
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

41

A Proposed Design for Cross Platform Applications

using Web Technologies

Jebreel Alamari
Department of Computer Science University of

Colorado at Colorado Springs
 Colorado Springs, United States

C. Edward Chow
Department of Computer Science University of

Colorado at Colorado Springs
Colorado Springs, United States

ABSTRACT

Web applications are easier to build, maintain, and distribute

than native applications. With new developments in

JavaScript engines and the introduction of WebAssembly,

web applications can execute CPU-intensive tasks at 0.9 the

speed of C/C++. Dozens of natively implemented APIs such

as WebGL and Audio API are now exposed to JavaScript

through the browser. With the help of these APIs, we see

more and more web-based applications and games. This paper

presents a novel design to get the most out web technologies.

It aims to bring freedom of the web to desktop applications.

Developers will never need to use proprietary programming

languages or frameworks to implement their ideas. Even with

existing cross platform frameworks there is still a learning

curve that developers need to go through. However, in this

proposed design the development is done entirely using

standardized web technologies.

General Terms

Cross-platform applications, Computation in the browser,

WebAssembly performance, Lighttpd webserver

Keywords

web applications, web browsers, JavaScript, WebAssembly

1. INTRODUCTION
According to World Wide Web the goal for its development is

to give a universal access to a large universe of documents. It

is the most powerful global information system that is

accessible to everyone with an internet connection [1]. The

WWW (World Wide Web) is one of the most important

human inventions of all time. It connects the world in a way

that was not possible before. Blogs, social networking

websites, and forums are just a few examples of what is

possible through this incredible system.

Web browsers are the window to this rich world of

information. Because every computer needs to access the web,

every single one of them comes with a preinstalled web

browser. That makes web browsers the most ubiquitous

software in the history of computing.

The web is rapidly changing and so is the browser. In addition

to fetching and rendering HTML documents, the browser

manages databases, performs cryptographic operations, and

runs CPU-intensive tasks.

In this research project we are trying to show that the browser

can change the way we build software. It is the solution for

making cross platform applications that do not require

learning a special programming language or complex GUI

(Graphical User Interface) libraries. The only tools a

developer needs are HTML, JS, CSS, and WebAssembly.

We argue that existing cross platform frameworks such as

NW.js [2] and ElectronJS [3], are not the solution to this

problem. Using such frameworks adds an extra load for the

development team. Sometimes, they may end up writing

native code to speed up the performance of their applications

[4].

In some situations, it could increase the budget for making

apps, if we consider training expenses to use one of these

frameworks.

2. RESEARCH MOTIVATION
First, we believe if such a design exists, it will make building

applications simple and less expensive. According to Kinvey

report in 2017, the average cost of building an enterprise level

application is about \$270K [5]. The driving cost of building

applications could be summarized in two points.

2.1 Building and maintaining different

code bases
An enterprise level application must be available on all major

platforms, which means developing and maintaining different

code bases in different programming languages. Web

applications on the other hand are written once and run

everywhere. So, we cut the cost of building different versions

and maintaining different codes. If the browser supports a

feature, it is available in all devices regardless of the operating

system.

2.2 Applications Distribution
One of the most popular ways for distributing software is

through the app store. Unfortunately, the app store itself is

owned by a company that is considered a competitor.

Competing against the owner of an app store is not a winning

battle. In addition to sharing the profit of the application with

an app store maintainers and paying annual fees, they may for

some reason remove applications from the store. Also, they

can develop similar applications and tweak their search

algorithms to show their applications in the search results [6].

Applications in this proposed design are available on source

code sharing sites such as GitHub and Sourceforge.

Applications can also be hosted on the IPFS (Inter Planetary

File System) network which makes them available

everywhere and anytime without anyone’s control [7].

As the code of web applications can be viewed in the browser

console, it is easier to inspect what the code is doing other

than serving its primary purpose. Even if the application was

downloaded from an unknown source, it is considered less

malicious compared to binaries. That makes distributing

applications is as simple as sharing a hyperlink. Secondly, we

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

42

think it is the time to build fast applications with high-

performance web technologies such as ASM.JS SIMD.JS, and

WebAssembly.

