
International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

31 

Derivation of Impacted Areas and Generation of Test 

User Stories for Agile Context 

S. Reine De Reanzi 
Karunya Institute of Technology and Sciences, 

Coimbatore  
 

P. Ranjith Jeba Thangiah 
Department of Computer Applications, Coimbatore 

Karunya Institute of Technology and Sciences 

ABSTRACT  
Real time systems are not stand alone. Some are under 

development, some are built from the scratch, some use and 

share third party APIs, sdks, services, signals, infrastructure, 

platform and resources. Hence until a software reaches its end of 

life, it consistently continues to evolve, adapting to the changes 

in terms of requirements, technologies, new concepts that are 

outcomes of various research. At times a part of the system is 

adapted or morphed or new one is built on the existing codebase.  

The test methodologies are extended to support such systems. 

The study aims to bring out (i) impacted areas based on changes 

in the entity and (ii) feasibility of leveraging  user stories to 

generate testcase stories that can  be used for testing of systems 

that are constantly evolving. 

Keywords 

Modeling, User stories, Impact areas, Formal Methods, Test User 

Stories, Heuristics, SaaS, Test Modeling 

1. INTRODUCTION 
Internet on smart phones have enabled the user to use both 
business and personal activities by accessing the features, apps on 
the handheld devices. The applications are built using varied 
technologies, integration, communication and sharing of APIs, 
handlers, SDKs, plugins, webservices, signal processing services, 
OTA (Over the Air), protocols, infrastructure, resources etc. 
When solutions for this type of software is delivered on cloud, it 
is complex. For example, the production environment is used by 
number of users, on top of which the new code has to be elevated. 
This brings in a quite a lot of challenges for testing community. 

i. The existing and new users should be able to seamlessly 

use the existing part of software 

ii. The existing and new users should be able to use the 

new features. 

iii. Data Correctness, transient data  

Testing such systems are complex in terms of backward 

compatibility.  

i. There are changes to the existing feature 

ii. Existing requirements are merged with the new ones 

iii. New features, adapting a new solution, new technology, 

integration – migration of users, services, time zones 

and timer events 

iv. Revised vendor contracts 

v. Change in business rules 
The challenge here would be to ascertain the test adequacy 
conditions of the tests that are generated [12] and which implicitly 
takes care of the impacted workflows in terms of coverage. It is 
important to ensure that the test model applies the risk-based end 
to end scenario computation that results in a high yield with high 
coverage test design strategy [20].  

The user stories change as the requirements evolve with every 
iteration.  The codebase undergoes a change and the paper 
attempts to leverage the change in user stories to identify the 

impacted areas and derive test user stories based on the above to 
narrow down the tests. 

The observations on release iteration for this study was carried out 
on MaaS3601, hosted on private cloud(SaaS2). Its software 
delivery followed agile methodology. Agile Modeling is an 
extension to more code-centric agile methods, such as XP [16]. 

2. BACKGROUND 
When a system under test is considered, there is enough research 
to identify the model and  apply the appropriate relevant formal 
methods, to generate the test-suite. Model driven testing of such 
systems bring in a lot of systematic and organized way of testing 
[12].  

Model based testing[MBT] uses models to derive concrete tests. 
The test adequacy criteria are described in relation to models. 
They are used to evaluate reliability of derived tests and as 
predictor for determining coverage. The challenge here is to 
create and maintain relationships between model and code 
elements [14], in a dynamically changing environment. The OMG 
proposed a specification (Query/View/Transformations –QVT) 
that standardized, the ways, source models are transformed into 
target models (model – to – model transformations) [19]. Model 
based testing requires the ability to map the abstract values of 
specification to the exact values of the implementation [2]. It has 
proven that it is cumbersome to re-use standalone model-based 
testing approaches and test models over different projects due to 
their domain specific characteristics [1]. It is a difficult task to 
derive one common model, which caters to all the systems.  

The research on domain specific modelling helps to use model 
user stories to raise the level of abstraction beyond programming, 
by directly specifying the solution using domain concepts [7]. 
There are specific advantages of integrating domain specific 
modelling with MBT like, reusing the model, light weight 
changes to test generator and simultaneous use of various test 
generators [15].  

