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ABSTRACT
In this paper two compact and high throughput hardware structures
are proposed allowing for the computation of the 128-bit CLEFIA
encryption algorithm and its associated key expansion processes.
Given the needed modification to the CLEFIA Fiestel network,
herein we show that with a small area and low performance impact,
the CLEFIA key expansion for 128, 192 and 256-bit key can
be deployed. This is achieved by using embedded components
available in modern FPGAs and with an adaptable scheduling,
allowing to compute the 4 and 8 branch CLEFIA Feistel
network within the same structure. The obtained experimental
results on a Xilinx Virtex 5 FPGA suggest that throughputs
above 1Gbps can be achieved with a resource usage of 200
Slices and 3 BRAMs, achieving a throughput/Slice efficiency
metric 50% higher when compared with limited state of the art.
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1. INTRODUCTION
The market of embedded systems has experienced substantial
growth in the last decades. Currently, the use of mobile and
embedded systems, also know as smart devices, already exceeds
the use of personal computer systems. Many of such new systems
already affect the daily lives of people all over world. As a
consequence, the need for security and privacy services has
also increased, and to provide them, cryptographic primitives are
used. Towards this, efficient and compact implementations of
such primitives are needed. One such primitive is the CLEFIA
symmetrical 128-bit block cipher, proposed and developed by
SONY Corporation [9]. CLEFIA algorithm supports 128, 192, and
256-bit keys and provides improved cryptographic security through
the use of Diffusion Switch Mechanisms and Whitening Keys
among others, in order to ensure immunity against differential and
linear attacks [8].
In 2012, CLEFIA was declared an International Standard in
ISO/IEC 29192-2 in lightweight cryptography, and also a
Candidate Recommended Cipher by the Japanese Cryptographic

Research and Evaluation Committee (CRYPTREC), in the
2013 revision. Recent works on CLEFIA have highlighted its
performance, particularly in hardware implementations for both
ASIC and FPGA technologies. Many of these approaches strive for
compact structures while maintaining high performance, leading
to the optimization of the computational resources and the
exploitation of possible parallelism between operations.
Because of the need for a complex 8-branch Feistel network when
computing the key expansion for 192 and 256-bit keys, most
existing lightweight structures that provide key expansion only do
so for 128-bit keys, which uses the same 4-branch structure used by
the data processing [11], [6], [1]. Note, however, that even though
not supporting the key expansion for all key sizes, or none at all, the
main encryption computation can generally be performed, since the
only change in the core computation is the number of computation
rounds. Particularly in FPGA designs, where embedded memories
can be used to permanently store the round keys, the major trade-off
related to introduce a dedicated hardware for the key scheduling
process states to the increase of overall logic elements occupation.
Such assertion is potentially aggravated when considered 192 and
256-bit key expansion.
The main goal of the work herein presented is to show
that a CLEFIA ciphering structure, capable of supporting the
computation of both 4 and 8-branch of CLEFIA Feistel networks,
can be designed within the same hardware architecture at very
low added resource cost and without performance penalty. To
validate this, two fully functional compact hardware structures are
proposed, supporting both the encryption/decryption computation
of the CLEFIA algorithm and the respective key expansion for all
key sizes. Both architectures were designed concerning the FPGAs
internal architecture, embedded elements and device primitives,
towards a fully optimized solution in both area and speed. In order
to provide a proof of concept, a prototype implementation is herein
presented supported on an FPGA technology, given its increasing
deployment in embedded systems, flexibility and easy prototyping.
The remainder of this paper is presented as follows. Section 2
introduces the CLEFIA algorithm. The most relevant related works
are discussed in Section 3. The proposed hardware structures
and particular implementation details are presented in Section 4.
Section 5 depicts the experimental results and presents the analysis
of these results in comparison with the limited state of the art.
Concluding remarks and future works are presented in Section 6.
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2. CLEFIA
The CLEFIA cipher is an 128-bit symmetrical block ciphering
algorithm supporting cipher key sizes of 128, 192, and 256bits.
This algorithm is based on the well known and commonly used
Feistel Network structure [3]. As in most block ciphers, the
input data is processed over several rounds, adding confusion and
diffusion with the input key. In this particular algorithm the data
and key are processed over 18, 22, or 26 rounds depending on the
cipher key size. The round computation is exactly the same for each
iteration, only varying the respective round key obtained from the
key expansion itself.
The round computation includes state of the art design techniques,
such as Whitening Key and Diffusion Switch Mechanism. The
Whitening Key is a technique used to improve security of iterated
block ciphers, consisting in steps that combine the plain text and the
resulting cipher text with portions of the cipher key, before the first
and after the last rounds. On the other hand, the Diffusion Switch
Mechanism consists of multiple diffusion matrices organized in a
predetermined order, to ensure immunity against differential and
linear attacks [8].