According to multiple studies of the performance in the

browser [8][9] , the performance of JavaScript is getting close

to the performance of native code. ASM.JS, a JavaScript

subset, is even more efficient with handling CPU-intensive

operations. WebAssembly is the ultimate choice for running

computation on the browser at the speed of C code in most

cases. Even though WebAssembly can run outside of the web

[10], but to run it in the browser, we need to serve it from a

webserver. Therefore, in this design, we introduce another

effective use case for WebAssembly.

Third, adapting web applications may Improve the security of

desktop applications. The web browser is unique software

that was built to fetch foreign code and execute it securely

without asking questions. The browser sandboxes foreign

codes to minimize the damage that could happen to the host

machine if that code were malicious. In our design, we

benefit from this feature to enforce isolation between

processes in the memory [11]. We do not have to reinvent the

wheel because the browser has been doing that for years. Here

are some security features that can be added by adopting our

design.

2.3 All web application components run on

the same device, there is no back-end
A great example of SaaS (software as a service) is Google

Docs and Office 365. These applications are powerful and

convenient. The cloud backend of these applications is the

source of power but also the source of security issues, for two

reasons:

2.3.1 Service providers always have access to

clients' documents.
There is no guarantee that these service providers are not

using users’ data for unknown purposes [12].

2.3.2 Files are transferred through the network.
that means files can be intercepted during the transfer time.

Even though the connection is encrypted but just having the

files on the network is less safe.

In this design, even though we are using web applications, the

frontend and the backend are both on the same machine.

Therefore, data never leaves the computer.

2.3.3 In this design we can limit data collection.
Native applications can use communication capabilities on

users’ machines if they are granted required permissions to do

that. These permissions are sometimes granted by default.

They can also access different services such as GPS. If an app

has access to these services and has access to the Internet,

there is no reason to assume that the app is not sending data to

some remote server.

Unfortunately, Data collection is not only performed by the

Operating System vendor but also by third party applications

[13].

In this design we again use a browser feature for good. All

major web browsers enforce SOP (Same Origin Policy). It

states that a web application cannot communicate with

another host other than the origin of the application [14]. In

this design the origin is the localhost. Even with the device

connected to the internet, the application will never be able to

communicate with an external server.

The browser also prompts the user to allow access GPS,

camera, or microphone whenever the application needs them.

There is no permanent access to local devices or sensors.

With android 11 these permissions are revoked after a certain

amount of time, but this feature has been available in the

browsers for years [15].

2.3.4 Better Memory management with

sandboxing.
Because browsers run code from external origins, they

enforce sandboxing policy [11]. Foreign code is not allowed

to access memory space that belongs to other processes.

Finally, web applications are portable. In other words,

whenever there is a browser installed on the system, the

application can run.

3. RELATED WORK

3.1 NW.js
It is considered a cross platform solution to make native apps

using HTML5, JavaScript, CSS. It is based on Chromium

project and Nodjs. It uses WebKit rendering engine to render

html elements. It has a complete support for Node.js APIs and

third-party modules. It allows calling Node.js modules

directly from the DOM (Document Object Model) and Web

Workers [2].

The main drawback of this framework is the size of the

application. About 70-80 Megabyte of data is necessary for

any application developed using this framework. This data is

the NW.js itself.

3.2 Electron JS
It is similar framework to build apps using HTML5,

JavaScript, and CSS. It was used to build popular desktop

applications such as Twitch, WhatsApp, and Visual Studio

Code [3].

This framework suffers from the same problem NW.js has

which is code size.

Both frameworks claim to use web technologies only to make

desktop applications. However, knowing HTML, JavaScript,

and CSS is not enough to start making desktop applications

with these frameworks. Developers need to spend hours to

navigate through the documentation just get started.