Given a set of tools and methods, MBT has been shown to be 

useful and effective means of high-level testing in different 

domains [11]. Most of the Model based testing tools are general 

purpose tools, focusing on generic models of software behavior, 

such as finite state machines [18]. 

In XP(Extended Programming) for instance, simple descriptions 
of requirements are documented as user stories that are mainly 
used for release planning, which in turn can be used as source for 
deriving the test model [20]. This brings the domain context. The 
UML specifications for usecase diagrams and sequence diagrams 
elicit the user’s usage and behaviour of the flow under test [5]. 

3. USER STORY MODEL BASED ON 

DOMAIN ATTRIBUTES 
In plain model based formal specifications, the tests are covered 

for their basic flows and alternate flows. Here the most important 

factor of user context is missed out in this case.  



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

32 

User assigned access roles to workflows are important for SaaS 

based applications in the terms of security. Each user story has a 

user context comprising sets of access roles that determines the 

access and flow and behavior specific to those roles. For 

example, master admin, product user, end user with less 

privileges, guest, third party system etc. This domain context 

helps to bring in the relations and transformations to test-model 

at the user story level. 

User assigned feature properties or product mix for customers 

based on their license tier is another dimension of user context. 

Different sets of users use different sets of services offered on the 

same platform as in figure 1 

 

 
Fig: 1 User Context: User Assigned Roles and Properties 

 

Each story is tagged with the user context involving all the 

above-mentioned criteria. 

4. EXTENDING USER STORY FOR TEST-

MODEL 
Creation of meta models like data flow diagrams, UML 

diagrams, model based control graphs, hierarchy of test 

generation, traceability are the test related artifacts meta models 

[13]. Hence the attempt here was to try and dissect the user story 

as depicted in figure 1 to derive the following  

- Entity meta model 

- Impacted areas meta model, to identify the regression 

suite to include the least addressed. 

4.1 Entity Meta Model 
The user story cuts across the features to realize the end to end 

scenario. Here the control flow of the system follows multiple 

paths touching entities depending on the level of abstraction 

(how deep the user story has been layered). Entitiy can be a 

business object, user parameterized object, system object. 

Collection of such entities are connected by the edges of a flow 

form a user story. The edges are the action sequences that 

connect the entities. Creation of entities and identifying action 

sequences are the pre-requisite for story level abstraction. Hence 

when a user story is created it involves one or more entities. The 

entities are tagged to identify the impacted areas. 

The sequence diagrams, control graph flows, finite state 

machines can be abstracted using the entities, to define a story. 

And entities can be fine grained by the use of the sequence 

diagrams, control graphs and finite state machines. 

For example, ‘As an IT admin, I want to locate the user device so 

that I can view the device’s present location’. 

In the above user story, the entities are Device, Device 

Information, Locate User function, third party mediator, Global 

Positioning system, third party maps and GUI. The action 

sequences define the flow of the data from one entity to another. 

The following figure 2 represents the entities involved in the 

action sequences 

 

 
Fig: 2 Entities and the Action Sequences 

 

The execution sequence for locate user is listed below. 

1. Request.locateUser 

a. Trigger.push notification.device 

b. RouteRequest.device app 

c. DeviceApp.requestGPS 

d. GPSreturn.coordinates 

2. systemResponse.coordinates 

3. ViewInfo.Device 

4. RequestAddress.latitudelongitude.maps 

5. Display.address 

In the manual testing context, the test executor is aware that the 

device has to be pre associated with the system and is accessible 

through a user context. This is the basis for tagging each user 

story to a pre-requisite. Now the high-level structure of each user 

story can be depicted as in figure 3. 

 
Fig: 3 High Level Structure of Each User Story 

 

From the user story list all the entities and action sequences are 

collected to form the entity meta model. The formal modeling is 

discussed in section 6 

4.2 Impacted Areas Meta Model 
When the above user story is extended to provide new feature 

and is offered only as beta. Then it is controlled by user assigned 

property, where the user can access this feature only if the 

appropriate property is turned on. 