2.1 Data Processing
The CLEFIA encryption process, depicted in Figure 1, takes a
128-bit input data block P = P0|P1|P2|P3, four 32-bit whitening
keys WK = WK0|WK1|WK2|WK3, and a set of 32-bit round
keys RKi as data inputs. The resulting outputted cipher text,
C = C0|C1|C2|C3, is a 128-bit cryptogram. The first step of
the encryption process is to XOR the second and fourth words of
the plain text (P1 and P3) with the first and second 32 bits of the
original key (WK0 and WK1), performing the first key whitening
procedure. After this operation the rounds are executed.
Each round computation is composed of a 4-branch, Type-2,
generalized Feistel iterative structure, defined byGFN4,n where n
is the number of rounds to be computed [9]. The round computation
contains two parallel non-linear F Functions per round, in which
a copy of the first and third words, and two round keys, are their
respective inputs. The output result of each of these functions is
XORed with the second and fourth words, respectively. The first
and third words are not submitted to any process and are swapped
with the other two processed words by left-round shifting all four
of them, as illustrated in Figure 1. In the final round, instead of
performing the Feistel swap, the final output values are directly
obtained by XORing the second and fourth final words with the
last two whitening keys.
Besides the round keys addition, the F0 and F1 functions employ
two different types of 8-bit S-Boxes (S0 and S1) and two distinct
diffusion matrices (M0 and M1) [9], as depicted at the rightmost
of Figure 1. Each of the four 8-bit input lines is multiplied by
the values in one column of the matrix, and additions are made
lastly in order to perform a matrix multiplication. Note that these
computations are performed over GF(28), meaning that they are
composed of XOR operations.
Given the Feistel Network based structure of this algorithm, the
decryption process is identical to the encryption one, using the
same computational units, differing only in the order that the
operations are performed, and by feeding the round and whitening
keys in the inverse order [9].

2.2 Key Scheduling
As stated above, on each round two 32-bit round keys are used.
Thus, a set of 36, 44, or 52 round keys (depending on the key

Fig. 1. CLEFIA encryption data path.

size) are used, plus 4 additional 32-bit whitening keys [9]. In order
to obtain these multiple keys, the 128 to 256-bit input cipher key
needs to be expanded. Such an expansion is performed using the
key schedule algorithm specified in [9].
The whitening key (WK) generation is accomplished according to
the key size. For a 128-bit input key, the four 32-bit whitening keys
are obtained directly from the input key by:

WK0|WK1|WK2|WK3 ← K. (1)

For the 192 or 256-bit input keys, the four 32-bit whitening keys
are no longer obtained directly. The input key becomes two 128-bit
blocks, KL and KR, and a bitwise XOR operation is applied
between the two, resulting in the 128 bits of the whitening key. The
KL and KR are composed as shown in the following, accordingly
to the cipher key: if it is 192 bits long (2) or 256 bits long (3).

KL||KR← K0|K1|K2|K3 ||K4|K5|K0|K1 : K192 (2)

KL||KR← K0|K1|K2|K3 ||K4|K5|K6|K7 : K256 (3)

For both 192 and 256-bit keys, the corresponding whitening key is
computed by:

WK = KL⊕KR. (4)

In order to provide a preprocessing structure, the key expansion
of a 128-bit key uses the same 4-branch GFN network used for
the CLEFIA data processing to obtain an intermediate L key. The
differences in the 128-bit key expansion remains that the input data
of the GFN structure is now the input key itself. However, when
considering the key scheduling process for the 192 or 256-bit keys,
the GFN network becomes an 8-branch structure (GFN8,n), as
depicted in Figure 2. In this case, the input value is a combination