Learning one of these frameworks may be equivalent to

learning a new programming language. From business

perspective this is an expensive process.

In our design, there is no complicated development setup, no

special IDEs, and no dependencies. A simple text editor and

some knowledge in HTML and JavaScript is enough to build

a desktop application.

Both frameworks use Nodejs to interact with the filesystem.

That means, whenever a single application is running, there

are two instances of V8, JavaScript engine, running on the

same machine. One running inside Nodejs and the other inside

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

43

the browser. It becomes worse if we have multiple

applications running at the same time.

In our design we have only one instance of the webserver that

serves all applications installed on the machine.

In addition, in our design, we kept the structure of traditional

web applications. Backend scripting languages such as php or

python can be used.

Both frameworks use chromium to render the GUI and

execute code. In our design, there is no restriction in which

browser to use.

4. PAPER CONTRIBUTION
In this paper we looked at the problem of making universal

application using web technologies from a different

perspective. We came up with a simple design that uses

existing standardized technologies that are not under anyone’s

control. We do not intervene in how developers should

organize or develop their code, nor do we intervene in how

users use installed applications on their machines.

We implemented a prototype of this design that allows users

to install/uninstall, view, and launch web applications as if

they are native applications.

5. DESIGN
In figure 1 we can see the overall view of a typical web

application. The main idea for our design is simple, which is

to bring the backend and the front-end of the web applications

to the same machine as shown in figure 2.

Fig 1: Web Applications Architecture

Fig 2: Web Application Local Installation

The browser in this design will take care of rendering user

interface and performing computation. The web server will

take care of handling file system and database access. The

browser does not have direct access to the local file system,

that is the responsibility of the web server. Doing this will end

the need for file system API (Application Programming

Interface) in the browser.

As shown in Figure 1,2 there are multiple components that an

application needs to run. Making these components available

for an app is the challenging part of his design. Typical

computer users are used to installing apps that work on the

desktop without any extra settings or configurations.

Therefore, in this design we implemented an application

manager that takes care of installing, uninstalling, viewing,

and launching apps.

The application manager is implemented in python using

Tkinter GUI library. We chose Python for a couple of reasons.

First, application manager tasks are simple, so performance is

not an issue here. Second, as python is a scripting language,

the source code of this application manager can be viewed and

inspected by users for more transparency about the inner

workings of the code. In our future work, we plan to replace

Tkinter with PyQt for a cleaner GUI.

5.1 Application Manager Tasks in detail

5.1.1 Installation
Any web application can be installed without any restrictions.

However, the developer needs to have all the code in one

folder and compress it. The application manager expects a

compressed file with .zip format. The rationale behind using

zipped files is that GitHub repositories can be downloaded as

zipped files. Therefore, we thought about making installing

codes from GitHub more convenient. In addition, we needed

all the files to be bundled together in a single file.

After having the web application in the local machine, user

can click in “add application button” and navigate through the

file system and pick the zipped file. Then the application

manager will perform the following steps in order to install

the application successfully on the local machine.

5.1.1.1 Decompress the file
Because the installer expects a compressed version of the

application folder.

5.1.1.2 Create a new directory with the name of

the application

5.1.1.3 Configure a virtual server for the

application
Every single application has a dedicated virtual server.

5.1.1.4 Modify hostname file on the system to

point to the installed application when launching

the application

5.1.1.5 Add the application name to installed

applications database.
Installed applications database is a flat file database using

TinyDB.

5.1.1.6 Restarts the embedded web server

5.1.2 Uninstallation
This step is simpler than the installation process. It consists of

four steps

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

44

5.1.2.1 Removing the application folder from the

file system.

5.1.2.2 Modifying the hostname file by deleting

the application name from it

5.1.2.3 Updating installed applications database

5.1.2.4 Restarts the embedded server

5.1.3 Viewing Installed Applications
The application manager reads the installed applications

database and views them to the user. If the application has a

favicon set, this icon will show on the GUI next to name of

the application.

