International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

Performance Analysis of NoSQL Databases with Large
Volumes of Open Educational Data

Felipe F. de Lima Melo

Federal Rural University of Pernambuco UFRPE

Roberta M. Marques Gouveia
UFRPE

Dom Manuel Medeiros Street, Dois Irmos, Recife-PE, Brazil

Andréza L. De Alencar
UFRPE

Maria da Conceicao M. Batista
UFRPE

Ademir B. Santos Neto
UFRPE

Tiago A. E. Ferreira
UFRPE

ABSTRACT

Non-Relational Databases, also known as NoSQL (Not Only Struc-
tured Query Language), emerged in the face of new requirements
of Web 2.0 computer applications. Relational databases, although
consolidated as a data storage and manipulation model for decades,
began to face performance limitations when dealing with large vol-
umes of data. NoSQL databases have flexible data structure, and
when associated with distributed computing provide a good scal-
ability, being indicated in the Big Data scenario. In this context,
this work evaluates the performance of three NoSQL databases, in
order to verify their performance in large volumes of educational
data. The experiments were performed with school census data,
available in the repository of the Ansio Teixeira National Institute
for Educational Studies and Research (INEP) in Brazil. For this
case of study, the following databases were adopted: DynamoDB
(whose data model is key-value oriented), MongoDB (whose data
model is document-oriented), and Cassandra (whose data model
is column-oriented). Therefore, among the investigated databases,
MongoDB was more efficient, presenting lower processing times
in the operations of inserts/loads, queries, updates, and removals of
basic educational data.

Keywords

Nonrelational Databases, Data Processing, Data Models, NoSQL
Evaluation, Performance

1. INTRODUCTION

Relational databases have been used as data storage and manipula-
tion model for decades and widely used by Database Management
Systems (DBMS). However, in the face of new requirements of
Web 2.0 computer applications, the relational model began to face
limitations in performance and efficiency in relation to the manip-
ulation of large volumes of data. According to Harish et al. [1],
NoSQL DBs (databases) have existed since the late 1960s, how-
ever, initially, they were not called “no sql”, until the early 21st

century when there was an increase in their popularity, motivated
by companies such as Facebook, Google, and Amazon.

The need to handle larger and larger volumes of data motivated the
adoption of NoSQL databases, as this emerging and fast-growing
technology tends to create systems with better performance, scal-
ability, and easier to program [2]. NoSQL has been consolidating
in this new context of different kinds of persistence, where sev-
eral storage models coexist, allowing developers to choose the most
suitable and optimized technology for each type of data access.
Bathla er al. [3] affirmed that NoSQL is complementary to SQL
technology, as there are other ways to represent data than just in
the tabular form of rows and columns. Non-relational models offer
various storage formats that can easily support high speed, large
volumes and varieties of data. Among the main NoSQL DB mod-
els are: key-value oriented, column-oriented, document-oriented,
graph-oriented, and hybrid/multi-model. This paper aims to evalu-
ate the performance of three of these non-relational DB models to
verify how they perform in the scenario of large volumes of open
educational data.

The NoSQL DBs adopted in this study are Cassandra (column-
oriented model), DynamoDB (key-value oriented model), and
MongoDB (document-oriented model). The experiments were run
on school census data, which is available in the repository of the
Ansio Teixeira National Institute for Educational Studies and Re-
search (INEP). This repository contains open governmental date{]
on primary, secondary, and higher education, with information col-
lected annually on students, classes, teachers, and educational in-
stitutions throughout the Brazilian territory. Having free access to
information about basic and higher education contributes to sev-
eral studies that can be applied, both in the interdisciplinary area of
Data Science, and in reflections about educational public policies,
epistemological aspects, and the use of information and communi-
cation technologies, as is the case of the work of Sossai et al. [4]].
The paper is structured as follows: Section 1.1 discusses some re-
lated work; Section 1.2 discusses the three non-relational database

IThe repository is available in: https://www.gov.br/inep/pt-br/acesso-a-
informacao/dados-abertos/microdados Acessed on: March 10, 2021.

models and systems used in the experiments; Section 2 describes
the methodology of the work, focusing on the experiments; Section
3 presents the performances of the three non-relational DBs and
statistical analysis of the results obtained; and Section 4 brings the
final considerations, with proposals for future works.

1.1 Non-Relational Database Systems

This section addresses the BASE (Basically Available, Soft State,
Eventual Consistency) paradigm and CAP (Consistency, Availabil-
ity, and Partition tolerance) theorem. The three non-relational data
models used in the experiments (DynamoDB, MongoDB, and Cas-
sandra) are conceptualized in this section.

As Sadalage and Fowler [2], NoSQL DBs involve schema-free
or flexible schema, aggregate, new distribution, and MapReduce
data models. Non-relational DBs make use of the properties of the
BASE paradigm (basically available, lightweight state and eventual
consistency), whose system does not need to be consistent all the
time, but it is considered consistent when all nodes in the cluster
present the same data. Therefore, it may eventually be inconsistent,
because it would be waiting for an update to be propagated to all
nodes. Non-relational DBs also make use of the CAP theorem, also
known as Brewer’s Theorem [J5]], which at any given time, it is only
possible to guarantee two of these three properties simultaneously
in a distributed processing environment of large volumes of data.
So it is necessary choose two characteristics between strong con-
sistency (C - Consistency), high availability (A - Availability), and
network partition tolerance (P - Network Partition Tolerance).

