrate
functional correctness and CMOS circuits feasibility through
simulations of the combination of the MVL technique with
classical reversible gates. Therefore, this work proposes the design
and simulation of quaternary reversible gates that keeps the
information entropy constant in the system, implying a bijective
mapping between input and output, that decreases heat dissipation,
according to Landauer principle [33]. This is due to the fact
that, for one bit loss of information, that happens in each AND,
OR gate of the combinational circuits, KTln2 Joules of energy
are dissipated, where K stands for Boltzmann’s constant (1.3807
× 10−23 Joules per Kelvin) and T is the absolute temperature,
ln is the natural logarithm and the number 2 comes from the
binary base. The non-reversible universal quaternary set of gates,
already presented in the literature: Successor (SUC), Extended

29



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

AND (eAND1, eAND2, eAND3), and Maximum (MAX) [30]
is further extended to include the reversible characteristic by
means of a bijective mapping that performs forward and backward
computation with the same gate. Among the many ways to define
the bijective mapping it is here presented one alternative. The
actual implementation is based on three subsystems the first one
discriminates each logical level, the second performs the logical
steps to implement the gate under consideration and the third set the
logical output level. Simulations with CMOS transistors utilizing
AustriamicrosystemsTM technology with Cadence VirtuosoTM tool
demonstrate feasibility of the circuits and correct reversible
quaternary computing behavior, additionally, the non-reversible
gates have fewer number of transistors (only 25, 18, 32, 10 and
32 MOS transistors, for the eANDi, MAX , SUC, respectively)
that is better than [30] in terms of transistors counting.
The rest of this paper is organized as follows: Section 2 defines
the MVL reversible primal algebra; Section 3 addresses the MVL
operators CMOS implementation; Section 4 presents results and
the discussion and finally; Section 5 summarizes the concluding
remarks and future work.

2. MVL REVERSIBLE PRIMAL ALGEBRA
For notation purposes SUC, eANDi, MAX [29] and SUCr ,
eANDir, MAXr denote non-reversible and reversible gates
defined here, respectively. SUC is an unary (i.e. one operand)
operator and eANDi, MAX are binary operators (i.e. two
operands).
The non-reversible universal quaternary set of gates is defined in
the cyclic ordered domain D:{0,1,2,3} as follows:
Let i, inputs: VinA, VinB, and the outputs: SUC, eANDi, MAX
∈ D:{0,1,2, 3}.
eANDi definition: if VinA=VinB=i then eANDi=i, otherwise
eANDi=0.
MAX definition: if VinA≥VinB then MAX=VinA, otherwise
MAX=VinB.
SUC definition: if VinA=i then SUC=(i+1) Mod 4. Where Mod
stands for the Modulo operation.
There are many ways to define the bijective mapping that performs
forward and backward computation and it is up to the designer to
choose one.
For two inputs reversible operators implementations, as shown
in Tables 1, 2, 3, 4 there exist three inputs: two operator inputs
(VinA,VinB) and one ancillary input (VinC); and three outputs: the
operator output (eANDir or MAXr) and two garbage outputs
(gBr ,gAr). For one input reversible operator implementation, as
shown in Table 5 there exists two inputs: one operator input (VinA)
and one ancillary input (VinC) and two outputs: one operator output
(SUCr) and one garbage output (gAr).

Table 1. eAND3r direct→ inverse

VinC VinB VinA eAND3r gBr gAr VinC VinB VinA eAND3r gBr gAr
ancillary eAND3r gBr gAr VinC VinB VinA

0 0 0 0 0 0 → 0 0 0 0 0 0

0 0 1 0 0 1 → 0 0 1 0 0 1

0 0 2 0 0 2 → 0 0 2 0 0 2

0 0 3 0 0 3 → 0 0 3 0 0 3

0 1 0 0 1 0 → 0 1 0 0 1 0

0 1 1 0 1 1 → 0 1 1 0 1 1

0 1 2 0 1 2 → 0 1 2 0 1 2

0 1 3 0 1 3 → 0 1 3 0 1 3

0 2 0 0 2 0 → 0 2 0 0 2 0

0 2 1 0 2 1 → 0 2 1 0 2 1

0 2 2 0 2 2 → 0 2 2 0 2 2

0 2 3 0 2 3 → 0 2 3 0 2 3

0 3 0 0 3 0 → 0 3 0 0 3 0

0 3 1 0 3 1 → 0 3 1 0 3 1

0 3 2 0 3 2 → 0 3 2 0 3 2

0 3 3 3 3 3 → 3 3 3 0 3 3

Table 2. eAND2r direct→ inverse

VinC VinB VinA eAND2r gBr gAr VinC VinB VinA eAND2r gBr gAr
ancillary eAND2r gBr gAr VinC VinB VinA