2



International Journal of Computer Applications (0975 - 8887)
Volume 174 - No.5, September 2017

of K = KL|KR, resulting in a 256-bit input data block. The
round keys used on the GFNs are replaced by a different set of
predefined constant values CONi. Note that no whitening keys are
used when performing the key expansion.
The 8-branch Feistel structure uses two non-linear F functions
twice per round and processes eight input words on each round.
In such an 8-branch network, just as copies of the first and third
words are fed into F0 and F1 respectively, copies of the fifth and
seventh words follow a similar pattern, as depicted in Figure 2. The
result of each F function is XORed with the second, fourth, sixth,
and eighth words. The resulting eight words are then swapped. In
the final round, the output LL and LR values are directly obtained,
as depicted in Figure 2. Instead of a ciphered text, the output of the
CLEFIA GFN structures in the key expansion process is either a
128-bit block (L), for 128-bit input keys, or two 128-bit blocks (LL
and LR), for the remaining key sizes.

Fig. 2. CLEFIA GFN8,n structure.

After the GFN computation is completed, the result (L or LL
and LR) is expanded in an iterative way using a Double Swap
(Σ) function. This function simply swaps several bits of its 128-bit
input and returns another equally sized, as specified by:

Σ(X) = X[7− 63]|X[121− 127]|X[0− 6]|X[64− 120] (5)

After performing theΣ function, the 32-bit round keys are obtained
by adding alternately the L, K, and Σ(X) values with another
predefined set of constants [9].

3. RELATED WORKS
When implementing dedicated structures for block ciphers on
hardware, the efficiency improvements are mainly achieved by:
round folding, with unrolled or rolled structures; the type of
components used for the implementation of the round operations,

in particular the substitution operation; and with operation
rescheduling. Particularly in unrolled structures, multiple rounds
of an algorithm can be processed independently and in parallel
through a pipelined computation, imposing higher area demands.
On the other hand, this approach allows for higher throughput and
working frequencies.
Considering the existing state of the art, one of the first
implementations of CLEFIA, targeting ASIC technologies, was
proposed in [11], and included the CLEFIA encryption/decryption
and a 128-bit key expansion, not supporting 192 and 256-bit keys.
The authors proposes two hardware structures analyzed from the
point of view of the non-linear F functions implementation. Three
approaches which considered: (i) a hardwired implementation of
both S-boxes and diffusion matrices; (ii) implementing two lookup
tables for the S-Boxes; and (iii) merging both S-boxes and diffusion
matrices operations into T-boxes. The authors then demonstrates
the possibility of merging both F functions with no area increase
an still achieving high throughput.
The first FPGA based CLEFIA implementation was presented
in [5] consisting of a pipelined unrolled architecture with three
different key expansion units for all possible key sizes. Although
unrolled structures commonly result in a higher throughput, it
comes with the cost of very high area requirements and the lack
of flexibility. Furthermore, each unrolled structure can only target
a particular key size, thus increasing the occupation overhead in
systems which targets multiple key sizes.
In [6] it is considered a folded full-round compact structure and
folded half-round counterpart. These architectures are based on a
128-bit and 32-bit data paths and explore the FPGA embedded
memory, to store the T -Boxes. Rather than implementing a key
expansion circuit, the authors load the already expanded keys into
another dedicated embedded memory, achieving a more compact
design with throughputs above 1 Gbps.
An extended version of the work of [6] is presented in [1],
which proposes a lightweight key expansion structure for 128-bit
keys. Such a key expansion structure also explores the embedded
memories of FPGA devices to store the generated round keys as
well as the CLEFIA constants used for both obtain the L keys and
the ones used in the round key computation.
In [4] two CLEFIA encryption structures where evaluated on
FPGA devices. The results show that ASIC targeted structures
are also feasible in an FPGA design environment. The considered
implementations used FPGA LUT primitives to store the S-boxes
lookup tables, instead of a memory-based design, resulting in a
high resource demanding structure. Besides that, throughput rates
are bellow the ones achieved by so far state of the art CLEFIA
FPGA implementations.

