Abstract

The facial recognition has been a problem worked on around the world for many persons, the problem has emerged in multiple fields and sciences, especially in computer science and other fields that are very interested in this technology are robotic, criminalist etc. Unfortunately, many reported face recognition techniques rely on the size and representative of training set such as e-passport, law enforcement and id- card identification, and most of them will suffer serious performance drop if only one training sample per person is available to the systems [1]. In a face image, only a part of face is changed due to pose, illumination and other source of changes. In this paper, a novel face recognition detection approach known as Gabor wavelet based PCA approach is presented based on fusing global and local features of image. To extract global and local features, Gabor wavelet filter are applied on the whole image and non-overlapping sub-images with equal size. To reduce the dimension of new fused feature vector and to better characterize the similarity between each gallery face and the probe image set, Principal Component Analysis (PCA) is employed. And finally, measure the similarity between the images by using the Euclidean distance as classifier. The Experimental results shows that proposed
Face Recognition and Detection through Similarity Measurements

technique improves the efficiency of face recognition under varying illumination, expression and
variation in poses of face images by using standard databases when compared to traditional
PCA and Conventional method such as global Gabor faces recognition. In this paper, the
proposed algorithm is tested on the public and largely used ORL database.

References

1. Xiaoyang Tana, Songcan Chen, Zhi-Hua Zhou, Fuyan Zhang, " Face Recognition from a
 Single Image per Person: A survey", Chinese Academy of Sciences, Beijing 100080, Pattern
3. M.A.Grudin, "On internal representations in face recognition systems," Pattern
4. B.Heisele, P. Ho, J. Wu, and T. Poggio,"Face recognition: component-based versus
5. A.M. Martinez, Recognizing imprecisely localized, partially occluded, and expression
6. A.M. Martinez, Recognizing expression variant faces from a single sample image per
 class, Proceedings of IEEE Computer Vision and Pattern Recognition (CVPR), 2003,
 pp.353–358.
7. S. Lawrence, C.L. Giles, A. Tsoi, A. Back, Face recognition: a convolution neural-network
 variant faces from single training image per person with SOM and soft kNN ensemble, IEEE
9. M. Zhou and H.Wei, “Face verification using Gabor wavelets and Adaboost”.
10. L. Shen and L. Bai,"Gabor feature based face recognition using kernel methods".
11. P. Sankaran and K.V. Asari, “A multi-view approach on modular PCA for illumination and
 pose invariant face recognition”.
12. John Woodward, Christopher Horn, Julius Gatune, and Aryn Thomas,“Biometrics :A
15. B.S. Manjunath, R. Chellappa, C.V.D. Malsburg, A feature based approach to face
 recognition, in: Proceedings, IEEE Conference on Computer Vision and Pattern Recognition,
16. Stelvio Cimato, Marco Gamassi, Vincenzo Piuri, Daniele Sana, Roberto Sassi, and
 Fabio Scotti," Personal identification and verification using multimodal biometric data",IEEE
 International Conference on Computational Intelligence for Homeland Security and Personal
 Safety Alexandria, VA, USA, 16-17 October 2006
Face Recognition and Detection through Similarity Measurements

Face Recognition and Detection through Similarity Measurements

2003. doi: 10.1109/TPAMI.2003.1201822

72. Cascade Classification — OpenCV 2.4.13.3 documentation
http://docs.opencv.org/modules/objdetect/doc/cascade-classification.html

73. DATABASES http://www.face-rec.org/databases

Index Terms

Computer Science Image Processing

Keywords

Face recognition, Face detection, PCA, Eigenfaces, Gabor Wavelet, Gabor faces, Dimensionality reduction.