For example,  

Old feature: “User’s location can be identified by performing 

‘Locate User’”. 

New feature: Device user can be dynamically assigned with 

policies based on location. 

Modified user story ‘As an IT admin, I want to set a rule to push 

a policy to a device based on location change, so that when the 

end user is outside of the corporate network range, the corporate 

resources are not accessible on his device’. 

The above mentioned are the explicit changes.  

Let us add more one change to the implementation of the above 

requirement.  

Changed Feature: The vendor for third party map is changed and 

the system queries the maps only on demand.  

This means (i) the old method of querying every time a location 

is reported is removed from the system (ii)The query is fired to 

the maps, only when the location information is viewed by the 

user and stores the location coordinates.  

4.3 Business Reason for Change 
This saves cost, as firing a query to the maps is a paid service 

from a 3rd party vendor. The device is configured for locations, 

based on the location at which the device is positioned, the policy 

should be applied. Post the change the user experience needs to 

be seamless. But the user story should still take care of these 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

33 

changes and address them. The execution sequence for locate 

user has changed as given below to accommodate the dynamic 

policy assignment 

1. Request.locateUser 

a. Trigger.push notification.device 

b. RouteRequest.device app 

c. DeviceApp.requestGPS 

d. GPSreturn.coordinates 

2. systemResponse.coordinates 

3. ViewInfo.Device 

4. RequestAddress.latitudelongitude.maps 

5. Display.address 

6. Create.location 

7. Create.policy 

8. Monitor.locationOnDevice 

9. Location(X).ApplyPolicy(Y) 

10. Monitor.locationOnDevice 

The figure 2 has changed to figure 3, displaying the changes 

incorporated.  Here the entities affected are tagged to generate 

the impacted areas.  The actions involving the entities are 

translated to user stories. The section 6 on formal specific 

language discusses more on this method. The action sequences 

on the entities with the various flows introduced due to the 

changes, indicate the impacted areas. 

 

 
Fig: 4 Action Sequences on Entities and Tagging the 

Impacted areas 

 

At the code level, entities are part of classes, objects, the 

application container that contains the collection of such entities 

and the relationships among them.  

When a change is introduced in the requirement, the entities 

affected are tagged, implicitly tagging the above factors. So, 

when a user story involving such entities is generated with 

actions, the relationships are preserved. The tagging covers the 

code level and the association is reflected in the user stories. 

Figure 4 above can be abstracted as Figure 5. 

 
Fig 5 High Level User Story with Actions, Entities and 

Impacted Areas 

 

Here the relationship between the model, code and the test are 

preserved [14]. Traceability Link Model [9] provides locators 

and relationships through which the requirements can be traced 

down to the tests. The enhancement to this model is to add apps 

or the components affected, and the degree of change should be 

determined by assigning weights to such changes. This ensures 

in deriving the intensity of the impacted areas and thereby 

resulting in appropriate selection of tests. 

The formal method should preserve the correctness of 

traceability by facilitating Verification and validation methods 

[10]. 

5. QUALITY OF USER STORY 

SPECIFICATION 
[21] Consistency of test is defined as the degree of uniformity, 

standardization and freedom from contradiction among the 

requirements, user stories design and test system. The output 

should be a meaningful and useful content. For this a set of 

assertions and validation rules are put in place. 

They determine the validity of the user story with results namely: 

yes, no, error, none. The above method can be extended to 

generate data. 

Rules (Functional, Design, System, and Business) could generate 

a lot of test conditions, which in turn could govern the course of 

coverage. There could be implicit and explicit rules. These rules 

provide a direction in modelling of the system which can 

generate validation functions.  

For example: Consider the requirement, “User’s location can be 

identified by performing ‘Locate User’” 

Rules pertaining to the above can be, 

Business Rule:  

i. Identify user location without compromising on user 

privacy 

ii. Reducing cost by limiting the number of queries to the 

vendor 

Functional Rule:  

i. If the user allows access, collect, store and present the 

required information 

Design Rule:  

i. Communications from the system to the device are 

real-time  

ii. 100,000 requests at any given instance 

System Rule:  

i. Respond based on the above rules. 

ii. Maintain data privacy and tenancy 

The assertions, pre-conditions and validation functions were 

derived based on the above rules. These assertion criteria 

determined the correctness of the generated user stories. They in 

turn implicitly validate the test adequacy from the generated user 

stories. 