4. PROPOSED CLEFIA ARCHITECTURES
Recent contributions on FPGA based CLEFIA implementations
provides a reasonable perspective of commonly approaches
used to deploy symmetric cipher algorithms in such devices.
Unrolled round designs provides a faster cipher implementation to
non-feedback modes in which input block operates independently.
On the other hand, rolled round structures results in compact
hardware architectures in feedback mode, although it requires
a more accurate design tuning in order to satisfy performance
requirements.
Regarding block ciphers, two methods can be applied for
describing the non-linear transformations: (i) hardwired logic; and
(ii) addressable lookup tables, such as S-box or T-box. FPGA
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devices provide a small amount of on-chip programmable memory
blocks which can be used for that purpose.
When considering the key expansion on FPGA devices, one can say
that it can be implemented in tree different ways: (i) precompute
the round keys on the system software and store it into a internal
storage structure (Distributed LUT or BRAM, for example); (ii)
compute it at run time; or (iii) provide a precomputation hardware
and store the resulting keys into the device storage elements.
Software implementations commonly leads to a more compact
and high throughput hardware structure, due to the absence of a
key expansion unit. Although it requires a general purpose unit to
perform such operation. In fact the coexistence of key expansion
mechanisms in the hardware structure increases the area demands,
particularly when considered 192 and 256-bit keys, posing a design
challenge to provide a fully compatible solution performing at high
throughput rates.
The main goal of the work herein proposed is to design two
compact structures capable of both computing the CLEFIA
encryption and the key scheduling for all possible key sizes without
interfering the overall process efficiency. In the following sections
we present two types of hardware structures for that purpose.
In Type-A structure, a rolled round structure based on the work
presented in [6] is proposed. Such an implementation considers a
32-bit half-round register chain pipeline structure and two T -boxes
for the F functions in order to provide a hybrid GFN4/8,n

network. Regarding the key expansion structure of Type-A starts
from the expansion structure proposed in [1] thus providing a fully
featured CLEFIA key expansion unit.
By exploring the addressable shift logic operation mode present
in Xilinx FPGA devices, Type-B architecture reduces the circuit
area requirement by packing the register chain into LUTs primitives
settled as SRL logic blocks. By doing this, it is also possible to
reduce the number of multiplexers (MUXes) with no performance
penalty.
Addressable shift logic operation is a commonly resource used in
FPGA and thus in block cipher implementations, such as AES. It
consists of a LUT commonly configured as 1 bit wide per 16 to
32 bits depth. Therefore a SRL can be grouped in order to provide
arbitrary word width shift registers. The main advantage of the SRL
is the capability of address a specific data to the output. Such a
structure can be explored in several ways and typically leads to a
more compact structure.
Additionally, in both architectures, we consider that the data is fed
into the structures through 32-bit data buses, taking into particular
account that external data buses are typically smaller than 128-bits.
Although compatible with any FPGA internal configuration, the
following implementations was specially designed for targeting
devices with six or more input LUTs, thus each highlighted block
in the following represents an FPGA combinational logic level.

4.1 Type-A Architecture
In Type-A architecture, the CLEFIA word swapping needed to
implement the Feistel network is performed by a multiplexed chain
of registers, which stores the intermediate values and schedules
them when needed for the computation. Such a GFN8/4,n Feistel
network has a larger data path, due to the need of storing
and multiplex additional intermediate values. This storage and
multiplexing can be performed by extra registers and wider
multiplexers.
Figure 3 shows the CLEFIA data path of Type-A architecture,
where the width of data lines is of 32-bit except for those
properly indicated. The data processing input data is fed through

the multiplexers depicted in the left most of Figure 3 by
stages A and B , which selects 32-bit words at a time. For
the GFN8,n computation, the input is divided into two 128-bit
serial data streams represented by Pi = P1|P3|P5|P7 and Pj =
P0|P2|P4|P6. Similarly, to compute the GFN4,n network the
128-bit input is represented by two 64-bit data blocks Pi = P1|P3