0 0 0 0 0 0 → 0 0 0 0 0 0

0 0 1 0 0 1 → 0 0 1 0 0 1

0 0 2 0 0 2 → 0 0 2 0 0 2

0 0 3 0 0 3 → 0 0 3 0 0 3

0 1 0 0 1 0 → 0 1 0 0 1 0

0 1 1 0 1 1 → 0 1 1 0 1 1

0 1 2 0 1 2 → 0 1 2 0 1 2

0 1 3 0 1 3 → 0 1 3 0 1 3

0 2 0 0 2 0 → 0 2 0 0 2 0

0 2 1 0 2 1 → 0 2 1 0 2 1

0 2 2 2 2 2 → 2 2 2 0 2 2

0 2 3 0 2 3 → 0 2 3 0 2 3

0 3 0 0 3 0 → 0 3 0 0 3 0

0 3 1 0 3 1 → 0 3 1 0 3 1

0 3 2 0 3 2 → 0 3 2 0 3 2

0 3 3 0 3 3 → 0 3 3 0 3 3

Table 3. eAND1r direct→ inverse

VinC VinB VinA eAND1r gBr gAr VinC VinB VinA eAND1r gBr gAr
ancillary eAND1r gBr gAr VinC VinB VinA

0 0 0 0 0 0 → 0 0 0 0 0 0

0 0 1 0 0 1 → 0 0 1 0 0 1

0 0 2 0 0 2 → 0 0 2 0 0 2

0 0 3 0 0 3 → 0 0 3 0 0 3

0 1 0 0 1 0 → 0 1 0 0 1 0

0 1 1 1 1 1 → 1 1 1 0 1 1

0 1 2 0 1 2 → 0 1 2 0 1 2

0 1 3 0 1 3 → 0 1 3 0 1 3

0 2 0 0 2 0 → 0 2 0 0 2 0

0 2 1 0 2 1 → 0 2 1 0 2 1

0 2 2 0 2 2 → 0 2 2 0 2 2

0 2 3 0 2 3 → 0 2 3 0 2 3

0 3 0 0 3 0 → 0 3 0 0 3 0

0 3 1 0 3 1 → 0 3 1 0 3 1

0 3 2 0 3 2 → 0 3 2 0 3 2

0 3 3 0 3 3 → 0 3 3 0 3 3

For all operators, VinC controls direct (VinC equals to 0 level) or
reverse computation (VinC equals to non 0 level). The outputs gBr ,
gAr are utilized in order to not repeat any possible code making
the mapping invertible. Therefore, they are not useful for any other
purpose except the invertibility. Of course, it is possible to utilize
these output to define other operators, but for the purpose in this
work, there is not any utility to implement that and if implemented
it would increment further the complexity of the electronic circuits.
To control forward and backward computation with the same gate,
they are connected as shown in Figure 1 in which VinC equals 0
level performs the direct and VinC equals to non 0 level performs
the inverse computation. VinB, VinA are the operators’ inputs. To
reverse the operator each output of the direct gate computation:

Table 4. MAXr direct→ inverse

VinC VinB VinA MAXr gBr gAr VinC VinB VinA MAXr gBr gAr
ancillary MAXr gBr gAr VinC VinB VinA

0 0 0 0 0 0 → 0 0 0 0 0 0

0 0 1 1 0 1 → 1 0 1 0 0 1

0 0 2 2 0 2 → 2 0 2 0 0 2

0 0 3 3 0 3 → 3 0 3 0 0 3

0 1 0 1 1 0 → 1 1 0 0 1 0

0 1 1 1 1 1 → 1 1 1 0 1 1

0 1 2 2 1 2 → 2 1 2 0 1 2

0 1 3 3 1 3 → 3 1 3 0 1 3

0 2 0 2 2 0 → 2 2 0 0 2 0

0 2 1 2 2 1 → 2 2 1 0 2 1

0 2 2 2 2 2 → 2 2 2 0 2 2

0 2 3 3 2 3 → 3 2 3 0 2 3

0 3 0 3 3 0 → 3 3 0 0 3 0

0 3 1 3 3 1 → 3 3 1 0 3 1

0 3 2 3 3 2 → 3 3 2 0 3 2

0 3 3 3 3 3 → 3 3 3 0 3 3

Table 5. SUCr direct→ inverse

VinC VinA SUCr gAr Vinc Vina SUCr gAr
ancillary SUCr gAr VinC VinA

0 0 1 0 → 1 0 0 0

0 1 2 1 → 2 1 0 1

0 2 3 2 → 3 2 0 2

0 3 0 3 → 0 3 0 3

30



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Fig. 1: eANDir direct and eANDir reverse block diagram connection

eANDir or MAXr or SUCr is connected to the input VinC of
the reverse gate computation, gBr is connected to VinB and gAr

is connected to VinA for the binary operators and only gAr is
connected to VinA for the unary operator (SUCr).

