
International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

38

Evaluation of Different Virtual Machine Scheduling

Algorithms in Cloud Computing Environment

Oladoja I.P.
Department of Computer

Science, The Federal
University of Technology Akure,

Nigeria

Adewale O.S.
Department of Computer

Science, The Federal
University of Technology Akure,

Nigeria

Oluwadare S.A.
Department of Computer

Science, The Federal
University of Technology Akure,

Nigeria

Oyekanmi E.O.
Department of Mathematical Science,

Achievers University Owo,
Nigeria

ABSTRACT

Resource Scheduling is a complicated task in cloud

computing, as required resources are limited and the number

of users increase day by day. Thus, it is important to manage

these resources in a way that they are properly utilized and the

waiting time is reduced. Virtual machine (VM) scheduling

algorithms are used to schedule the VM requests to the

Physical Machines (PM) of a Data Center to fulfill the

requirements of the requested resources. Herein, the

performance efficiencies of four VM scheduling algorithms,

namely: First-Come First-Serve (FCFS); Resource aware

scheduling algorithm (RASA); Improved Max-Min algorithm;

and Median-Based improved Max-Min were evaluated and

compared using CloudSim. The Makespan, Resource

utilization and Throughput calculations were used to

determine the minimum makespan, maximum resource

utilization, and throughput for each of the VM scheduling

algorithms. The four VM scheduling algorithms were

implemented, the optimization metrics were calculated, and

the best algorithm was determined using the three

optimization criteria. The study showed that the Median-

Based improved Max-min algorithm had minimum makespan

(14units time) and maximum resource utilization (2.1607) and

throughput (0.714).

General Terms

Scheduling algorithm, cloud simulation, cloud computing

Keywords

Cloud simulation; algorithms; virtual machine scheduling;

cloud computing

1. INTRODUCTION
Cloud computing has been coined as an umbrella term to

describe a category of sophisticated on-demand computing

services, initially offered by commercial providers, such as

Amazon, Google, and Microsoft. It denotes a model on which

a computing infrastructure is viewed as a “cloud,” from which

businesses and individuals can access applications from

anywhere in the world on demand [1]. The increase in the

popularity of cloud computing systems that rent computing

resources on-demand, bill on a pay-as-you-go basis, and

multiplex physical infrastructure for many users has been a

dramatic process, occurring in both academics and private

organizations.

Virtualization, is another term for abstraction in computer

science, is it the creation of virtual version of a device or

service, such as, a hardware platform, OS, storage device, or

network resources. It is an art of slicing the IT hardware into

partitions, by implementing virtualization technology or

hypervisors on top of the IT hardware. This converts the

physical infrastructure into virtual servers, virtual storage, and

virtual networks [2]. The usual goal of virtualization is to

centralize administrative tasks, while improving scalability

and workloads. Virtualization allows the user to see the

infrastructure of a network through a process of aggregation.

2. RELATED WORKS
A scheduling parallel job, using migration and consolidation

in cloud based, on modified FCFS scheduling has been

proposed [3]. This is two level scheduling that is based on

foreground VM’s, and background VM’s. The processes in

the Foreground VM’s are scheduled on the basis of First

Come First Serve (FCFS) scheduling, while processes in the

Background VM’s are scheduled on the basis of Shortest Job

(SJF) First scheduling approach. All background VM’s

communicate with one or more foreground VM’s. Any

background VM whose current allocation of process is less

than 96% can accommodate a new process, otherwise it will

not be allowed to accommodate a new process. Migrations are

only performed during scheduling, if certain processors

remain idle for long periods of time. The results show that the

response time can be significantly reduced by their algorithm.

A dynamic VM allocation algorithm that is based on

clustering has been proposed [4]. The study showed an

improved utilization of the resources, a reduction in the data

center debts, and a better performance of the algorithm, when

compared with load balancing.