 User story patterns can be translated to transformational 

functions. Some of the metrics to assess the test model 

(conformance to standards) – degree of uniformity, freedom of 

contradiction of requirements, rules, within generated tests, 

consistency and correctness is ensured by the validation 

functions.  At-least one test user story was arrived for each 

requirement which enables traceability [19]. There are a number 

of variants in terms of inputs and outputs that can affect the 

generation. 

Understanding the anatomy of the user story was essential to 

identify patterns. This enables us to move forward in the 

direction of user story mark-up language [4]. Thus, it gives us a 

handle to derive the impacted areas and to generate the test user 

stories. 

6. FORMAL MODELING – DERIVATION 

OF IMPACT AREAS & GENERATION 

OF TEST USER STORY 
A formal specification language is introduced to derive the user 

stories based on the individual models represented by the various 

types of systems that work together to perform a task. Those 

specifications are then used to automatically derive a test model, 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

34 

which comprise of user stories, with added test dimensions that 

can be test executed with tagged impact areas. This helps to 

identify the regression suite. 

The test generation looks up the user story for events and action 

words and simply translated to entities and action sequences for 

creating high level test models. The action keywords describe the 

behavior that is implemented by lower-level keyword models 

from the test model library [6]. 

Test scenarios are generated using depth first traversal of 

generated control flow based state machines according to criteria 

[17] 

6.1 Formal Specification Language  
The entities and action sequences are processed further using a 

formal language to auto-generate test-user stories. This calls for 

tagging of user story with requirements [11] which can 

collectively determine the system model. The domain space 

mapping can be represented as follows. Each of the attributes 

from the space has many to many relationships. 

 
Fig: 6 Domain Space Mapping with Many-Many 

Relationships 

 

To determine the impacted areas, a weight is added to the entities 

that are touched for code modification in this iteration. The 

weights are None, Minor, Major, Critical. Initially, all the 

weights are set to none. Then every time there is a change to an 

entity, it is tagged with one of the above mentioned weights. The 

state of the weights were collected throughout the iteration and 

impacted areas can be generated. 

A counter is attached to each of the entities and each time the 

weights are assigned, it is incremented. The counter demonstrates 

the number of times the code has been modified. Once the 

iteration is completed, and a new branch is taken for the next 

iteration, these weights were reset to none and the counters were 

carried over. The figure 6 after incorporating these factors look 

like Figure 7 

 
Fig: 7 Domain Space Mapping with Degree of Change 

Introduced 

 

The general elements of user story comprising card, conversation 

and confirmation [3] are adapted for the user story modelling and 

test generation. The domain space provides the inputs to 

construct a user story. The syntax, operators and criteria are 

defined in the following figure 8.  

 
Fig: 8 Final Test User Story Structure 

 

Entity Modeling for user stories are described with a finite 

number of factors as figure 9.  User story is a 7 tuple defined as 

(P, A, C, E, S, T, I) where P is the set of pre-requisites, A is the 

set of actors or players, C is the set of action sequences, E is the 

set of entities, S is the set of Target states, T is the set of 

transition relations between the outcomes of the pre-requisites, 

actors, action sequences, entities and the target state and I is the 

set of impacted areas 

 
Fig: 9 User Story Tuple 

 

The transition relation can be denoted as follows, 

T: P X A X C X E ->h(S), where T returns a set of target states, 

assuming that some of the target states are non deterministic and 

therefore are used for observation. 

For each action sequence C, there exists sets of entities E that are 

either old or new. 

So, the impacted areas I can be derived by the following, Let 

Enew and Eold be the sets of new and old entities affected by an 

action sequence C. Then, impacted areas can be obtained by 

 I = C ->( Enew ∩ Eold), Enew and Eold are quantified by the weights 

and counters 

There exists a set of test attributes viz correctness of data, UI, 

Error handling, usability, timing/performance, security etc which 

are to be executed for each test user story. And every user story 

along with test attributes has to be executed against each 

dimension. 