3. MVL OPERATORS CMOS IMPLEMENTATION
All CMOS operators’ implementation description is based on three
subsystems and is presented based on the Figures in block diagrams
and CMOS gates circuits. In all Figures, at the top, the circuit
that is focused on the gates’ implementation at the input/output
voltage level along with the algorithms describing the gates’
implementation, is shown. At the bottom, the block diagram that
is focused on the input/output logical level along with the logical
equations describing them, is also shown. All gates utilize the
discriminators (first subsystem) to verify the logical level input; the
binary logic circuit (second subsystem) implements the logic of the
particular level under consideration; and finally, the multiplexers
or switches (third subsystem) set the output to the right voltage
level. For example, the eAND3 gate demands that both inputs are
set to the 3 logical level. Then, the discriminators (first subsystem)
verify these conditions, the binary logic circuit (second subsystem)
verifies the intersection in the 3 level, that is, both inputs are set
to the 3 logical level simultaneously; and finally, the multiplexers
(third subsystem) set the output to the right voltage level (3V). All
others gates follow the same design criteria, as presented next.
Note that the logical levels are defined as: (ground) 0V is the 0
logical level, 1V is the 1 logical level, 2V is the 2 logical level,
(VDD) 3V is the 3 logical level. However, if in the middle of the
circuit a particular gate output is set to 3V, it does not always mean
the 3 logical level, it only means that the output is high voltage
(because it is binary), by looking at the circuit gate and the block
diagram the actual situation is clear by the context.
For the logic implementation the INV (inverter), NAND, NOR
binary gates are utilized and they are represented as in the binary
logic with a number inside that defines the threshold voltage (Vth)
utilized to discriminate the quaternary logical levels. Whenever
there is not any number inside, the Vth is set to 1.5V (middle of
VDD=3V polarization voltage of the gate). In the following, two
criteria are needed. First, for all gates, first subsystem discriminates
which logical level (0,1,2,3) is at the input by comparing each
input (VinC, VinB, VinA) with corresponding threshold Vth values
(0.7V, 1.4V, 2.2V), as shown in Figure 2, defined by setting the
CMOS width and length sizes.
The implementation utilizes binary levels, that is, all these gates
always discriminate between two subsets, as for example, 0 level
from 1,2,3 levels or 0,1 levels from 2,3 levels, etc. As shown in

Table 6. Algorithms table

Algorithm 1 Algorithm 2 Algorithm 3
INVV th NANDV th NORV th
If VinA 6 Vth If (VinA AND VinB) 6 Vth If (VinA OR VinB) 6 Vth
x x x

Else Else Else
y y y

EndIf EndIf EndIf

Fig. 2: MVL thresholds of the discriminators

the Algorithm 1 in Table 6, INV0.7V (VinA) discriminates between
subsets x=0 logical level from y=1,2,3 logical levels, when its input
(VinA) is less than 0.7V (in the gate circuit, the output is 3V);
INV1.4V (VinA) discriminates between subsets x=0,1 logical levels
from y=2,3 logical levels, when its input (VinA) is less than 1.4V
(in the gate circuit, the output is 3V); INV2.2V (VinA) discriminates
between subsets x=0,1,2 logical levels from y=3 logical level,
when its input (VinA) is less than 2.2V (in the gate circuit, the
output is 3V); INV(VinA) discriminates to set 0V or VDD, when
its input (VinA) is less than 1.5V (in the gate circuit, VDD is the
polarization of the CMOS).
Second, the target of the discrimination for a given gate, i.e. what
is the subset (x or y) of interest, as for example: x=0 or y=1,2,3;
x=0,1 or y=2,3 and so on.
In the circuit description, in the block diagram, the logical function
to implement the gate under consideration is presented, and
after that, the CMOS circuit to show the actual voltages in the
implementation.
For the presentation of the logical function, the name of the gate
with its threshold (i.e INV0.7V ) is utilized as the name of the
quaternary function corresponding to the NAND or NOR or INV
in the block diagram and in the parenthesis its inputs, as shown
latter.
Same criteria for the NAND and NOR binary gates in which the
Vth helps to discriminate logical (x or y) levels subsets, detailed
latter in the description of each operator implementation.
As shown in the Algorithm 2 in Table 6, NANDV th(VinB,VinA)
discriminates between subsets x logical levels from y logical levels,
when both of its inputs (VinB,VinA) are greater than V th (in the
gate circuit, the output is 0V, meaning that both inputs belongs to
the y subset).
As shown in the Algorithm 3 in Table 6, NORV th(VinB,VinA)
discriminates between subsets x logical levels from y logical levels,
when one of its inputs (VinB or VinA) are greater than V th (in the
gate circuit, the output is 0V, meaning that both inputs belongs to
the x subset). Follows the actual gates implementation description.