Psychas and Ghaderi [5] worked on non-preemptive VM

scheduling in the cloud. The problem of scheduling VMs in a

distributed server platform in cloud computing applications

was the focus of study. The VMs arrive dynamically over

time to the system, and require a certain number of resources

(e.g., memory, CPU, etc.) for the duration of their service. In

order to avoid costly preemptions, a non-preemptive

scheduling was proposed, where each VM has to be assigned

to a server which has enough residual capacity to

accommodate it, and once a VM is assigned to a server, its

service cannot be disrupted (preempted). Prior approaches to

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

39

this problem either have high complexity, require

synchronization among the servers, or yield queue

sizes/delays, which are excessively large. Extensive

simulation results, using both synthetic and real traffic traces

were presented to verify the performance of the algorithm.

The evaluation results, using synthetic and real traffic traces

showed that the algorithm outperformed the other methods

when the number of servers or the traffic intensity scales. The

study could not show how to incorporate preemptions

(through proper preemption cost models), or provide deadline

(strict delay) and fairness of task was not guarantee.

Guo et al., [6] worked on optimal scheduling of VMs in

Queueing Cloud Computing Systems with a Heterogeneous

workload. The study focused on the delay-optimal virtual

machine (VM) scheduling problem in cloud computing

systems, which have a constant amount of infrastructure

resources, such as CPU, memory, and storage in the resource

pool. A low-complexity online scheme that combines the

shortest-job-first (SJF) buffering and min–min best fit

(MMBF) scheduling algorithms, i.e., SJF-MMBF, was

proposed to determine the solutions, while another scheme

that combines the SJF buffering and reinforced learning (RL)-

based scheduling algorithms, i.e., SJF-RL, was further

proposed to avoid the potential of job starvation in SJF-

MMBF. The simulation results showed that the SJF-RL

scheme achieved its goal of delay-optimal scheduling of VMs.

This is by providing low delay performance, in terms of

average job completion time, and acceptable throughput

performance, in terms of job hosting rate in a queueing cloud

system. The workloads ranged from light-loaded to heavy-

loaded, and from slightly dynamic to highly dynamic. The

SJF-MMB result showed a sub-delay-optimal in a heavy-

loaded and highly dynamic environment, but it is efficient in

throughput performance in terms of job hosting rate

provisioning. The study did not show the non-preemptive

assumption, and also failed to investigate the efficiency of the

method adopted. They also did not test the convergence rate

of SJF-RL in environments similitude of commercial servers.

 An efficient strategy of VMs scheduling, based on physicals

resources and temperature thresholds, was proposed [7]. The

study focused on the high increase of VM migrations, SLA

violations and energy consumption; thereby proposing two

scheduling algorithms of the VMs of a Data Center in cloud

computing, named SchedCT and SchedCRT. These proposed

approaches were based on thresholds of resources, which are

the most important factor that consumes a high quantity of

energy in a server. The SchedCT was based on dynamic CPU

utilization and temperature thresholds, while the SchedCR

also considers the CPU utilization, Ram capacity and

temperature thresholds. These approaches have efficiently

decreased the energy consumption of the data centers, the

number of VM migrations, and SLA violations, which

ultimately reduced the emission of CO2 gas. The limitations

of the work are that the approach was not applied in a real

cloud computing environment, and other physical resource

thresholds, namely; storage capacity, bandwidth and network

load were not considered. Furthermore, the approach was not

applied to a model of heterogeneous data centers and

migration between VMs servers.

An appraisal of the previous studies showed that the majority

used different algorithms, and there was no consideration for

if the VM is idle or not during the completion time of the

scheduling. Since resources need to be allocated and

scheduled in a way that providers can achieve high resource

utilization, so that users can meet their applications’

performance requirements with minimum makespan, the

present study aimed at the need to maximize the number of

resources, and maximize the throughput of an application.

Thus, the performance efficiencies of four VM scheduling

algorithms, namely: First-Come First-Serve VM; Resource

aware; improved max-min algorithm; and Median-Based

improved Max-Min were evaluated and compared using

CloudSim.