5.1.4 Launching Applications
In this implementation the application manager launches

installed applications using Google Chrome by default. Since,

hostname file is configured properly during the installation

process, we just launch Google Chrome with the right flags

and give it the name of the application. The browser will be

directed to the local virtual server where the application files

are located. For our future work, we plan to make it possible

for the user to choose their favorite browser to run the

applications.

Embedding a webserver is an integral part of this design. In

our design and implementation, we picked lighttpd server [16]

as our backend. Here is why we think this webserver is the

right choice.

 It is a lightweight server compared to Apache

webserver for example. The compressed version of

the whole source code is only 2.2 MB, which makes

it easier to embed in our application manager.

 It is easy to configure a virtual host for every

application.

 It has a full support for php code, so web developers

can continue using php and make web applications.

 It supports running code in high performance

programming languages such as C++ through its

fastCGI.

6. EVALUATION
This design is implemented in a Linux environment. We were

able to download multiple web applications from GitHub and

install them locally. We tested the design on a desktop

machine running Linux Mint with Intel Quad Core processor

and 8 GiB of memory.

In our evaluation of this design, we concentrated on the

startup time for the application and the performance of the

application itself.

We defined the application startup time as the time needed for

an application to reach a state where the user can interact with

it.

In this design, total startup time is the time taken to start the

browser added to the time taken to load the code from the

local server.

The average startup time for Google Chrome in our

experiment is 882 milliseconds (about 1 second). In figure 3

we see the total startup time for the web applications in our

experiment. It is worth mentioning that Audio Player and

WebGL applications are written in pure JavaScript. However,

Compression and Photo Editor are written in WebAssembly.

The photo editor took a longer time to load because it is based

on OpenCV that we had to compile to WebAssembly and load

it to the page.

Fig 3: Startup Time for the Applications in or Experiment

(seconds)

We noticed that the load time was shortened if we open the

application more than once due to in browser caching. This

decrease in load time is negligible since even with caching

disabled, we still load the files from the local machine.

As mentioned in our goals for this design that we aim to build

high performance applications that uses WebAssembly for

CPU-intensive tasks. The audio player and WebGL

applications were written in JavaScript. However, they use

Natively implemented APIs in the browser namely Web

Audio API and WebGL. In our test machine the WebGL

application was able to achieve 60 FPs without any lag.

In our compression application we implemented two

compression algorithms zstd and zip in both native codes

written in C/C++ and WebAssembly. If figure 4 and 5 we see

how WebAssembly implementation performs against

optimized C/C++ code.

Fig 4: Zstd Compression in WASM vs C/C++ (ms)

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

45

Fig 5: Zip Compression in WASM vs C/C++ (ms)

We also compared the performance of WebAssembly against

native code in our image editing application. That is shown in

figure 6.

Fig 6: Photo Editing in WASM vs Native Code

Optimized C/C++ code is still better than WebAssembly in

terms of performance. However, in this design developers still

have the option of using C/C++ and run them using the

webserver CGI. That might lead to portability problems, so

we recommend using WebAssembly despite the slight

performance degradation.

7. FUTURE WORK
This design has been implemented and tested on Linux. We

plan to extend it to support multiple desktop operating

systems such as Windows and macOS. Since we are using the

browser and a lightweight webserver, this should not be hard

to implement.

Unlike forementioned frameworks, this design does not force

developers to use chromium-based browsers. Therefore, we

plan to allow users to choose their favorite browser to be the

frontend of installed applications. In our implementation we

used Google Chrome, but in the next version the user will be

able to change that.

For GUI in our implementation, we used Tkinter. It gets the

job done, but it might not be the ideal GUI library for

production. Therefore, we plan to switch to PyQt5 for a

cleaner user interface.

8. CONCLUSION
In this paper we presented a novel design to build desktop

applications using pure web technologies. This design does

not require developers to learn a new programming language

or a framework. It also relies on standards that browser

vendors are committed to adhere to.