3.1 eANDir Implementations
3.1.1 eAND3r Implementation. The binary operator eAND3r

implementation, as defined in Table 1 is shown in Figure 3. Note
that columns VinB, VinA and eAND3r implement exactly the
non-reversible eAND3 operator definition. For the two operands
eAND3r implementation, there exists three inputs (VinC, VinB,
VinA) and three outputs (eAND3r , gBr , gAr). VinC (ancillary

Table 7. eAND3r transistors size

Transistor W L Transistor W L
PMOS (µm) (µm) NMOS (µm) (µm)
MP01 20 0.35 MN01 10 0.35
MP02/03 20 0.35 MN02/03 0.4 0.35
MP04 0.4 0.35 MN04 0.4 0.35
MP05 0.8 0.35 MN05 0.4 0.35

31



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Fig. 3: eAND3r circuit

input) controls direct (VinC equals to 0 level) and to reverse the
computation (VinC equals to non 0 level). Follows the logical
function based on the operator circuit, in Equation 1.

eAND3r = INV {NAND2.2V [V inA, V inB,

INV0.7V (V inC)]}
(1)

As it can be seen in Figure 3, in this function the target of the INV
with CMOS transistors (MN05,MP04) and threshold 1.5V with
output eAND3r is to set the 3 level, when all three inputs of the
NOR2.2V (VinA,VinB,INV0,7V (VinC)) belong to the 3 level.
In the arguments of the function, the target of the INV0.7V with
input VinC is to identify level 0 to control forward and backward
computation with CMOS transistors (MN01,MP05). The target for
the NAND2.2V is to identify that all inputs belong to the 3V with
CMOS transistors (MN02,MP03,MN04,MP01,MP02, MN03), and
therefore, this intersection defines that both VinA, VinB must have
3 logical levels. Table 7 shows the size of the CMOS transistors.

3.1.2 eAND2r Implementation. The binary operator eAND2r

implementation, as defined in Table 2, is shown in Figure 4. Note
that columns VinB, VinA and eAND2r implement exactly the
non-reversible eAND2 operator definition. For the two operands
eAND2r implementation, there exists three inputs (VinC, VinB,
VinA) and three outputs (eAND2r , gBr , gAr). VinC (ancillary
input) controls direct (VinC equals to 0 level) and to reverse
the computation (VinC equals to non 0 level). When the selector
S1 equals to 2 level then eAND2=2V; otherwise eAND2=0V.
Follows the logical functions based on the operator circuit, in
Equation 2.

S1 = INV (S0) S0 = NAND{NOR2.2V (V inA, V inB),

INV2.2V [NOR1.4V (V inA, V inB)]}
(2)

As shown in the Figure 4 the INV with input VinC with polarization
voltage of 2V controls forward (VinC=0V) and backward (VinC
different from 0 level) computation with CMOS transistors
(MN09,MP09).

Fig. 4: eAND2r circuit

Output eAND2r is set to 2 level by inverting the NAND gate if
both inputs (direct computation controlled by VinC and eAND2)
are in the high level simultaneously, that is, eAND2 output is set
to 2V by activating the transistor (MN13); otherwise eAND2r is
set to 0V by activating the transistor (MN14).
In the argument of the S0 function, NAND has two inputs: first
the output of the NOR with threshold 2.2V (NOR2,2V ); second the
output of the INV2.2V with input NOR1.4V (VinB,VinA).
The target of the NAND is that both of its inputs are set in the
2 level by the intersection between the subsets 0,1,2 and 2,3 with
CMOS transistors (MN06,MP06,MN07,MP07). The target of the
NOR2.2V is to identify the subset 0,1,2 (setting its output to 3V)
with CMOS transistors (MN01,MP01,MN02, MP02). The target
for the NOR1.4V is to identify the subset 0,1 level (setting its output
to 0V) with CMOS transistors (MN03,MP03,MN04,MP04). The
next inverter INV2.2V (NOR1,4V (VinB,VinA)) inverts the signal to
identify the subset 2,3 level (setting its output to 3V) with CMOS
transistors (MN05, MP05). Table 8 shows the size of the CMOS
transistors.

3.1.3 eAND1r Implementation. The binary operator eAND1r

implementation, as defined in Table 3 is shown in Figure 5. Note
that columns VinB, VinA and eAND1r implement exactly the
non-reversible eAND1 operator definition. For the two operands
eAND1r implementation, there exists three inputs (VinC, VinB,
VinA) and three outputs (eANDir , gBr , gAr). VinC (ancillary
input) controls direct (VinC equals to 0 level) and to reverse the

Table 8. eAND2r transistors size

Transistor W L Transistor W L
PMOS (µm) (µm) NMOS (µm) (µm)
MP01/02 25 1 MN01/02 1 15
MP03/04 24 0.35 MN03/04 0.4 0.35
MP05/06/07/08 10 0.35 MN05/06/07/08 10 0.35
MP09 0.8 0.35 MN09 10 0.35
MP10/11/12 10 0.35 MN10/11/12 10 0.35

MN13/14 2 2

32



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Fig. 5: eAND1r circuit

computation (VinC equals to non 0 level). Follows the logical
functions based on the operator circuit, in Equation 3.

eAND1r = INV {NAND0.7V [INV0.7V (V inC),

V inA, V inB,NOR1.4V (V inA, V inB)]}
(3)