3. VM SCHEDULING
A virtual machine (VM) is a type of computer application that

is used to create a virtual environment. In other word, the

software simulates another environment. The creation of this

virtual environment is referred to as Virtualization. The VM

allocation is a process of creating VM instances on hosts that

match the critical characteristics (storage, memory),

configurations (software environment), and requirements

(availability zone) of the Software as a service (SaaS)

provider. Allocation of application-specific VMs to hosts in a

Cloud-based data center is the responsibility of a VM

Allocation controller component (called

VmAllocationPolicy). By default, VmAllocation Policy

implements a straightforward policy that allocates VMs to the

Host on a First-Come-First-Serve (FCFS) basis. Hardware

requirements, such as the number of processing cores,

memory, and storage, form the basis for such provisioning,

[8].

For each Host component, the allocation of processing cores

to VMs is done based on a host allocation policy. This policy

takes into account several hardware characteristics, such as

number of CPU cores, CPU share, and amount of memory

(physical and secondary) that are allocated to a given VM

instance. Each host component also instantiates a VM

scheduler component, which can either implement the space-

shared or the time-shared policy for allocating cores to VMs,

[9]. Hence, in order to allow simulation of different

provisioning policies under varying levels, CloudSim, which

supports VM provisioning at two levels was used. The first is

at the host level, while the second is at the VM level. At the

host level, it is possible to specify how much of the overall

processing power of each core will be assigned to each VM,

while at the VM level the VM assigns a fixed amount of the

available processing power to the individual application

services (task units) that are hosted within its execution

engine.

Herein, we consider a task unit as a better abstraction of an

application service being hosted in the VM, therefore, one

VM is assigned with a host of one CPU. Therefore, in total,

four hosts are created, but at each level. The CloudSim

implements the space-shared provisioning policies. The

reason for this is that, the virtualization tools that was used in

carry out this study has XEN, which supports both time-

shared policy and space-shared policy, [10]. The algorithm

for space shared is given as follows:

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

40

4. SCHEDULING ALGORITHMS
Scheduling refers to the set of policies for managing the order

of work to be executed by a computing system, while task

scheduling in Cloud data center is a set of instructions and

factors that determines and select the task to be executed on

the available resources between a collection of possible tasks

at a particular time [12]. In Cloud data center, the task

scheduling algorithms are responsible for allocating the tasks

submitted by the users to the available resources. Scheduling

manages the CPU memory, and to achieve maximum resource

utilization, it requires good scheduling policies [13]. The main

advantage of task scheduling algorithm is to achieve a high-

performance computing and the best system throughput.

There are many types of Scheduling, according to different

policies, such as preemptive and non-preemptive scheduling,

static and dynamic scheduling, Immediate and batch

scheduling, centralize and distributed scheduling. VM

scheduling policies like FCFS, RASA, Improved Max-Min

and Median-based improved Max-Min were evaluated in this

study.

4.1. First-Come First-Serve VM Scheduling

Algorithm
The most intuitive and simplest technique is to allow the first

process submitted to run first. In effect, processes are inserted

into the tail of a queue when they are submitted. The next

process is taken from the head of the queue when it finishes

running. The process is allocated to the CPU, which has least

burst time. A scheduler arranges the processes, with the least

burst time at the head of the queue and longest burst time at

the tail of the queue. The running process is then removed

from the queue. The code for FCFS scheduling is simple to

write and understand. It is for parallel processing, and targets

the resource having the least waiting line up time and is

chosen for the received job [14]. The CloudSim toolkit

supports FCFS scheduling plan for interior scheduling tasks.

The limitations of First come first serve is that it is non-

preemptive. The shortest tasks which are based at the back of

the queue must wait for long tasks at the front to complete.

Once the CPU has been allocated to a process, that process

keeps the CPU until that task is finished before it releases the

CPU, either by terminating or by requesting I/O. The FCFS

algorithm is thus particularly troublesome for time-sharing

systems, where it is important that each user get a share of the

CPU at regular intervals. It would be disastrous to allow one

process to keep the CPU for an extended period.