The key-value model, also known as distributed hash table, is con-
sidered easy to handle in relation to the use of stored data, has high
scalability and easy implementation, since the data is stored and
located by means of keys, using the concept of map or data dictio-
nary, where these keys work as an identifier for different values. In
this model, queries and insertions are performed over the key, and
there is no specific size for the data, i.e. the data can have random
size without having a specific value and can be represented by any
type of data [6]]. The following items are examples of DB systems
that use this model: Redis, Riak, DynamoDB, Azure Table Storage,
BerkeleyDB and Chordless.

In the present paper, DynamoDB was selected as the database sys-
tem that implements the key-value model. DynamoDB is main-
tained by Amazon and was initially created to meet the needs of
e-commerce operations, such as the shopping cart. The system has
eventual consistency, but high availability, and high storage and re-
trieval power for large amounts of data. There is no need to set up
clusters and it has low administration costs, as well as a flexible
data model without a predefined structure.

In relationship to the document-oriented model, data is stored
through a collection of documents, whose data can be located by
its unique identifier or by any record that is in the document. A
document has a unique identifier object and a set of fields that can
be lists, strings, or nested documents [6]. In this paper, MongoDB
was selected as the document-oriented database system. MongoDB
is an open-source database, written in C++, and has a language that
makes it easy to manipulate the data. MongoDB stores collections
of documents, so it doesn’t require a rigid schema, unlike relational
databases. Documents in MongoDB are JSON objects and docu-
ments are stored on disk in the serialized Binary JSON (BSON)
format, which is a binary representation of a JSON document.

In relation to the column-oriented model, data is stored in columns
of a table, but unlike relational databases, these tables do not use
the concept of relationship and are stored separately. This type of
database uses the column family concept, which is used to group

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

columns that store data of the same nature. This model was created
with the intention of storing and processing large amounts of data
distributed over several machines.

Shehata and Abed [[7]] state that column-oriented NoSQL databases
are indicated when the data set is unstructured or semi-structured,
and consistency can be relaxed for a while in situations where per-
formance must be prioritized. In the column-oriented model, a large
number of user requests can be answered with eventual consis-
tency, unlike the relational DB, which focuses on having strong
consistency, but at the cost of scale, and performance speed. Com-
bining the benefits of SQL with NoSQL, referred to as NewSQL,
has been researched in recent years, as exemplified by Pavlo and
Aslett [8]. In that paper, Cassandra was selected as the column-
oriented database system. Cassandra is an open-source database,
developed in Java, created by Facebook, but currently maintained
by the Apache Software Foundation. Cassandra consists of a dis-
tributed database for storing large amounts of data and is based on
Google’s BigTable model and Amazon’s DynamoDB storage sys-
tem.

The graph-oriented DB can be seen as a set of labeled and directed
graphs, allowing the storage of entities and the relationships that
occur between these entities, providing performance gains and bet-
ter query response times. The data to be stored in a graph-oriented
DB must present three basic elements: the vertices of the graphs
(nodes) in which the data are stored; the edges (relationships) that
represent the type of association existing between these nodes; and
the attributes, which are the properties of the nodes and relation-
ships. For Angles and Gutierrez [9]] this data model became pop-
ular in the 1980s and early 1990s, and its influence gradually de-
clined with the emergence of other DB models, however the need to
manage information of a graphical nature, re-established the rele-
vance of the graph-oriented model. The data used in this work does
not follow graph structures or generalizations of them, and the data
manipulation is not expressed by graph-oriented operations, so this
model is not suitable for this study.

1.2 Related research papers

Some relevant studies regarding comparative performance analysis
of NoSQL databases served as reference for the present work, such
as: Davoudian et al. [[10], Lira et al. [[L1]], Soares et al. [12], Barros
et al. [13]], Kuhlenkamp and Ross [[14], Manoharan [15]], Abramova
et al. [16], Carniel et al. [17], Loscio et al. [18]], and Hecht and
Jablonski [19].

The Davoudian’s et al. [10] work’s addresses the challenges of stor-
age and query demands in the Big Data landscape, revealing several
shortcomings of traditional relational DB systems. The authors aim
to explain design decisions about NoSQL storage. The four prin-
ciples of distributed database systems are addressed: data model,
consistency model, data partitioning, and CAP theorem. Through
academic and industrial NoSQL technologies, each principle is ex-
plained as to available features, strengths, and drawbacks.