In the argument of the eAND1r function, the INV with threshold
1.5V with CMOS transistors (MN08,MP08) with polarization
voltage of 1V set the output to 1 level. the argument to the
INV function is the (NAND0.7V ) with threshold 0.7V that has
four inputs: first the output of the inverter with threshold 0.7V
(INV0.7V ) that has as its input the VinC input; second the input
VinA; third the VinB input; and fourth the output of the NOR
with threshold 1.4V (NOR1.4V ) with inputs (VinB,VinA). The
target of the INV0.7V it to identify level 0 to control forward
and backward computation with CMOS transistors (MN01,MP01).
The target of the NOR1.4V is to identify if both inputs belong
to the 0,1 levels (NOR1.4V output in 3V) with CMOS transistors
(MN02,MP02,MN03,MP03). The target for the NAND0.7V is to
identify that all inputs belong to the 1,2,3 logical levels (NAND0.7V

output in 0V) with CMOS transistors (MN04,MP04,MN05,MP05,
MN06,MP06,MN07,MP07), and therefore, this intersection defines
that both VinA, VinB must have 1 logical levels. The last inverter
(MN08, MP08) set the eAND1r output to 1V, that is the eAND1r

voltage level output. gAr , gBr are exactly the same as VinB and
VinA, respectively. Table 9 shows the size of the CMOS transistors.

3.2 MAXr Implementation
The binary operator MAXr implementation, as defined in Table 4
is shown in Figure 6. Note that columns VinB, VinA and MAXr

implement exactly the non-reversible MAX operator definition.

Table 9. eAND1r transistors size

Transistor W L Transistor W L
PMOS (µm) (µm) NMOS (µm) (µm)
MP01 0.8 0.35 MN01 10 0.35
MP02/03 5 0.35 MN02/03 0.4 0.35
MP04/05/06/07 0.4 0.35 MN04/05/06/07 18 0.35
MP08 10 0.35 MN08 10 0.35

Fig. 6: MAXr circuit

For the two operands MAXr implementation there exists three
inputs, (VinC, VinB, VinA) and three outputs (MAXr , gBr , gAr).
VinC (Ancillary) controls direct (VinC equals to 0 level) or reverse
computation (VinC equals to non 0 level). VinB, VinA are the
operators’ inputs. gBr , gAr (garbage) are utilized in order to
making the mapping invertible.
When VinC=0 level, the selector input of the multiplexer with
output MAXr and inputs (0V=ground and Max output) computes
the forward computation; otherwise it computes the backward
computation. Follows the logical functions based on the operator
circuit, in Equation 4.

S0 = NOR2.2V (V inB, V inA)

S1 = NAND1.4V {NOR1.4V (V inB, V inA),

INV1.4V [NOR2.2V (V inB, V inA)]}
S2 = NAND1.4V {NOR0.7V (V inB, V inA),

INV1.4V [NOR1.4V (V inB, V inA)]}
S3 = NOR0.7V (V inB, V inA)

(4)

The implementation criteria for the selector inputs to the quaternary
multiplexer is that when one and only one of the selector inputs is
different from 0 level the MAX output signal must be set to that
level, otherwise it is set to the 0 level.
Therefore, if the selector input (S0=0V) generated by the NOR2.2V

identifies the 3 level then, MAX output equals to 3 level, and all
the other inputs in the selector inputs are 0 level. The target of
the NOR2.2V is to discriminate x=0,1,2 level from y=3 level with
CMOS transistors (MN01, MP01, MN02, MP02).
If the selector input (S1=3V) generated by the NAND1.4V

identifies the 2 level then MAX output equals to 2 level, and all
the other inputs in the selector inputs are 0 level. The target of the

33



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Fig. 7: SUCr circuit

NAND1.4V is to discriminate x=0,1 level from y=2,3 level with
CMOS transistors (MN09, MP09, MN010, MP010). The target of
the NOR1.4V is to discriminate x=0,1 level from y=2,3 level with
CMOS transistors (MN03, MP03, MN04, MP04). INV1.4V inverts
the signal with CMOS transistors (MN07, MP07).
If the selector input (S2=3V) generated by the NAND1.4V

identifies the 1 level then MAX output is 1 level, and all the
other inputs in the selector inputs are 0 level. The target of the
NOR1.4V is to discriminate x=0,1 level from y=2,3 level with
CMOS transistors (MN11, MP11, MN12, MP12). INV1.4V inverts
the signal with CMOS transistors (MN08, MP08).
If the selector input (S3=3V) generated by the NOR0.7V identifies
the 0 level then MAX output is 0 level, and all the other inputs
in the selector inputs are 0 level. The target of the NOR0.7V is to
discriminate x=0,1 level from y=2,3 level with CMOS transistors
(MN05, MP05, MN06, MP06). Table 10 shows the size of the
CMOS transistors.