4.2. Resource Aware Scheduling Algorithm

(RASA)
This is a combination of both Max-min and Min-min

algorithms. In RASA, the appraisal of the completion time for

each task on available resources is calculated, after which the

Max-min and Min-min algorithms are applied alternatively, as

shown in Fig 1, thereby making use of the advantage of both

algorithms and avoiding their drawbacks [15]. RASA

executes small tasks to avoid delays of executing large tasks

and also support simultaneous executions of large and small

tasks.

Figure 1: Resource Aware Scheduling Algorithm

4.3. Improved Max-Min Algorithm
Improved Max-min is based on the expected execution time

instead of complete time as a basis for scheduling of task. The

algorithm calculates the expected completion time of the

submitted tasks on each resource and then schedule the task

with the overall maximum expected execution time to a

resource with minimum overall completion time. Finally, the

scheduled task is removed from the task list [16].

1.for all submitted tasks in meta-task; Ti

2.for all resources; Rj

3.Cij = Eij + rj

4.While meta-task is not empty

5.find task Tk costs maximum execution time.

6.assignTkto the resource Rj which gives minimum

completion time.

𝑇 → 𝑆𝑒𝑡 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

 𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑉 ← ∅ 𝑖𝑠 𝑒𝑚𝑝𝑡𝑦 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑎𝑠𝑘𝑠 𝑡𝑖 ∈ 𝑇

 Do Enqueue (Q, T), where Q is the Queue // step 1

 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑡 ← 𝐶 𝑡

 𝑐 𝑡 ← 0

 Enqueue (V, ti) // step 2

 𝐶 𝑡 ← 𝑣, 𝑡𝑖 // 𝑠𝑡𝑒𝑝 3

 Dequeue (v)

 𝑤ℎ𝑖𝑙𝑒 𝑄 ≠ ∅

 𝐸𝑛𝑞𝑢𝑒𝑢𝑒 𝑣, 𝑡𝑖=1

 𝐶 𝑡 ← 𝑣, 𝑡𝑖+1

 Dequeue (v)

 𝑤ℎ𝑖𝑙𝑒 𝑄 = 0

 𝐼𝐹 𝑄 = ∅ //𝑠𝑡𝑒𝑝 4

 Enqueue (Q, T) // 5

 End. [11]

Start

Create different classes of job, C

Assign next job to the belong class

Sort the class tasks based on Max-

weight, Min-Weight of the execution

time interchangeably

//R is the resources

for (i = 0; i<|C|; i++) // |C| is the total

number of classes

 Assign next task in Ci on

𝑚𝑖𝑛

resource

 Remove the task from the

selected class list

 Next class

 end

End

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

41

7.remove Tk from meta-tasks set

8.update rj for selected Rj

9.update Cij for all

4.4 Median-based improved Max-Min

algorithms
The algorithm for improved max-min was modified by

calculating the median of the average value of the completion

time of the resources in each of the datacenter used in this

paper. The minimum out of the two datacenters is calculated

and the corresponding resource (virtual machine) is used to

process the meta-task [11]. The algorithm is written as

follows:

1. Begin

2. Create task-list //set of tasks in FCFS order.

3. for (i=0; i<=|VM|)//|VM| is the number of virtual machine

present in each host

4. assign task to VMi using FCFS

5. remove task from task-list

6. endfor

7. Sort remaining task in ascending order of their execution

time

8. Find median of the sorted tasks based on execution time

9. Assign the task that falls at the median value to the resource

with minimum completion time

10. Remove the task from the task-list

11. Repeat line 7 to 10 while (task-list! = empty)

12. End

5. SIMULATION REPORT
Table 1 shows the output of the simulation of ten (10)

cloudlets in FCFS order in a typical datacenter. The particular

virtual machine that processes the task were listed under the

VM ID column in Table 1. The next column to VM ID shows

the execution time for each of the cloudlet in Table 1. Each

respective task size is listed under column CloudletLenght.

Figure 2: Graph of finishing time against cloudlets

The results presented in Fig. 3-6 shows the Gant chart of the

scheduling of tasks following FCFS, RASA, Improved Max-

Min and Median-Based Improved Max-min respectively.