and Pj = P0|P2.
Since the original computation can still be accomplished, Type-A
structure can perform both GFN4,n and GFN8,n depending on
its control signals. When settled to cipher or 128-bit key expansion
(4-branch mode), the structure computes a GFN4,n, using 2 clock
cycles per round. For the 192 or 256-bit key expansion (8-branch
mode), the structure schedules two pairs of F functions, thus
requiring 4 clock cycles to compute each round. In order to provide
a proper scheduling, the two registers in the left most of the GFN
data path are used only when performing the intermediate L key
computation in 8-branch mode.
Considering FPGAs as the target technology, embedded RAM
blocks are considered for the T -box implementation as depicted
in [6], [1]. Since a 32-bit data path structure is being herein
designed, two dual-port BRAMs are required. In each input port
of each BRAM, the first 8 bits of address are used by the respective
byte input. An additional address bit of the BRAM is used to switch
between F0/F1. Given the 32-bit output word of each BRAM port,
a total of 16 Kb per BRAM is required.
The whitening key is inputed in block D in order to take advantage
of the 6-input LUTs present in most modern FPGA devices,
thus reducing the overall LUT occupation and critical path. As it
will be presented in the following, the whitening key input can
be settled to zero when needed by the key scheduling control
mechanism. Block D also implements the final addition over
GF (28) following the T -box.
The data processing is started once the first 64 bit block is
introduced into the data path, thus requiring 1 or 2 additional clock
cycles in 4 and 8-branch modes, respectively. Since that there is
no word rotation in the last round, the 128-bit resulting output
is obtained through the unswap stage E which selects the 32-bit
blocks in a proper order for both cipher or plain text to the Ci

output. This process then requires 2 additional clock cycles before a
new block may be processed. Therefore, Type-A architecture takes
40, 48 or 59 cycles for complete the CLEFIA data ciphering for
128, 192 or 256-bit cipher key, respectively.
The intermediate L key is obtained through two 128-bit
independent data buses composed by the proper combination of
outputs 1 to 6 . The proposed architecture takes advantage of the
data processing scheduling and the inherent shifting operations to
use only four to six output signals to provide the proper 128 or
256-bit output key in one or two clock cycles, respectively. The
resulting two internal data buses are then connected to the key
expansion unit.
Herein the multiplexers in stages B and C were replicated. This
reduces the critical patch in the CLEFIA feedback circuit without
increase the LUT usage. Thus, the critical path in data processing
remains between the T -box output and the output, regarding
stages D – B – E , resulting in three combinational logic levels and
a total of 16 inputs.
The CLEFIA key expansion if performed after the GFN4/8,n

computation. The proposed structure for Type-A architecture is
based on a mixed 128 and 32-bit data path depicted in the right
most of Figure 3. The first step is presented in stage G , where K
or KL and KR are inputed and stored into 128-bit registers by
right shifting the 32-bit input blocks. As described in Section 2.2,
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Fig. 3. Proposed data path for the Type-A architecture.

for a 128-bit cipher key, the whitening key is obtained directly from
the input key. On the other hand, the whitening keys derived from
192 and 256-bit input keys are obtained by the XORing the lower
and higher values of these larger keys. As depicted in stage I
of Figure 3, with a proper scheduling such an operation can be
performed in a 32-bit data path, thus providing the whitening keys
as they are required. This structure is also capable of send zeros
to the whitening key output, thus reducing the data processing area
overhead.
The key expansion itself is composed of two Σ function over the
L keys (stage 8 ) and the round key computation (stage 9 ). Note
that since Σ is a bit permutation function this overhead does not
requires any additional logic. The Σ function can be performed in
two ways: (i) for 128-bit keys, only the LL value is used; and (ii)
for larger key values, both LL and LR values are computed in an
iterative way. In order to load the initial LL and LR values, two
128-bit blocks feds the input multiplexer on the top of block F in
Figure 3, loaded by the combination of the several 32-bit blocks.
At each four clock cycles the corresponding register is updated
by the Σ. The writing control is managed by two independent
clock enable signals. The output of stage F is given by an 8-to-1
multiplexer. In the targeted device, such a structure can thus be
implemented by a combination of two 6-input LUTs in the same
Slice, thus reducing the routing overhead.
For each key size, a predefined set of constant is mapped into a
32-bit key memory block. These constant values (CONij) and the
generated round keys are stored into the same embedded memory.
Thus, this memory operates both as RAM, storing and reading
the generated round keys, and ROM, where the constant values
are stored. The memory address input control can target either the
round keys, when data is being ciphered, the “keys” used for the
L value computation or the remaining constant values. Given the
32-bit data words, 9 kbit is be necessary to store the keys, which
fits into the embedded memory blocks of most common devices.
The last step of the round key expansion is the XORing between the
corresponding constant CONij , the input key Ki and Li value.
This process is accomplished through a 32-bit data path and the
resulting value is stored in the upper part of the BRAM. The
corresponding key is also fed into block H of Figure 3 through
a 8-to-1 multiplexer. Since the values are stored into a embedded
memory, the key expansion needs to be performed only once for
each key change, without the need to recover the original L key.