3.3 SUCr Implementation
The unary operator SUCr implementation, as defined in Table 5 is
shown in Figure 7. Note that columns VinA and SUCr implement
exactly the non-reversible SUC operator definition.
VinC inputs to the quaternary multiplexer selector with inputs
Successor1 and ground (0 level) to control direct (VinC equals

Table 10. MAXr transistors size

Transistor W L Transistor W L
PMOS (µm) (µm) NMOS (µm) (µm)
MP01/02 10 0.35 MN01/02 0.4 10
MP03/04 4.4 0.35 MN03/04 0.5 0.35
MP05/06 0.4 0.35 MN05/06 10 0.35
MP07 up to 12 4.4 0.35 MN07 up to 12 2.8 0.35
MP13 5.9 2 MN13 1 1
MP14 0.8 0.35 MN14 1 1
MP15 10 0.35 MN15 1 1
MP16/17 5.9 2 MN16/17 10 0.35

MN18/19 2 2

Fig. 8: eAND1r simulation

to 0 level, then SUCr =Successor1) by activating the switch
(MP11,MN12) to set SUCr=Sucessor1 level through the tran-
sistors (MP12,MN13,MP13,MN14). To reverse the computation
(VinC equals to non 0 level, then SUCr=0 level) by activating the
switch (MP10,MN11) to set SUCr=0 level of the multiplexer.
The other quaternary multiplexer with signal inputs 3, N3, 2, N2,
0, N0 set Sucessor1=i as VinA=i level which level is at the input
SUCr , and then, the output SUCr=i+1 level by means of choosing
the right input from: ground (0 level), 1V (1 level), 2V (2 level),
VDD (3 level). Follows the logical functions based on the operator
circuit, in Equation 5.

0 = INV0.7V (V inA) N0 = INV0.7V [INV0.7V (V inA)]

2 = INV1.4V [INV1.4V (V inA)] N2 = INV1.4V (V inA)

3 = INV2.2V [INV2.2V (V inA)] N3 = INV2.2V (V inA)
(5)

Signal 3: INV2,2V (VinA) discriminates x=0,1,2 levels from y=3
level, with the CMOS transistors (MN01,MP01). The target is
the y=3 level. Then, it identifies if VinA is in the level 3 and
N3 identifies that is in the x=0,1,2 levels (N3=Not 3), with
the CMOS transistors (MN02,MP02). Signal 2: INV1,4V (VinA)
discriminates x=0,1 levels from y=2,3 level, with the CMOS
transistors (MN03,MP03). The target is the y=2,3 level. Then, it
identifies if VinA is in the level y=2,3 and N2 identifies that is in the
x=0,1 levels (N2=2,3), with the CMOS transistors (MN04,MP04).
Signal 0: INV0,7V (VinA) discriminates x=0 levels from y=1,2,3
level, with the CMOS transistors (MN05, MP05). The target is the
y=1,2,3 level. Then, it identifies if VinA is in the level y=1,2,3 and
N0 identifies that is in the x=0 levels (N0=Not 0), with the CMOS
transistors (MN06,MP06). The multiplexer utilizes the selector
inputs to set only one input of the selector in the level 0 or 1 or 2
or 3, that is the purpose of the negation of each signal 3,2,0 that aid
to control the switches in the multiplexer. Signal 3 controls switch
(MN07) to set Sucessor1=3 level (when VinA=2, SUCr=3); signal

Table 11. SUCr transistors size

Transistor W L Transistor W L
PMOS (µm) (µm) NMOS (µm) (µm)
MP01/02 15 0.35 MN01/02 0.4 4
MP03/04 8.3 0.35 MN03/04 2.8 0.35
MP05/06 0.8 0.35 MN05/06 10 0.35
MP07 up to 11 0.4 0.35 MN07 up to 11 0.4 0.35
MP12 0.8 0.35 MN12 0.4 0.35
MP13 10 0.35 MN13/14 10 0.35

34



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

Fig. 9: Gates simulation 54◦C cmostm model

3 and N2 control switch (MP07, MP08) to set Sucessor1=2 level
(when VinA=1, SUCr=2); signal 2, N2 and N0 control switch
(MN08, MN09, MP09) to set Sucessor1=1 level (when VinA=0,
SUCr=1); signal 0 controls switch (MN10) to set Sucessor1=0
level (when VinA=3, SUCr=0). Table 11 shows the size of the
CMOS transistors.
For implementation purposes of the quaternary gates to decrease
circuit transistors counting it is better to implement specific circuits
when Successor gates are needed in cascade instead of utilizing
four, three or two SUCr gates in cascade, in which the only
modification to build them is to set the correct output voltage in
the original SUCr gate, this is not shown here.

4. RESULTS AND DISCUSSION
For illustration purposes, the forward and reverse computation
for the eANDir , according to Figure 1, is shown in Figure
8. From top to bottom the correct results of the reversible
gates VinA, VinB, VinC, the forward computation of eANDir ,
g0=VinA, g1=VinB (garbage), VinB=gBr (garbage), and the
inverse computation of eANDir , that is eANDir=VinC (control
signal), g0r=gAr=VinA, g1r=gBr=VinB with the correct results
are shown. Note that the input/output is a bijection, when the
direct transformation is performed, the inputs are VinC=0, VinA,
VinB and the outputs are eANDir , gBr=VinB, gAr=VinA and
for the inverse transformation eANDir=0, VinB=gBr , VinA=gAr

recovering exactly the inputs.
Extensive simulations were performed for the tm,wp,ws models of
the Cadence tool for 0◦C, 27◦C, 54◦C and, for illustration purposes,
Figure 9 shows the simulation for all the quaternary gates backward
and forward computation for the tm model at 54◦C and Figure 10
shows the simulation for all the quaternary gates backward and
forward computation for the wp model at 27◦C. The extensive
simulations show that for all models up to 54◦C all the simulations
performs correctly.
The restriction for the ancillary input C=0 (only) suffices to
implement the bijection in the restricted domain. Of course, it is
possible to set VinC=1 or 2 or 3 to define other operator in the
output, but it would increase a lot the circuit complexity without
much more advantages due to the fact that, likely, each gate will