For example, a test user story should be executed for its test 

attributes like data, UI, memory etc. And a user story with test 

attributes should be executed for each test dimension like 

Browser stack, OS stack etc. 

The user story transducer is a 9 tuple defined as (P, A, C, E, S, T, 

I, t, D) where t is the set of test attributes and D is the set of test 

dimensions and the corresponding functions can be defined as t: 

P X A X C X E ->h(S) and D(t): P X A X C X E ->h(S) as given 

in figure 10 below. 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

35 

 
Fig: 10 Test User Story Transducer 

 

The set of test attributes with variants are denoted by t. Here the 

test attributes are discrete. For example, end to end test user 

stories, covers a subset of total stories generated for this 

requirement. If the subset is executed individually, it has n 

variants. 

Let f, g be a functions on the test attributes and dimensions for 

every user story U, where 

f: t->h(U) such that, t=(t0, tn) where {x ∈  h(U)|t0< x < tn}, to 

and tn are test attributes.  

g: D->h(U) such that, D=(D0, Dm) where {y∈  h(U)|D0<y<Dm), 

D0 and Dm are test dimensions. 

Each user story U has N variations, so, if they have to be 

converted to testcases, the number of testcases are a Cartesian 

product of set of user stories and the N attributes. Impacted areas 

helps in prioritizing and hence reduces the number of testcases, 

but narrowed down coverage, every time a change is introduced. 

To derive the execution effort, consider the set of user stories 

along with the set of test attributes and test dimensions. For each 

dimension D, and each test attribute or set of test attributes t, a 

user story has to be executed.  

Assume the dimensions and attributes are discrete. So, the test 

execution effort (TEE) can be defined as, 

           m    n 

TEE = Σ      Σ  U(D, t), for all m, n 

          D=0 t=0 

But in real time, the dimensions and attributes may sometimes be 

continuous. However, it is out of scope for this paper. Also, not 

all define dimensions and attributes are applicable for all stories 

all the time. Hence, the risk based prioritization [20] is very 

essential to reduce the testing effort. Here, the impacted areas 

was used to highlight the risk of not testing the change. 

6.2 Formal Language Grammer  
The Action sequences (A) can be derived based on the formal 

language grammar constructs. There has been some research on 

user story markup language (USML) [4].  The domain specific 

constructs can be formulated information derived from the user 

story tuple. This along with the action sequences result in test 

user stories. 

6.3 Modular Functional Test User  
The test user stories are modularized by feature modules. The 

functional test user stories (FTUS) are generated based on the 

combinatorial test design algorithms (CTD) with the functional 

attribute classes based on entities. Then the test parameters and 

the dimensions are tagged to the FTUS. Each individual FTUS 

with be in the form of a test user story tuple T, as derived in Fig 

5. The atomic  FTUS was grouped to form end to end FTUS.  

6.4 Maintain the Latest Test at any given 

Instance 
The functional attribute classes for CTD were checked in a 

version management system. Any changes to the requirements 

were again fed back into the class model that contains the 

transition relation Fig 9 and along with the functional attribute 

classes the test parameters and dimensions are revisited.  FTUS 

are regenerated and this cycle.  

The FTUS remains optimized and up to date in real-time and 

hence the tests are manageable in terms of both quantity and 

quality. Also impact of the new changes can be easily mapped as 

discussed in Fig 9 

6.5 Maintain the Latest Automation Suite at 

Given Instance 
The functional tests from section 5 are imported into the test 

management tools in use either manually or use the APIs 

provided by them. Most commercial tools have APIs.  They are 

tagged with an attribute called Automation Status. This attribute 

holds a list of values like automated, to be automated, Manual 

and Impacted due to feature change. Based on the changes to the 

requirement the tests are regenerated. This might result in the 

following cases 

1. Take the completely regenerated tests as the 

requirements have changed drastically 

2. Retain old tests along with the changed, removed and 

new tests 

3. Retain old tests along with the changed, removed, new 

and added tests 

In all the above 3 cases one or more tests were changed and they 

are linked to automated suite, to indicate that the test has 

changed, and the automated test needs a fix. The changed tests 

are flagged and fixed to reflect the latest test. 