Since an 8-to-1 multiplexer usually requires two 6-input LUTs to
be implemented, a total of 416 LUTs are needed to implement the
Type-A data path structure.

4.2 Type-B Architecture
In Type-B architecture the main objective is to reduce the overall
area requirements due to the additional registers and larger
multiplexers usage in both data processing and key expansion units.
One of the main optimizations herein considered, in order to reduce
the area overhead due to the GFN4/8,n supporting structure, is
related to the CLEFIA word swap. This particular structure imposes
a high cost due to the number of registers and multiplexers needed
to provide the GFN4/8,n feature.
When considering FPGAs as the target technology, these individual
registers can be replaced by shift registers. If these shift registers
can be addressed to output particular internal values, then the swap
operation itself can be performed by adequately controlling this
same address. When considering Xilinx FPGAs, this addressable
shift register can be mapped into Look Up Tables (LUTs) operating
in either SRL16 or SRL32 LUT mode [12]. Currently Intel FPGA
devices does not implement such a primitive. Instead, to obtain
the same functionality of the SRL primitives, one can use the
SHIFTREG function connected to a 16:1 multiplexer [2].
When configured to SRL mode, each LUT is able to implement
a 1-bit wide addressable shift register, capable of storing up to 16
or 32 bits. Given the Type-B architecture with a 32-bit data path,
the full storage and swapping operation of CLEFIA word swap can
thus be implemented using only 32 LUTs, as depicted in block 2 of
Figure 4. An additional register is placed outside the shift register
in order to optimize and reduce the critical path. Thus, the critical
path of the ciphering structure was reduced to only two logic levels
composed by nine 32-bit variables and remains between the T -box
output and input.
The proposed Type-B architecture considers that the data is fed
using a single 32-bit data bus P at stage 1 depicted in Figure 4.
The input K in stage 4 is used for both the cipher key and the
whitening keys. In both cases we assume that it is possible to set
zero on the input during the data processing flow.
After each iteration of a F function within a round (and Feistel
word addition), the result is immediately fed back to the beginning
of stage 1 . This way an encrypting round is always being
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Fig. 4. Proposed data path for the Type-B architecture.

performed. The last operation performed by the CLEFIA algorithm
is the XORing between the last two whitening keys in the final
round, performed in stage 4 . The resulting words are then stored
into the SRL, so the output can thus be extracted in order directly
to the SRL output bus. In addition, two additional clock cycles are
needed to finish the data processing without data hazard.
Although the functional description stated above operates properly
for the block cipher process, the key scheduling generation of 128
and 256-bit wide L keys needs to be treated carefully. During a
key expansion process of a 128, 192 or 256-bit cipher key, the L
value is collected directly from the shift register (after performing a
GFN computation), and passed onto the key expansion structure,
described below. The consequence of this approach is that 4 or 8
additional clock cycles are needed after the last round computation.
This extra latency allows for the possibility to send the unswapped
L values directly to the key expansion structure. Besides, since
the encryption process can only start once the round keys have
been computed, these additional clock cycles, required to feed the
generated L key, do not impact the overall encryption performance.
Regarding the key expansion, the optimization goal is to reduce
the area overhead imposed by the wider registers and MUXes
needed to store and select the keys. In Type-B architecture the key
expansion function is based on a 32-bit data path depicted in the
right most of Figure 4. The first step, where the cipher key K and
the whitening keyWK are computed, is presented in stage 5 . The
128, 192 or 256-bit cipher key is obtained by a 32-bit input bus and
stored into the SRL16 LUT 6 . Once the key is stored, it is sent to
the GFN4/8,n structure, for the computation of the intermediate
L key, through the K connection, located at the SRL output. As
stated before, this K output is also used to provide the whitening
keys to the ciphering structure.
The whitening keys derived from 192 and 256-bit keys are obtained
by using the 32-bit XOR, depicted in stage 5 , while the two
left bottom registers are used to store the targeted KLi and
KRi values. The resulting keys are then stored back into the
SRL. Additionally, by disabling the SRL clock enable signal, both
cipher key and whitening keys are kept into the same position,
without affecting the LUT output mapping and also reducing the
control complexity. Such an operation imposes eight clock cycles to
perform the WK computation of 192 and 256-bit keys, performed