Fig. 10: Gates simulation 27◦C cmoswp model

be utilized to perform one operator only and if you include in
one gate more operators, likely, it would be utilized only one
operator and the others not, wasting a lot of operators in each
gate. The implementation has the same drawbacks as the other
implementation [30], as less noise rejection in comparison to the
binary counterparts, increased number of transistor but less chip
area, due to the fact that the interconnections are decreased which
is about the 70% of the integrated circuit area.

5. CONCLUDING REMARKS AND FUTURE
WORK

Reversible voltage mode quaternary gates have been implemented
and verified by simulations in AMS CMOS 4ML C35B4E3
technology with results demonstrating correct functionality and
feasibility of the electronic circuit. The objective is to decrease
heat dissipation keeping constant the information entropy between
the input and the output by means of reversible gates. Quaternary
circuits have less noise rejection in comparison to the binary
counterparts, increased number of transistor but less chip area.
Simulations with Cadence models tm, wp, ws for temperatures:
0◦C, 27◦C, 54◦C have shown correct functional behavior.
The universal quaternary set of gates already presented in the
literature is implemented here with only 25, 18, 32, 10 and 32
CMOS transistors, respectively, outperforming past quaternary
gates implementation for the non-reversible implementation by
utilizing fewer CMOS transistors in more than 40%. Future works
are related to further area reduction, computational performance
and the IC nanometers manufacturing.

6. ACKNOWLEDGEMENT
The authors would like to thank the Technology Center of
Electronics and Informatics of Mato Grosso do Sul (CTEI-MS),
Federal University of Mato Grosso do Sul (UFMS) and the
Conselho Nacional de Pesquisa (CNPq) for the financial support.

7. REFERENCES
[1] Feynman, R. P.: “Quantum mechanical computers”, Founda-

tions of Physics, 1986, 16, (6), pp. 507-531.

35



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.27, March 2021

[2] Biswas, P. K., Bahar, A. N., Habib, M. A., et al.: “Effi-
cient design of Feynman and Toffoli gate in quantum dot
cellular automata (QCA) with Energy Dissipation Analysis”,
Nanoscience and Nanotechnology, 2017, 7, (2), pp. 27-33.

[3] Picton, P.: “Multi-valued sequential logic design using Fredkin
gates”, Multiple-Valued Logic Journal, 1996, 1, (4), pp. 241-
251.

[4] Thapliyal, H., Srinivas, M. B., Zwolisnki, M.: “A beginning in
the reversible logic synthesis of sequential circuits”. Military
and Aerospace Applications of Programmable Devices and
Technologies International Conference (MAPLD), 2005, 4, pp.
6-9.

[5] Thapliyal, H., Ranganathan, N.: “Reversible logic based
concurrent error detection methodology for emerging nanocir-
cuits”. 10th IEEE International Conference on Nanotechnol-
ogy, Seoul, South Korea, August 2010, pp. 217-222.

[6] Morrison, M., Ranganathan, N.: “Design of a Moore finite
state machine using a novel reversible logic gate, decoder and
synchronous up counter”. 11th IEEE International Conference
on Nanotechnology, Portland, USA, August 2011, pp. 1445-
1449.

[7] Taylor, M. B.: “Is dark silicon useful? harnessing the four
horsemen of the coming dark silicon apocalypse”. Design
Automation Conference (DAC), San Francisco, USA, June
2012, pp. 1131-1136.

[8] Toffoli, T.: “Reversible computing”. International Colloquium
on Automata, Languages, and Programming, Berlin, Heidel-
berg, Germany, July 1980, pp. 632-644.

[9] Bennett, C. H.: “Logical reversibility of computation”, IBM
journal of Research and Development, 1973, 17, (6), pp. 525-
532.

[10] Rangaraju H. G., Aakash S. Muralidhara N.: (2012).
“Design and Optimization of Reversible Multiplier Circuit”,
International Journal of Computer Applications, 2012, (52),
pp. 44-50.

[11] Singh V., Gupta R.: “A Novel n-bit Arithmetic Logic Unit
Design based on Reversible Logic”. IJCA Proceedings on
National Symposium on Modern Information and Communi-
cation Technologies for Digital India MICTDI, 2016, pp. 27-
30.

[12] A. Sadat Md. Sayem and Ueda M.: “Optimization of
Reversible Sequential Circuits”, Journal of Computing, 2010,
2, (6), pp.208-214.