6.6 Test User Story Generation Process 
The ideal user story generation process is discussed in the below 

given figure 11 

 
Fig: 11 User Story Generation Process 

 

In the subsequent iteration, based on the changes in 

requirements, as discussed earlier, the entities and action 

sequences can change, at times leading to the change in domain 

space attributes. Hence, adjustments to the model was done. In 

order to be able to generate complete stories the test model has to 

be adjusted [8]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

	

 

Requirement 

Specs 

UserStory 

Modeling 
Formal Model 

with impacted 

areas 

Quality/ 

assertion 

of Model 

User Story 

confirmation & 

target state 

Adequacy

Assertions 

Generate unit 

and end to 

end stories 
Priority 

Entities & Action 

Sequences 

SUT 

NO	

Yes	

Run	

Version 

mgmt 

repository 

Automated 

Suite 

Tag	

Run	



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

36 

7. EXPERIMENT, MEASUREMENT AND 

RESULTS 
The feasibility of this test model was experimented and measured 

over 10 iterations of product development through the entire 

software development life. 

There are many factors that are involved in the real time product 

delivery cycle, there is too much of the noise. The factors 

involved are the stakeholders, multiple iterations of arriving at 

requirements, the entire rendition of project management: people, 

process and resources, and phases from development to customer 

enablement. All these are filtered out and only the parameters 

that matter for this research are considered. 

The parameters that matter for this research are requirements, 

whether the requirements are new or a change in the existing 

functionality, change in code and story points to measure the test 

adequacy, effectiveness, coverage optimization, test effort, 

customer found defects, performance tests and impacted areas. 

Also, there were tools that were used for project management, 

requirements, test management, bug tracking etc. The type of the 

tool used has no impact on the parameters that are experimented, 

monitored and measured for this research purpose. 

The experiment, observation and measurement were done over a 

period of 70 weeks. The parameters under observation are stated 

in the Appendix 

The results for the domain based MBT for test attributes and test 

dimensions with Impacted areas are presented in the figure 12 

below. 

 
 

 
 

 
 

 
 

 

 
 

 
Fig: 12 Results 

 

8. CONCLUSION 
The software under test is a dynamically evolving system. The 

line between the new requirements and the changes introduced 

are almost negligible. The project span time for each iteration 

was 7weeks. In this scenario, existing traditional methods of 

generating tests and identifying the regression areas are 

extremely time consuming and cumbersome. 

Hence, this attempt to adapt the existing models to extend to user 

stories and auto identification of impacted areas help in 

narrowing down the regression. The future work can comprise of 

a study, the performance and security paths for the feature are 

identified and are marked up with appropriate volume and 

relevant test data. 

9. ACKNOWLEDGMENT  
We are thankful to MaaS360, SaaS product and its management 

for allowing us to experiment and present the method in this 

paper. 

 

10. REFERENCES 
[1] Dias-Neto, A. C. & Travassos, G. H., 2009. Model-based 

testing approaches selection for software projects. 

Information and Software Technology, Nov, Vol 51(Issue 

11), pp. 1487-1504 

[2] Dick, J. & Faivre, A., 1993. Automating the generation and 

sequencing of test cases from model-based specifications. 

Springer-Verlag London, UK, FME '93 Proceedings of the 



International Journal of Computer Applications (0975 – 8887) 

Volume 174 – No. 32, April 2021 

37 

First International Symposium of Formal Methods Europe 

on Industrial-Strength Formal Methods , pp. 268-284. 

[3] Jeffries, R., 2001. Agile Glossary. [Online]  

Available at: https://www.agilealliance.org/glossary/three-

cs/ 

[4] Kamthan, P., 2011. Representation of User Stories in 

Descriptive Markup, Montreal, Quebec, Canada : Spectrum 

Research Repository, 

https://spectrum.library.concordia.ca/36094/ 

[5] Katara, M. & Kervinen, A., 2006. Making Model-Based 

Testing More Agile: A Use Case Driven Approach. Haifa, 

Israel , HVC'06 Proceedings of the 2nd international Haifa 

verification conference on Hardware and software, 

verification and testing, pp. 219-234 . 