while the GFN is being computed. A special care need to be taken
regarding the control of the key input K , since it is used both for
the cipher keys, before theL values computation, and the whitening
key feed when ciphering. Since only 12 positions are used, it is
possible to send zeros to the output when needed.
The Σ function can be performed in two ways: (i) for 128-bit keys,
where only the LL value is used; and (ii) for the larger key values,
where both LL and LR values need to be computed. In the Type-B
structure, we also aim to reduce the area overhead imposed by the
key scheduling block. Thus, the set of 32-bit blocks of theL key are
fed from the GFN main output through L , and loaded by several
32-bit blocks into a SRL32 LUT. However, instead of performing
the completeΣ operation in one cycle, the proposed structure takes
four clock cycles to complete the permutation. The Double Swap
function Σ is decomposed into an iterative computation targeting
the proposed 32-bit data path as following.

Σ : X → Y0:3

Y0 = X[92− 120] |X[85− 91]

Y2 = X[121− 127] |X[39− 63]

Y3 = X[32− 38] |X[7− 31]

Y1 = X[0− 6] |X[64− 84]

(6)

Although four clock cycles are needed to perform the Σ function,
only three stalls are imposed. Since the round key computation is
performed once for each key, this latency overhead do not affects
the overall circuit performance.

5. PERFORMANCE EVALUATION
In this section, experimental results for the proposed structures
are presented and compared with the related state of the art.
These results were obtained using the Xilinx ISE Design Suite
(v14.7), while the design itself was described using VHDL
language. The values presented for the proposed designs were
obtained after Place & Route processing with software default
parameters, namely Synthesis Normal Speed Optimization Effort,
High Optimization Effort in Mapping and Place & Route, with no
extra effort.
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Table 1. Performance comparison of CLEFIA FPGA implementations with key expansion.

Design Key Length
(bits)

Latency
(Cycle)

F-Function Freq.
(MHz)

Throughput
(Mbps)

LUTs FFs Area
(SLICE)

Efficiency
(Mbps/S)