Lira et al. [11] performed a comparative analysis between non-
relational (NoSQL) and multidimensional (Data Warehouse) data
models to verify which one was better suited to processing large
volumes of retail sales data. For the DW, MySQL was used for
the data storage, Pentaho for the ETL process - Extract, Trans-
form and Load (ETL), and Saiku as Online Analytical Process-
ing (OLAP) tool. Regarding NoSQL, HBase was used, a column-
oriented DB, with Hadoop as the distributed system, and Hive was
used to perform the queries. The results showed that the multidi-
mensional model obtained a superior performance in relation to the
non-relational model, that is, the DW used only 36% of the time

10

spent by HBase to perform the same queries with the market data.
The authors concluded that DW was superior because a large num-
ber of complex queries are required for data analysis, which is an
inherent characteristic of multidimensional models.

The work of Soares and Matos [12] analyzed the performance of
three non-relational DBMSs in the context of the Internet of Things
(IoT), being two document-oriented (MongoDB and Couchbase)
and one key-value oriented (Redis). These DBMSs used a real [oT
database - Air Quality Data Set, made available in the UCI Machine
Learning Repository. The tests evaluated response time, through-
put, error rate, and consumption of CPU, RAM, and storage. The
results showed that each DBMS has characteristics that make it rec-
ommended for a specific scenario, depending on the application’s
objective, reaching the following conclusions: MongoDB is rec-
ommended for applications with reliability and disk storage con-
straints, Couchbase is recommended for applications that demand
high speed, and Redis for applications in which there are process-
ing consumption constraints.

Barros et al. [13|] evaluated the performance of different stor-
age strategies in three DBs belonging to two different paradigms:
MySQL - representative of Relational DBs; Cassandra and Mon-
goDB - representative of NoSQL DBs. In this study, genomic data
(DNA sequences) were used, so that the sequencing of a single or-
ganism can generate files with gigabytes of information. The results
showed that relational DBs have limitations when inserted into an
environment with large amounts of data.

Kuhlenkamp er al. [14] warns that investigations of distributed
database system performance depend on reliable experimental data,
so they made use of benchmarks. The authors reproduced bench-
mark experiments that were conducted by previous research in or-
der to verify the performance and scalability of the NoSQL systems
HBase and Cassandra, then compare the results by measuring the
speed of scaling and the impact on performance during scaling.

Li and Manoharan [15] investigated the performance of NoSQL
and SQL DBs with respect to key-value storage. Read, write, in-
stantiate, and delete operations of the following DBs were com-
pared: MongoDB, RavenDB, CouchDB, Cassandra, Hypertable,
Couchbase, Microsoft SQL Server Express. The results showed
that not all NoSQL DBs perform better than SQL DBs, and in some
cases were worse. Furthermore, the performance varies with each
operation for each DB, i.e. some are slow to instantiate but fast to
read, write and delete, while others are faster in other instantiate
but slow at the other operations.

The work by Abramova and Bernardino [[16] conclude that rela-
tional DBs are inefficient at storing and processing data in the con-
text of Big Data. The authors compared and evaluated two NoSQL
DBs: MongoDB and Cassandra.

Carniel et al. [17]] investigated and compared DW implementa-
tions using relational and NoSQL DBs. Query processing response
times, memory usage and CPU usage were evaluated considering
Star Schema Benchmark queries. As a result, the column-oriented
model, implemented by FastBit software, showed time reduction
gains of 25.4% to 99.8% compared to the other NoSQL and rela-
tional models in query processing.

Lscio et al. [18] contemplated the requirements of managing large
volumes of unstructured and semi-structured data. The paper pre-
sented the fundamentals of non-relational DB technology, empha-
sizing its main characteristics and differentials, as well as its appli-
cation areas. The authors performed a case study using the Mon-
goDB non-relational DB, and developed an application in PHP fo-
cused on using MongoDB’s features, such as creating a database,
inserting, removing, updating, and viewing data.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

Hecht and Jablonski [19] evaluated NoSQL DB techniques consid-
ering applicability for certain requirements. The DBs were com-
pared by their data models, query possibilities, concurrency con-
trols, partitioning, and replication.

The differential of the present study in relation to the related works
cited here refers to the fact that it performs a comparative analysis
of the performance of three NoSQL DBs - column-oriented, key-
value, and document-oriented, in the scenario of large volumes of
open educational data, more specifically data from the Brazilian
school census. It is relevant mentioning that several works already
make comparisons between relational and non-relational data mod-
els, therefore, in this work the scope of relational DBs was not con-
templated.

2. METHODOLOGY

The methodology of the work follows the following steps: (I)
choose of the database in the context of large volumes of data;
(II) pre-processing the data with data cleaning, standardization, and
integration; (III) selection of the non-relational data models; (IV)
configurations of the NoSQL database systems; (V) executions of
the operations of loads/inserts, removals, queries and updates in
each NoSQL database.

The database used in the experiments refers to the school census,
which brings information about basic education - early childhood
education, elementary school, high school, and youth and adult ed-
ucation. The school census consists of a nationwide survey of data
on students, classes, teachers, and public and private schools car-
ried out every year and coordinated by INEP, an agency linked to
the Ministry of Education.