We also implemented a prototype of this design in a Linux

environment. We developed application manager to

install/uninstall, view, and launch web applications in the

browser. Typical desktop users do not have to learn how to

install a webserver to run web applications locally. They will

be able to use in browser applications without the need to

send data to a remote server for processing. In addition, they

will not be forced to use a certain operating system just

because the applications they use are not available on their

favorite one.

Eliminating the barriers between different operating systems

by making applications available in all of them is an

ambitious dream. In this paper we presented a simple yet

useful design to achieve that dream.

9. REFERENCES
[1] S. N. Dorogovtsev and J. F. F. Mendes, Evolution of

Networks: From Biological Nets to the Internet and

WWW. OUP Oxford, 2013.

[2] “NW.js.” https://nwjs.io/ (accessed Oct. 30, 2020).

[3] “Electron | Build cross-platform desktop apps with

JavaScript, HTML, and CSS.”

https://www.electronjs.org/ (accessed Sep. 21, 2020).

[4] “Performance | Electron.” /docs/tutorial/performance

(accessed Sep. 21, 2020).

[5] “Figuring the Costs of Mobile App Development,”

Formotus, Jun. 23, 2017.

https://www.formotus.com/blog/figuring-the-costs-of-

custom-mobile-business-app-development (accessed

Sep. 30, 2020).

[6] D. Geradin and D. Katsifis, “Bringing an End to Apple’s

Anti-Competitive Practices on the App Store: A

Response to Völcker \& Baker,” Social Science Research

Network, Rochester, NY, SSRN Scholarly Paper ID

3694716, Sep. 2020. doi: 10.2139/ssrn.3694716.

[7] P. Labs, “IPFS Powers the Distributed Web,” IPFS.

https://ipfs.io/ (accessed Sep. 30, 2020).

[8] D. Herrera, H. Chen, E. Lavoie, and L. Hendren,

“WebAssembly and JavaScript Challenge: Numerical

program performance using modern browser

technologies and devices,” p. 26.

[9] I. Jibaja et al., “Vector Parallelism in JavaScript:

Language and Compiler Support for SIMD,” in 2015

International Conference on Parallel Architecture and

Compilation (PACT), Oct. 2015, pp. 407–418, doi:

10.1109/PACT.2015.33.

[10] “WASI |.” https://wasi.dev/ (accessed Oct. 11, 2020).

[11] S. Van Acker and A. Sabelfeld, “JavaScript Sandboxing:

Isolating and Restricting Client-Side JavaScript,” in

Foundations of Security Analysis and Design VIII:

FOSAD 2014/2015/2016 Tutorial Lectures, A. Aldini, J.

Lopez, and F. Martinelli, Eds. Cham: Springer

International Publishing, 2016, pp. 32–86.

[12] C. Reichert, “Microsoft Office 365 banned in some

schools,” CNET. https://www.cnet.com/news/microsoft-

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 29, April 2021

46

office-365-banned-in-some-schools-over-privacy-

concerns (accessed Oct. 10, 2020).

[13] 1615 L.St NW,Suite 800Washington,and D.

20036USA202\-419\-4300 |M.\-857\-8562|F.\-419\-

4372|M. Inquiries,“Apps Permissions in the Google Play

Store,”Pew Research Center: Internet, Science \& Tech,

Nov. 10, 2015.

https://www.pewresearch.org/internet/2015/11/10/apps-

permissions-in-the-google-play-store/ \\(accessed Oct.

11, 2020).

[14] “Same Origin Policy - Web Security.”\\

https://www.w3.org/Security/wiki/Same_Origin_Policy

\\ (accessed Dec. 30, 2020).

[15] “Permissions updates in Android 11,” Android\\

Developers.

https://developer.android.com/about/versions/11/pri\\vac

y/permissions (accessed Dec. 30, 2020).

[16] “Home - Lighttpd - fly light.” https://www.lighttpd.net/

(accessed Sep. 30, 2020).

IJCATM : www.ijcaonline.org