[13] Hari, S. K. S., Shroff, S., Mahammad, S. N., et al.: “Efficient
building blocks for reversible sequential circuit design”. 2006
49th IEEE International Midwest Symposium on Circuits and
Systems, San Juan, Puerto Rico, August 2006, pp. 437-441.

[14] Taha, S. M. R.: “Reversible logic synthesis methodologies
with application to quantum computing” (Springer Interna-
tional Publishing, 1st edn. 2016).

[15] Athas, W. C., Svensson, L. J.: “Reversible logic issues in
adiabatic CMOS”. Proceedings Workshop on Physics and
Computation. PhysComp’94, Dallas, USA, November 1994,
pp. 111-118.

[16] Maslov, D., Dueck, G. W.: “Reversible cascades with minimal
garbage”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2004, 23, (11), pp. 1497-
1509.

[17] Gupta, Y. and Sasamal, T. N.: “Implementation of reversible
logic gates using adiabatic logic”. 2015 IEEE Power, Com-
munication and Information Technology Conference (PCITC),
Bhubaneswar, India, October 2005, pp. 595-598.

[18] Schaeffer, B., Tran, L., Gronquist, A., et al.: “Synthesis of
Reversible Circuits Based on Products of Exclusive OR Sums”.
2013 IEEE 43rd International Symposium on Multiple-Valued
Logic, Toyama, Japan, May 2013, pp. 35-40.

[19] Singla, P., Prasad, R. R.: “Transistor Implementation Of
Reversible Gate Using Novel 3 Transistor EX-OR Gate”.
Global Journal of Advanced Research, Jan. 2015, 2, (1), pp.
46-49.

[20] Raj, K. P., Syamala, Y.: “Transistor level implementation
of digital reversible circuits”, International Journal of VLSI
Design & Communication Systems, 2014, 5, (6), pp. 43.

[21] Majumdar, R., Saini, S.: “A novel design of reversible 2:4
decoder”. 2015 International Conference on Signal Processing
and Communication (ICSC), Noida, India, March 2015, pp.
324-327.

[22] Bhardwaj, R.: “Reversible logic gates and its performances”.
2018 2nd International Conference on Inventive Systems and
Control (ICISC), Coimbatore, India, January 2018, pp. 226-
231.

[23] Kerntopf, P., Perkowski, M., Podlaski, K.: “Synthesis of
reversible circuits: A view on the state-of-the-art”. 2012 12th
IEEE International Conference on Nanotechnology (IEEE-
NANO), Birmingham, UK, August 2012, pp. 1-6.

[24] Post, E. L.: “Introduction to a general theory of elementary
propositions”, American Journal of Mathematics, 1920, 43,
(3), pp. 163-185.

[25] Lukasiewicz J.: “On three valued-logic.”, eds. L. Borkowski
(Select Works, North-Holland, Amsterdam), 1920, pp. 169-
171.

[26] Hurst, S. L.: “Multiple-valued logic its status and its future”,
IEEE transactions on Computers, 1984, (12), pp. 1160-1179.

[27] Smith, K.: “A multiple valued logic: a tutorial and apprecia-
tion”, Computer, 1988, 21, (4), pp. 17-27.

[28] KS, V. P., Gurumurthy K. S.: “Quaternary CMOS com-
binational logic circuits”. 2009 International Conference on
Information and Multimedia Technology, Jeju Islan, South
Korea, December 2009, pp. 538-542.

[29] Romero, M. E. R., Martins, E. M., Santos, R. R.: “Multiple
valued logic algebra for the synthesis of digital circuits”.
2009 39th International Symposium on Multiple-Valued Logic,
Naha, Japan, May 2009, pp. 262-267.

[30] Romero, M. E. R., Martins, E. M., Santos, R. R., Duarte, G.
M.: “Universal set of CMOS gates for the synthesis of multiple
valued logic digital circuits”, IEEE Transactions on Circuits
and Systems I: Regular Papers, 2013, 61, (3), pp. 736-749.

[31] Romero, M. E. R., Martins, E. M., Santos, R. R., Duarte, G.
M.: “Analog to digital converter for binary and multiple-valued
logic”. 2011 IEEE Second Latin American Symposium on
Circuits and Systems (LASCAS), Bogota, Colombia, February
2011, pp. 1-4.

[32] Madhuri, B. D., Sunithamani, S.: “Design of ternary logic
gates and circuits using GNRFETs”, IET Circuits, Devices &
Systems, 2020, 14, (7), pp. 972-979.

[33] Landauer, R.: “Irreversibility and heat generation in the
computing process”, IBM J. Research and Development, 1961,
5, (3), pp. 183-191.

36


	Introduction
	MVL Reversible Primal Algebra
	MVL Operators CMOS Implementation
	eANDir Implementations
	eAND3r Implementation
	eAND2r Implementation
	eAND1r Implementation

	MAXr Implementation
	SUCr Implementation

	Results and Discussion
	Concluding Remarks and Future Work
	Acknowledgement
	References