To clean the data, it was necessary to implement a script in PHP
language, whose goal is to go through all instances of the .CSV
(Comma Separated Values) file, which contains the school census
2014 data, in order to perform the automatic selection of attributes.
The school census database is divided into: teacher, student (enti-
tled “enrollment”), and school. For the experiments performed in
this work, the teacher and student databases of the northern region
were considered, as well as the complete school database, i.e., all
five regions of Brazil. Table [I] presents an overview of the school
census database.

The school census database referring to schools (approximate size
of 87 MB) has 143 attributes, however, after cleaning, 136 at-
tributes were selected. The school census database for teachers in
the northern region (size approximately 336 MB) originally has
126 attributes, 108 of which were selected in this study. Finally,
the school census database referring to the students of the northern
region (the size of approximately 1.13 GB) has 85 attributes, and
64 attributes were used after the pre-processing stage.

In this step, modifications were also made in the attributes whose
instances had empty content, and the null value was replaced by a
certain chosen value. The following pattern was adopted: when the
empty attribute is of type string, it assumes the value “undefined”,
and when the empty attribute is of type integer, it was replaced by
“100”. The value “100” was chosen because there was no conflict
with other integer values present in the other attributes, so it was
chosen a value not used anywhere in the database, in order not to
cause inconsistencies. This replacement of the null data was per-
formed because the DynamoDB database does not allow the inser-
tion of empty values.

To clean the data it was necessary to perform data integration. Due
to the huge size of the teacher and enrollment files, it was necessary
to divide them into several smaller files to run the PHP script devel-
oped to modify the null values. After cleaning the data, it was nec-

11

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

Table 1. Data regarding the number of instances and attributes of the School Census.

Data Base Number of Instances Number of Attributes | Number of selected Attributes
School 276.331 143 136
Midwestern Teacher 892.550

North Teacher 1.115.009

Northeast Teacher 3.086.414 126 108
Southeast Teacher 4.832.921

South Teacher 1.841.301

Central West Registration | 4.125.612

North Registration 6.000.886

Northeast Registration 17.146.344 85 64
South Registration 7.310.357

Southeast Registration 21.481.476

essary to regroup each of these previously split tables. This process
occurred in the tables Northeast teacher, Southeast teacher, North
registration, Northeast registration, South registration, and South-
east registration. Figure[T]shows part of the script implemented for
cleaning the data.

<?php
ini_set('memory_limit’, -1");
set_time_limit(0);
$infos = array();
$file_name = "../Sheets/North_Teachers.csv";
if(($handle = fopen($file_name, "r")) == FALSE){
while (($data = fgetcsv($handle, 0, "|")) !== FALSE){
for ($i=0; $i <= 125; $i++){
if ($data[28] == ""){
$data[28] = "Undefined";
}

[.]
if ($data[$i] == ""){

$data[$i] = "100";
}

}
$infos[] = $data[1].";".$data[2].[...].";".$data[114];
}close($handle);
}
$fp = fopen('North_Teachers New.csv','w');
foreach($infos as $info){
fputcsv($fp, array($info), ;. ');

}
fclose($fp);

Fig. 1. Part of the data pre-processing script.

For the execution of the experiments, three infrastructures were
defined, for each of the non-relational data models addressed in
this work, which are: key-value oriented (DynamoDB), document-
oriented (MongoDB), and column-oriented (Cassandra). In the case
of DynamoDB the cloud computing infrastructure offered by Ama-
zon was used. Initially, the local version provided by Amazon was
used, but this version is very limited and does not provide good
performance compared to the cloud environment. For this reason,
it was decided to use DynamoDB in Amazon’s cloud environment
since it is possible to modify the machine’s resources. The Mon-
goDB test environment was created on a Notebook with 4 GB of
memory, an Intel i5 processor, and 120 GB SSD HDD. Figure
illustrates the DynamoDB and MongoDB environment.

DynamoDB

School Teacher School = Teacher
276.331 1.115.009 276.331 1.115.009

Student
6.000.886

Fig. 2. DynamoDB and MongoDB infrastructures used in this work.

Figure [3] shows part of the implemented code for creating the
table and inserting it into DynamoDB, respectively. When cre-
ating the table in DynamoDB, the following parameters were
used: TableName, AttributeDefinitions, KeySchema, and Provi-
sionedThroughput. To insert the records, the putItem command
was used, passing a data dictionary as a parameter.

In the case of the test environment of the Cassandra DB it was
used the notebook with the specifications reported above, plus four
machines instantiated on Amazon - Amazon Web Services (AWS)
cluster. Three machines called “t2.medium 2 vCPUs” correspond
to the nodes of the distributed system, and have the following con-
figurations: 2.5 GHz, Intel Xeon Family processor, 4 GB memory,
EBS, 50 GB HD, and Ubuntu Server 14.04 LTS OS (HVM). A
fourth machine, called “t2.large 2 vCPUs”, corresponding to the
Cassandra client application, was also instantiated. The machine
“t2.]arge 2 vCPUs” has the following configurations: 2.4 GHz, Intel
Xeon Family, 8 GB memory, EBS, 50 GB HD, and Ubuntu Server
14.04 LTS (HVM). Figure[illustrates the Cassandra environment.
Each of the chosen NoSQL DBs (DynamoDB, MongoDB and Cas-
sandra) has particular characteristics with respect to the CAP the-
orem, discussed in section [I.I] All three systems were designed
with a focus on scalability, aiming to support large volumes of data,
however, the focus of the Cassandra system is an environment with
high availability and high partitioning tolerance (AP). While Mon-
goDB uses an environment with high consistency and high avail-
ability (CA), compromising on partitioning tolerance. DynamoDB
uses an environment with strong consistency and high partitioning
tolerance (CP).