This Work
Type-A

128,192, 256 40

LUT 216.1 691.59 950 1058 511 1.35

Harwired 166.9 534.22 1033 1058 568 0.9

T-box 376.2 1,203.91 675 994 427 2.8

This Work
Type-B

128,192, 256 42

LUT 242.2 738.10 804 411 303 2.44

Harwired 127.4 388.38 880 411 342 1.14

T-box 380.2 1,158.79 537 347 200 5.8

[1]
Type-B

128 38

LUT 235.3 792.57 808 449 297 2.7

Harwired 166.7 561.40 895 449 325 1.7

T-box 343.6 1,157.53 672 385 303 3.8

[11]
Type-B

128 40

LUT 135.6 433.96 981 501 328 1.3

Harwired 98.9 316.58 1049 502 364 0.9

T-box 316.5 1,012.66 774 501 295 3.4

The obtained results for the presented structures, and those in the
existing state of the art are depicted in Table 1. In order to achieve
a more reliable comparison, the structures proposed in [11] and [1]
the structures were implemented in VHDL as specified by the
authors and mapped into the same technology using the exact
same constrains for a “xc5vlx50” Virtex 5 device. In addition,
the evaluation also considers the absence of a memory block by
consider both LUT-based and hardwired S-boxes implementation.
The hardwired structure of S-box S1 is derived from a inversion
over the composite field GF ((24)2) such as described in [7]. On
the other hand, the S-box S0 was implemented as specified in [10].
For the proposed CLEFIA core with full key expansion, operating
frequencies in the order of 380 MHz are achieved resulting in a
throughput of 1.2 Gbps when considering the ciphering process.
Type-B architecture achieve a more compact implementation at a
cost of 200 Slices and 3 BRAMs. Considering a throughout per
Slice efficiency metric, an efficiency of 5.8 can be achieved. Note
that the structures herein presented was purposely design to be
reused for the key expansion for all possible key sizes. If only
the encryption process is required, several resources will remain
unused and could be trimmed in order to reduce area.
In regard to the existing state of the art, two main approaches
are considered, namely folded or unfolded structures. When
considering a folded approach, and thus the most compact one
of the two, the Type-A structure is not the most compact one
available, but remains with competitive throughput. In [1] and [11],
the authors only considered the data ciphering process, and 128-bit
key scheduling. The lower complexity of the data path proposed
in [1] requires 303 Slices and allows it to achieve a higher
efficiency, of 5,8 Mbps per Slice. Although the wider data path,
the implementation proposed by [11] requires 295 Slices and can
achieve a throughput above 1 Gbps.
Given the achieved throughput per Slice efficiency of the
structures herein presented, it can be concluded that the presented
modifications to the CLEFIA core in FPGA do not represent a
significant performance impact to the ciphering process itself. This
means that, with proper care, it is possible to also perform the
GFN8,n with minimum cost.

Regarding the key expansion itself, two main approaches are used:
(i) compute them locally with a dedicated hardware; or (ii) compute
the round keys off chip and store them into an internal memory
during the initialization phase. Although an off chip computation of
the key expansion may lead to more compact and efficient designs,
several systems such as small embedded devices (that cannot afford
software processing units) or systems that require rapid key change,
need to have on chip key expansion. When this is required, extra
resources are needed to be used in addition to the main CLEFIA
encryption core.
The key expansion structures herein proposed has been design to
support the key scheduling for all three key sizes. Type-A structure
extends the work proposed in [1] by allowing the expansion of 192
and 256-bit keys. However, to support these key sizes, a significant
amount of additional logic needs to be added. Since the 192 or
256-bit input keys are now supported, the input value needs to be
merged by XORing them, conditionally, according to the key size.
Additionally, two 128-bit values are now manipulated, namely the
LL, LR, KL and KR values. Particularly, the doubling of the
128-bit registers, and their respective multiplexers, has increased
the needed resources.
Regarding the data path resource utilization, both structures were
designed to met the Virtex 5 internal structures constrains and
functionalities. Each stage of the computation was designed to
have no more then 6 inputs, thus being able to be implemented
into a single device LUT. In order to reduce the delay impact
of implementing a 128-bit data path for key expansion, Type-A
architecture also explores the MUXF7 mode of operation. Such a
implementation allows to implement an 8-input LUT by merging
two 6-input LUTs into the same device Slice.
Obtained results demonstrated that a total of 675 LUTs are needed
to implement the Type-A architecture. By exploring the SRL mode
the number of LUTs in Type-B architecture was reduced to about
537 LUTs. Besides, the use of the SRL requires less storage
elements when compared to the Type-A.
A special care must be taken to the scheduling process of both
architectures, since it suports three modes of operation. The key
scheduling control unit also imposes a higher complexity, resulting
in almost 30% of the needed resources.
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6. CONCLUSIONS
In this paper, two compact hardware structures are proposed,
targeting FPGA devices for the computation of the CLEFIA block
cipher algorithm, capable of performing not just data encryption
but also the key expansion for 128, 192, and 256-bit keys. One
of the main issues in performing the key scheduling for 192 and
256-bit keys is the need for an 8-branch Feistel network, other
than the 4-branch Feistel network need for the encryption process
and 128-bit key expansion. Experimental results obtained for a
Virtex 5 device suggest that a multiple branch Feistel network can
be implemented with a minimum efficiency impact. Additionally,
the obtained results also suggests that the area impact of the key
expansion itself can be significantly reduced by exploring the inner
FPGA devices technology. The performance evaluation shows that,
with the addressable shift register, the 4 and 8 branch Feistel
networks and the full key expansion can be efficiently implemented
on the same structure. Such a implementation comes with a cost of
200 Slices and with an efficiency of 5.8 Mbps/Slice, which is about
50% higher than the related state of the art design references, which
do not support full key expansion.
Future work will target the application of the obtained results in an
ASIC characterization of the proposed architectures.
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