Figure 3: Gantt chart for FCFS scheduling algorithm

Figure 4: Gant chart for RASA scheduling algorithm

Table1: Simulation report of 10 cloudlets in FCFS order:

Cloudlet ID

STATUS

 Data

center

ID

VM

ID

Time

CloudletLength

 Start

Time

 Finish

Time

0 SUCCESS 2 0 7 6562 0 7

1 SUCCESS 2 1 8 8062 0 8

4 SUCCESS 2 0 5 5000 7 12

3 SUCCESS 2 3 14 14135 0 14

2 SUCCESS 2 2 23 22597 0 23

6 SUCCESS 2 2 2 1561 23 24

5 SUCCESS 2 1 19 19355 8 28

8 SUCCESS 2 0 20 19891 12 32

7 SUCCESS 2 3 18 17948 14 32

9 SUCCESS 2 1 5 5207 28 33

7 8

12
14

23 24

28

32 32 33

0

5

10

15

20

25

30

35

0 1 4 3 2 6 5 8 7 9

Fi
n

is
h

 T
im

e

Cloudlet

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

42

Figure 5: Gant chart for Improved max-min scheduling

algorithm

Figure 6: Gant chart for Median-Based improved max-

min scheduling algorithm

6. RESULTS
Makespan, Resource utilization and Throughput are the

optimization criteria that is calculated in this paper. Makespan

indicates the finishing time of the last task. It is an

optimization criterion that most users desire during execution

of their application.

 𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑚𝑎 ∈ 𝐹 (1)

For the analysis of algorithms, the Makespan values (Fig. 7)

were calculated using Equation 1.

Figure 7: Makespan of the different algorithms

Resource utilization is an important criterion that depicts the

maximization of resource utilization i.e., keeping resources as

busy as possible. The values (Fig. 8) were derived from

Equation 2:

 𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑢𝑡𝑖𝑙𝑖 𝑎𝑡𝑖𝑜𝑛

Where, n, is the number of resources.

Figure 8: Resource utilization values of the different

algorithms

Throughput, which is the total number of jobs executed per

unit time, is a measure of how many units of task a system can

process in a given amount of time. The values for throughput,

derived from Equation 3, for the different algorithms are

presented in Fig. 9.

𝑇ℎ𝑟𝑜𝑢 ℎ𝑝𝑢𝑡
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚 𝑒𝑟 𝑜𝑓 𝑡𝑎𝑠𝑘𝑠

𝑡𝑖𝑚𝑒 𝑠𝑒𝑐𝑜𝑛 𝑠

0

20

40 32

15

28

14

M
ak

es
p

an
 (

u
n

it
 t

im
es

)

VM Schedulling Algorithms

0

1

2

3

0.9453

2.0167

1.0804

2.1607

R
es

o
u

rc
e

u
ti

liz
at

io
n

 v
al

u
es

VM scheduling algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 174 – No. 32, April 2021

43

Figure 9: The Throughput values of the different

algorithms

It can be deduced that the Makespan for Median-Based

improved Max-Min is reduced during processing when

compared to the others and it shows that the system was

highly utilized when compared to improved Max-min

scheduling. The median-based improved max-min had a value

of 2.1607, followed by RASA in resource utilization.

The results indicate that the proposed algorithm Median-

Based Improved Max-Min has maximized the resources

during scheduling.

7. CONCLUSION
The optimization metrics in VM Scheduling determines how

many processing cores of a host are allocated to virtual

machines and how many processing cores will be delegated to

each VM. The algorithms such as, First-Come First-Serve,

RASA, Improved Max-Min and Median-Based Improve Max-

Min are implemented in cloud computing environment using

the simulation tool CloudSim. Makespan, Resource

utilization and Throughput calculation is made for the above-

mentioned algorithms. Median-Based Improved Max-Min

algorithm has higher values for all optimization metrics

calculated and hence it shows that its better among the other

three algorithms.

8. REFERENCES
[1] Buyya R., Ranjan R., and Calheiros, R.N., (2009).

“Modeling and Simulation of Scalable Cloud Computing

Environments and the CloudSim Toolkit: Challenges and

Opportunities”. In International Conference on High

Performance Computing and Simulation (HPCS).