Table [2| presents the comparison between the chosen NoSQL
databases (DynamoDB, MongoDB and Cassandra), analyzing the
following metrics: installation process, dependency on other pro-
grams, integration with operating systems (OS), database usage,
integration with the PHP programming language and file size of
each DB.

12

<?php <?php
$dynamodb->createTable(array(
"TableName' == 'school’,
"AttributeDefinitions’ => array(
array(
'AttributeName' == "id',
'AttributeType' => "N’

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

if (($handle = fopen($file_name, "r")) '== FALSE){
while (($data = fgetcsv($handle, 0, ;")) '== FALSE){
$count++;

$result = $dynamodb->putitem(array(

'Item’ => array(

'id’ => array('s' => "§count"),
'PK_COD_ENTIDADE' => array('s' => $data[0]),
'NO_ENTIDADE' => array('S' => utf8_encode("$data[1]")).

)) ‘TableName' => 'escola’,
'KeySchema' == array(
array(
'AttributeName' == "id’,
'KeyType' =>'HASH'
)
).

'ProvisionedThroughput’ => array(
'ReadCapacityUnits’ =>5,
'WriteCapacityUnits' == 5

[-]
"ID_PROPOSAL_PEDAG_ALTERNATION" => array('s’' => $data[135])

)

)
))
}
@ !
(b)
Fig. 3. (a) Part of the code for creating the table in DynamoDB. (b) Part of the data insertion code in DynamoDB.
Table 2. Comparison of the analyzed NoSQL databases.
Cassandra DynamoDB MongoDB
Install Command line Install via setup Install via setup
Compatibility with OS I\;?I:OW(:S X, Solaris, BSD, Linux, OS X, Windows Hosted in Windows and Linux
Metrics Usability High High High
Dependency of other software Have Not Have Have
Setup of the variables environment Have Have Not Have
Integration with PHP language Yes Yes Yes
Availability of tutorials for the developers | Yes Yes Yes

In the installation process the availability of tutorials, ease of instal-
lation, dependency on other programs or environment variable set-
tings, and compatibility between operating systems are analyzed.
This analysis aims to provide basic, yet fundamental information
about the three databases investigated in this work.

3. RESULTS AND DISCUSSION

The experiments of the present work began with the creation and
loading of three School Census databases into the non-relational
DB systems DynamoDB, Cassandra, and MongoDB. The three
databases are: (I) students in the northern region, with 6,000,886
records; (II) teachers in the northern region, with 1,115,009
records; (III) schools in the 5 regions of Brazil, with 276,331
records.

These databases were chosen because they have different amounts
of records and attributes, approximately 6 million, 1 million, and
276,000 records, which favored a differentiated analysis regard-
ing the behavior of the three non-relational databases selected.
Databases larger than 6 million records were not used, since the
data insertion time in DynamoDB was difficult to perform exper-
iments with this expressive volume of data. For example, for the
Northeastern students’ database, which has approximately 17 mil-
lion records, and the Southeastern students’ database, which has
approximately 21 million records, it would take several days just to
enter the data into DynamoDB. Even with the increased machine

computational resources, and increasing the writing capacity of 100
records per second, there was no way to reverse this scenario, since
the insertion time did not present a favorable situation for this DB.
Continuing the experiments, comparisons were made regarding the
data creation and loading operations on the DBs. In this step a quan-
titative analysis was elaborated, comparing the processing time
necessary for the creation and insertion of data in the “student”,
“teacher” and “school” data bases. Aiming at a more specific anal-
ysis, the insertions were done three times, having their times veri-
fied.

After this step, non-trivial queries were performed, seeking knowl-
edge discovery in the non-relational databases. The tests used in
order to compare the 3 data models refer to the time of: (I) Exe-
cutions of seventeen queries on the school base, such as: “School
type (public) x Locality (urban) x Basic Structure (Sanitation: wa-
ter and sewage; Electricity, Garbage disposal, etc.)”; “School type
(public) x Locality (urban) x Accessibility (disabilities)”. (II) Ex-
ecutions of six queries on the teacher base, such as: “Teacher’s
Schooling x Type of Teaching School (public) x Locality of Teach-
ing School (urban)”; “Teacher’s Disability(ies) x Type of Teaching
School (public) x Locality of Teaching School (urban)”. (IIT) Exe-
cutions of four queries in the student base, such as: “Teaching Stage
of Enrollment x School of Attachment (public) x Locality (urban)
x Gender/Color/Race”; “Teaching Stage of Enrollment x School of
Attachment (public) x Locality (urban) x Age”.