[6] Katara, M. & Kervinen, A., 2006. Making Model-Based 

Testing More Agile: A Use Case Driven Approach. Finland, 

https://link.springer.com/chapter/10.1007/978-3-540-70889-

6_17, pp. 219-23 

[7] Kelly, S. & Tolvanen, J.-P., 2008. Domain-Specific 

Modeling: Enabling Full Code Generation. s.l.:Wiley-IEEE 

Computer Society Press 

[8] Löffler, R., Meyer, M. & Gottschalk, M., 2010. Formal 

scenario-based requirements specification and test case 

generation in healthcare applications. Cape Town, South 

Africa, SEHC '10 Proceedings of the 2010 ICSE Workshop 

on Software Engineering in Health Care , pp. 57-67 

[9] Maletic, J. I. & Collard, M. L., 2009 . TQL: A query 

language to support traceability. Vancouver, BC, Canada, 

Traceability in Emerging Forms of Software Engineering, 

2009. TEFSE '09. ICSE 

[10] Merilinna, J. & Pärssinen, J., 2010. Verification and 

validation in the context of domain-specific modelling. 

Reno, Nevada, DSM '10 Proceedings of the 10th Workshop 

on Domain-Specific Modeling, p. Article 9 

[11] Miller, T. a. S. P., 2012. A Case Study in Model-Based 

Testing of Specifications and Implementations.. Software 

Testing Verification and Reliability, Volume 22, pp. 

22(1):33-63 

[12] Naslavsky, L., Ziv, H. & Richardson, D. J., 2007. Towards 

leveraging model transformation to support model-based 

testing. Atlanta, Georgia, USA, ASE '07 Proceedings of the 

twenty-second IEEE/ACM international conference on 

Automated software engineering, pp. 509-512 

[13] Naslavsky, L., Ziv, H. & Richardson, D. J., 2007. Towards 

traceability of Model based Testing Artifacts. London, UK, 

AMOST'07, ACM 978-1-59593-850-3/07/0007 

[14] Naslavsky, L., Ziv, H. & Richardson, D. J., 2008. Using 

Model Transformation to Support Model based Test 

Coverage MEasurement. Leipzig, Germany, AST'08, ACM 

978-1-60558-030-2/08/05 

[15] Puolitailval, O.-P. & Kansten, T., 2010. Towards flexible 

and Efficient Modle Based Testing Utilizing Domain 

Specific Modelling. NewYork, USA, DSM '10, ACM. 

[16] S.W, A., 2006. Agile Modeling Home Page. [Online]  

Available at: www.agilemodeling.com 

[17] Somé, S. S. & Cheng, X., 2008. An approach for supporting 

system-level test scenarios generation from textual use 

cases. Fortaleza, Ceara, Brazil, SAC '08 Proceedings of the 

2008 ACM symposium on Applied computing, pp. 724-729 

[18] Utting, M. & Legeard, B., 2007. Practical Model-Based 

Testing: A Tools Approach. s.l.:Morgan Kaufmann 

Publishers Inc 

[19] www.omg.org, 2005. Object Management Group. [Online]  

Available at: http://www.omg.org/cgi- bin/doc?ptc/2005-11-

01 

[20] Yanping.C, RobertL.P & Sims, D. P., 2002. Specification 

based Regression Test Selection with Risk Analysis. 

Toronto, Ontario, Canada, CASCON '02, IBM Press ©2002 

[21] Zander-Nowicka, J., Mosterman, P. J. & Schieferdecker, I., 

2008. Quality of test specification by application of patterns. 

Nashville, Tennessee, USA, PLoP '08 Proceedings of the 

15th Conference on Pattern Languages of Programs , p. 

Article 3 

11. APPENDIX 
Data for Release Cycles with New & Change in Requirements 

for Features 

 

IJCATM : www.ijcaonline.org 