[2] Shamir J. (2020). “5 benefits of virtualization”. Accessed

on 02-02-2021, URL:

https://www.ibm.com/cloud/blog/5-benefits-of-

virtualization.

[3] Liu Chen, Qiu Cai & Huang “Scheduling Parallel Jobs

using Migration & Consolidation in the Cloud”, Hindwai

Publications of Mathematical Problems in Engineering,

July 2012.

[4] Panchal and Kapoor “Dynamic VM Allocation Algorithm

using Clustering in Cloud Computing”, International

Journal of Advance Research in Computer Science &

Software Engineering, Issue –9, Vol. 3, September 2013

[2277 –128X.

[5] Konstantinos Psychas, and Javad Ghaderi. (2017). “On

Non-Preemptive VM Scheduling in the Cloud”. Proc.

ACMMeas. Anal. Comput. Syst.1, 2, Article 35

(December 2017), 29 pages.

https://doi.org/10.1145/31544.

[6] Mian Guo, Quansheng Guan, and Wende KE, (2018).

“Optimal Scheduling of VMs in Queueing Cloud

Computing Systems with a Heterogeneous Workload”.

Digital Object Identifier

10.1109/ACCESS.2018.2801319.

[7] Djouhra Dad and Ghalem Belalem,(2020).”Efficient

strategies of VMs scheduling based on physicals

resources and temperature thresholds”. International

Journal of Cloud Applications and Computing (IJCAC)

10(3).

[8] Quiroz A, kim H, Parashar M, Gnanasambandam N, and

Sharma N., (2009). Towards autonomic workload

provisioning for enterprise grids and clouds. Proceedings

of the 10th IEEE/ACM international conference on grid

computing (grid 2009), Banf, AB, Canada,50–57.

[9] Jinhua Hu, Jianhua Gu, Guofei Sun and Tianhai Zhao,

(2010). "A scheduling strategy on load balancing of

virtual machine resources in cloud computing

environment”. Parallel architectures, algorithms and

programming (PAAP), third international symposium

,18(20),89-96.

[10] George Amalarethinam D.I. and Muthulakshmi P.,

(2011). “An overview of the scheduling policies and

algorithms in grid computing ". International journal of

research and reviews in computer science, 2(2), 280-294.

[11] I.P. Oladoja, O.S. Adewale, S.A. Oluwadare and E.O.

Oyekanmi (2021). “A Threshold-based Tournament

Resource Allocation in Cloud Computing Environment”

Asian Journal of Research in Computer Science, Page 1-

13.

[12] Er-Raji N., Benabbou F. and Eddaoui A., (2016). Task

Scheduling Algorithms in the Cloud Computing

Environment: Survey and Solutions. International

Journal of Advanced Research in Computer Science and

Software Engineering, 6(1), 604-608. 2277-128X.

[13] Bhavisha K. and Bhumi M., (2015). Review on Max-Min

Task Scheduling Algorithm for Cloud Computing.

Journal of Emerging Technologies and Innovative

Research (JETIR), 2 (3),781-784. 2349-5162.

[14] Hoos H.H., and Stützle T., (2004). Stochastic Local

Search: Foundations and Applications, Elsevier,

Amsterdam, The Netherlands.

[15] Saeed P., Reza E., 2009. RASA: A New Grid Task

Scheduling Algorithm", International Journal of Digital

Content Technology and its applications, Vol. 3, p. 91-

99.

[16] Elzeki O.M., Reshad M.Z. and Elsoud M.A. Improved

Max-Min Algorithm in Cloud Computing.International

Journal of Computer Applications, vol 50, No 12, July

2012.

0

0.2

0.4

0.6

0.8

0.3125

0.6667

0.3571

0.7143

Th
ro

u
gh

p
u

t
(J

o
b

s/
S)

VM Schedulling Algorithms

IJCATM : www.ijcaonline.org

https://doi.org/10.1145/31544
https://www.igi-global.com/journal/international-journal-cloud-applications-computing/41974
https://www.igi-global.com/journal/international-journal-cloud-applications-computing/41974