13

Cassandra
"t2.medium 2

Cassandra
"t2.medium 2
vCPUs"

School: 276.331
Teacher: 1.115.009
Student: 6.000.886

Cluster Amazon
(AWS)

Cassandra
"t2.medium 2

Cassandra
"t2.medium 2

Teacher

Teacher

Fig. 4. Cassandra infrastructure used in this work.

Finally, the performance regarding the updating and deletion of
data in the student, teacher, and school bases is evaluated, in or-
der to diagnose which of the databases analyzed has better perfor-
mance and shorter times for these operations. The following are
examples of changes and deletions made in the teacher base: mod-
ify the teacher’s role considering “Teacher’s schooling x Type of
hiring x Race x Gender x Course status”. Examples of changes and
removals made in the school base: modify the information on read-
ing room, library, broadband internet access, use of indigenous ma-
terials, considering “School type x School locality x Computer lab
x cultural diversity”. Examples of changes and removals made to
the student base: modify information about school transportation,
considering “Gender/Color/Race x Pupil with disabilities x Public
authority responsible for school transportation”.

3.1 Inserts in DynamoDB, MongoDB, and Cassandra

Figure[5]shows the times obtained by the three NoSQL databases to
enter data for schools, teachers and students. Database MongoDB
had the best average insertion time, being much faster compared to
the others.

It is possible to see in Figure[3] the time of insertion of the student
database by DynamoDB is not shown in the image, since the exper-
iment had to be interrupted, as it had been running for more than
2 days. Therefore, the results presented below are disregarding the
student database. Figure[g]presents an overview of the longest times
obtained when executing the CRUD operations of the school and
teacher databases, through the DynamoDB, MongoDB and Cas-
sandra databases.

MongoDB’s average insertion time was “S minutes and 56 sec-
onds”, while Cassandra took “1 hour, 50 minutes and 29 seconds”
to insert the data. DynamoDB took a long time to perform the in-
sertions, with the worst average time: “1 day, 11 hours, 1 minute
and 40 seconds”. When comparing Cassandra and DynamoDB, it
is possible to see that Cassandra had a much faster insertion time,
but could not match MongoDB’s time, which was much faster for
both databases. Looking at the data insertion by Cassandra and

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

MongoDB, it can be seen that Cassandra took about 18.6 times
the average MongoDB insertion time. Making the same compari-
son between MongoDB and DynamoDB, it can be seen that this
time increases to about 353.81 times the average MongoDB inser-
tion time. When comparing Cassandra and DynamoDB, it can be
seen that Cassandra performed better than DynamoDB, being 19
times faster than DynamoDB.

3.2 Querys in DynamoDB, MongoDB, and Cassandra

According to Figure [f] it can be seen that the MongoDB database
had the best query performance, with an average time of “29 sec-
onds” to perform the queries. Cassandra had an average time of
“2 minutes and 52 seconds” to perform the same query, while Dy-
namoDB had the worst time, performing the query with an aver-
age time of “20 minutes and 29 seconds”. When comparing the
time of the MongoDB query with the Cassandra queries it can be
seen that MongoDB was about 6 times faster than Cassandra. Do-
ing the same comparison between MongoDB and DynamoDB it
was found that MongoDB was about 43.5 times faster. Doing the
same comparison between Cassandra and DynamoDB it was found
that Cassandra was about 7.1 times faster than DynamoDB. The
times presented refer to one of the queries performed on the teacher
database, obtaining the schooling of the teachers who teach in pub-
lic schools in the urban region. The result of this query returned
758,926 records, showing that the vast majority of teachers who
teach in public schools have a college degree, which is expected.

3.3 Updates in DynamoDB, MongoDB, and Cassandra

According to Figure[6] analyzing the changes made to the faculty
database, it can be seen that the MongoDB database showed the
best update time. The change performed was “Teacher’s Schooling
versus Type of Hiring versus Race versus Gender”. Out of 276,000
records, 85,844 records were modified. MongoDB performed these
changes in approximately 13 seconds, Cassandra had an update
time of “4 minutes and 56 seconds”, and DynamoDB had an up-
date time of “2 hours, 18 minutes and 7 seconds”. When compar-
ing the update time of MongoDB with Cassandra it can be seen that
MongoDB performed the updates about 22.4 times faster than Cas-
sandra. Doing the same comparison between MongoDB and Dy-
namoDB one can see that MongoDB was about 627.9 times faster
than DynamoDB. When comparing Cassandra and DynamoDB, it
can be seen that Cassandra was about 28 times faster than Dy-
namoDB.

3.4 Delete in DynamoDB, MongoDB, and Cassandra

According to Figure [6] analyzing the removal performed on the
faculty database, the database that presented the best removal time
was MongoDB. MongoDB showed a removal time of approxi-
mately 8 seconds, Cassandra showed the second-best removal time
where the removal took “3 minutes and 10 seconds”, while for Dy-
namoDB the removal time was “2 hours, 18 minutes and 7 sec-
onds”. When comparing the execution time of MongoDB with Cas-
sandra it can be seen that MongoDB was about 24.3 times faster
than Cassandra. When comparing MongoDB to DynamoDB one
can see that the removal time was about 1,062.4 times faster than
DynamoDB. When comparing Cassandra with DynamoDB it can
be seen that Cassandra showed a removal time about 43.5 times
faster than DynamoDB.

As illustrated in Figure[6] the MongoDB database showed the best
times in the 4 operations in which this DB was evaluated, show-
ing better performance than the others. The DynamoDB database

14

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

Average Insertion Time

10000,00

10 h 50 min 44 5

1000,00 6 h 08 min 28 5

1 h 50 min 29 s
100,00

12 min 40 5

Time (base Logaritmica)

10,00

1,00
Cassandra

m 5chool

Dynamo DB

1dia11 h01min40s

22 min 44 s

S5min56s

imin 44 s

MongoDE

m Teacher ®5Student

Fig. 5. DynamoDB, Cassandra and MongoDB performance: insertion times of the school, teacher and student databases.

General Analysis of the Greatest Times

10000,00
1dia 11h 0Ll min 405
__ 1000,00
8
E 1 h50min 295
En 100,00
o
]
a
g 1000 5 min 56 5
w
£
l_
1,00 2min52s
Create [Insert Read
0,10

29s

2h 18 min 07 5 2h 18 min 07 5

4 min 56 5

Fmin 105

Update Delete
13s
Bs

W Cassandra S DynamoDE B MongoDB

Fig. 6. DynamoDB, Cassandra and MongoDB performance: longer insertion times, queries, updates and deletes.

showed the worst performance in all operations evaluated, not per-
forming well with the established infrastructure and the School
Census data. In the case of the Cassandra database, it was always
in second place, i.e., it did not show time as bad as DynamoDB,
but it also did not outperform MongoDB, which was very fast in
performing CRUD (Create, Read, Update and Delete) operations.

You can see that database insertion was the most critical opera-
tion for DynamoDB, as it had the worst time. It is also worth not-
ing that insertion was the most critical operation for all databases,
however, it should be taken into consideration, in the case of Cas-
sandra and DynamoDB, the network latency, because there was a
very high discrepancy between the minimum and maximum value
in the insertion time for these DBs. In the Cassandra case, the inser-

15

tion of the student database had the following results: lowest time
corresponding to “4 hours, 31 minutes and 32 seconds” and highest
time corresponding to “8 hours, 33 minutes and 13 seconds”. In the
case of DynamoDB, this can be verified when inserting the school’s
database, which had the following results: the shortest time corre-
sponding to “10 hours and 1 minute” and the longest corresponding
to “11 hours, 30 minutes and 18 seconds”.

Although, DynamoDB showed the worst performance, the key-
value oriented data model should not be considered the worst
model, after all, only one DB system was evaluated, but there are
several options in the free software community. The best thing to
do would be to perform the analysis on other databases that use
this model, in order to diagnose if the low performance in insert,
query, update and remove operations is in fact related to the data
model or the tool analyzed. Table [3] shows how many more times,
approximately, it took the Cassandra and DynamoDB databases to
perform the same operation as MongoDB. Figure [7]illustrates the
overview of the times obtained by the insert, query, update and re-
move operations, which proves that MongoDB was more efficient,
presenting the shortest times in the 4 operations, followed by the
Cassandra DB , and finally, DynamoDB that obtained the longest
times, presenting the lowest performance.

Table 3. Comparison with MongoDB.

Cassandra | DynamoDB

Insert/Load | 18 354

Query 6 43

Update 22 628

Delete 24 1.062

=@=_Cassandra DynamoDB MongoDB
Create/Insert
Delete Read

Update

Fig. 7. Overview of the results about the experiment.

4. CONCLUSION

The database of the document-oriented model, MongoDB, pre-
sented the best results in several scenarios analyzed in this work
through CRUD operations. In the inserts and queries, this database
got the best times, as well as in the removals and changes of

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

records, so this databse presented a good performance, superior to
the others.

According to the analyses performed, the column-oriented database
Cassandra also showed good results, but it was not superior to the
results obtained by MongoDB. The key-value oriented database,
DynamoDB, showed the lowest performance among the three
databases analyzed, being the least suitable in this context of the
infrastructure adopted in the work and with open data from the
school census. MongoDB was 18.6 times more efficient in insertion
if compared to the second-best DB (Cassandra), presenting results
with 13.5 times more efficient in querying, 22.4 times more effi-
cient in updating, and 24.3 times more efficient in removing. There-
fore, among the databases analyzed in this work, MongoDB was
the best suited when it comes to storing and manipulating school
census data.

As future work, it is suggested to analyze the impact of using more
nodes in the Cassandra clusters, in order to verify what the benefits
will be for this database, thus evaluating its horizontal scalability, as
well as the creation of clusters for DynamoDB and MongoDB. It is
also expected to evaluate other databases embedded in the column-
oriented data model - such as HBase, key-value oriented (such as
Redis and Riak), and document-oriented - such as CouchDB and
RavenDB.

5. REFERENCES

[1] Harish Kumbhar, Edberg Kinny, Kevin Fernandes, and Shir-
shendu Maitra. Article: Benefits of nosql databases. IJCA
Proceedings on Leveraging Information Technology for Inter-
Sectoral Research, ICAIM 2017(1):11-13, February 2019.
Full text available.

[2] Pramod J. Sadalage and Martin Fowler. NoSQL Distilled: A
Brief Guide to the Emerging World of Polyglot Persistence.
Addison-Wesley Professional, 1st edition, 2012.

[3] Gourav Bathla, Rinkle Rani, and Himanshu Aggarwal. Com-
parative study of nosql databases for big data storage. Inter-
national Journal of Engineering & Technology, 7(2.6):83-87,
2018.

[4] Fernando C. Sossai, Viviane Grimm, and Carla C. Loureiro.
Highlights on educational technologies and policies in brazil:
an analysis of the works published by anped and rbpae (2000-
2013) (translated from portuguese). RELATEC: Latino Amer-
ica Magazine of Educative Technology, 15(3):27-37, 2016.

[5] E. Brewer. Cap twelve years later: How the “rules” have
changed. Computer, 45(2):23-29, 2012.

[6] Jing Han, Haihong E, Guan Le, and Jian Du. Survey on nosql
database. In 2011 6th International Conference on Pervasive
Computing and Applications, pages 363-366, 2011.

[7] Naglaa Saeed Shehata and Amira Hassan Abed. Big data with
column oriented nosql database to overcome the drawbacks of
relational databases. International Journal of Advanced Net-
working and Applications - IJANA, 11(05):4423-4428, 2020.

[8] Andrew Pavlo and Matthew Aslett. What’s really new with
newsql? SIGMOD Rec., 45(2):4555, September 2016.

[9] Renzo Angles and Claudio Gutierrez. Survey of graph
database models. ACM Comput. Surv., 40(1), February 2008.

[10] Ali Davoudian, Liu Chen, and Mengchi Liu. A survey on
nosql stores. ACM Comput. Surv., 51(2), April 2018.

[11] Maria Camila S. De Lira, Ademir B. Santos Neto, Maria
C. Moraes Batista, Roberta Macedo M. Gouveia, and Tiago
Alessandro E. Ferreira. Multidimensional and non-relational

16

[12]

(13]

(14]

[15]

(16]

(17]

(18]

[19]

data models: A comparison with a big volume of data. In-
ternational Journal of Computer Applications, 175(36):1-7,
Dec 2020.

Allexandre S. S. Soares and Pablo F. Matos. A comparative
analysis between nosql database management systems in the
context of internet of things. (translated from portuguese). In
Brazilian Symposium on Databases - SBBD, pages 306-311,
2017.

Juccelino Barros, Gustavo Callou, Glauco Gonalves, Victor
Wanderley, and Henrique Casteletti. Performance analysis
of relational and non-relational databases in genomic data
(translated from portuguese). Theoretical and Applied Com-
puter Magazine, 24(2):11-27, 2017.

Jorn Kuhlenkamp, Markus Klems, and Oliver Ross. Bench-
marking scalability and elasticity of distributed database sys-
tems. Proc. VLDB Endow., 7(12):12191230, August 2014.

Y. Li and S. Manoharan. A performance comparison of sql
and nosql databases. In 2013 IEEE Pacific Rim Confer-
ence on Communications, Computers and Signal Processing
(PACRIM), pages 15-19, 2013.

Veronika Abramova and Jorge Bernardino. Nosql databases:
Mongodb vs cassandra. In Proceedings of the International
C* Conference on Computer Science and Software Engineer-
ing, C3S2E ’13, page 1422, New York, NY, USA, 2013. As-
sociation for Computing Machinery.

Anderson Chaves Carniel, Aried de Aguiar S4,
Marcela Xavier Ribeiro, Renato Bueno, Cristina Dutra
de Aguiar Ciferri, and Ricardo Rodrigues Ciferri. Exper-
imental analysis of relational databases and nosql in data
warehouse queries processing (translated from portuguese).
In Brazilian Symposium on Databases - SBBD, pages
113-120, 2012.

Bernadette Farias Lscio, Hlio R. Oliveira de Oliveira, and
Jonas C. de S. Pontes. Nosql in the development of collab-
orative web applications (translated from portuguese). VIII
Brazilian Symposium on Collaborative Systems, 10(1):11,
2011.

R. Hecht and S. Jablonski. Nosql evaluation: A use case ori-
ented survey. In 2011 International Conference on Cloud and
Service Computing, pages 336-341, 2011.

International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.29, April 2021

17

	Introduction
	Non-Relational Database Systems
	Related research papers

	Methodology
	Results and Discussion
	Inserts in DynamoDB, MongoDB, and Cassandra
	Querys in DynamoDB, MongoDB, and Cassandra
	Updates in DynamoDB, MongoDB, and Cassandra
	Delete in DynamoDB, MongoDB, and Cassandra

	Conclusion
	References

