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ABSTRACT
In this paper, we propose a multi-agent approach for solving the
multidimensional multi-choice knapsack problem (called MMKP).
The MMKP is an NP-Hard optimization problem in strong sense.
It is considered as a combination of two other variants such
as: the multi-choice knapsack problem (MCKP) and the multidi-
mensional knapsack problem (MDKP). The MMKP can be ap-
plied in many problems in real world. It can model many indus-
trial situations, such as capital budgeting, model of allocation re-
sources and finance. The particular properties of the MMKP fa-
vor its decomposition into many MMKP sub-problems with small
sizes. The assignment of sub-problems and the sharing of avail-
able resources are allocated to a first agent. Each subproblem
is then solved by an agent. To work collaboratively, a strate-
gic negotiation between agents has been defined. A coordina-
tor agent (CA) will evaluate and merge the generated solutions
to build a feasible solution to the initial problem. The choice
rules of the CA is modeled as a multidimensional knapsack prob-
lem (MKP). The proposed method is able to solve several in-
stances of literature effectively, in particular for large size instances.
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Keywords
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1. INTRODUCTION
The multidimensional multi-choice knapsack problem (MMKP) is
an extended variant of the classical knapsack problem (KP) [6]
that is classified into the most complex combinatorial optimization
problem. In MMKP, we are given a set of item groups. Each item is
characterized by a profit and requires certain resources represented
by a weight vector. To solve the MMKP, we must to pick only one
item from each group such that all the resource constraints are sat-
isfied and to find the subset of items whose the sum of profits values

are maximized. Formally, the MMKP can be written as follows :

Maximize
n∑

i=1

ni∑
j=1

cijxij (1)

Subject to
n∑

i=1

ni∑
j=1

akijxij ≤ bk , k = 1, . . . ,m (2)

ni∑
j=1

xij = 1 , i = 1, . . . , n (3)

xij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , ni (4)

the vector b=(b1, b2, . . . , bm) represent the capacity of
the all knapsack resources, and a set of n item groups
N={N1, . . . ,Ni, . . . ,Nn} where every group i, i=1, . . . , n
has ni items. Every item j, j=1, . . . ni, of the ith group has
a non-negative profit value cij , and requires an amount of
resources aij=(a1ij , a

2
ij , . . . , a

k
ij). The weight terms akij (with

1 ≤ k ≤ m, 1 ≤ i ≤ n, 1 ≤ j ≤ ni) must be positive. It is worthy
to note that xij takes either 1 or 0, which means that item j of
the ith group is picked or not, respectively. To eliminate trivial
solutions, we assume that for all 1 ≤ j ≤ ni we have :

n∑
i=1

min{akij} ≤ bk ≤
n∑

i=1

max{akij} k = 1, . . . ,m (5)

Constraints (2) represent the capacities knapsacks constraints.
Constraints (3) ensure to choose exactly one item of each group,
and constraints (4) for the integrality (0or1).The maximization of
the total profit is modeled by the linear objective function (1).

The remainder of the paper is organized as follows. Section 2
presents a brief reference of some relevant related work for the
MMKP. We describe our contribution in section 3. We explain how
an MMKP can be divided into many subproblems an how can be
solved using agents. We report the computational results in Section
4. We discuss the essential and the futures works of our contribu-
tion in Section 5.

2. RELATED WORKS
The MMKP is the result of merging the Multi-choice knapsack
problem (MCKP) [6][7] and the Multidimensional knapsack prob-
lem (MMDKP) [2][3][15][16]. It is obviously NP-hard[8][9]. The
MCKP is a special case of the MMKP if (m = 1) [13] [27]. The
MMKP becomes an MDKP by removing choice constraints (3) and
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considering only one group of items (n = 1) (all objects are in the
same group) [26].
The first algorithms for the MMKP are due to Moser et al. [4] in
1996. The authors have proposed heuristics using Lagrangian re-
laxation that starts by finding a first feasible solution, and switches
repeatedly objects to improve its quality. In 1998, Khan et al.[1]
have designed a method using the aggregate resources introduced
by Toyoda [17] for the MDKP. More detailed information for the
MDKP can be found in [12][15][16] and [22]. In [18], Parra-
Hernandez and Dimopoulos transform an algorithm due to Pirkul
[29] for MDKP to solve the MMKP. First, they relax the choice
constraint (3) and transform it into

∑ni
j=1 xij ≤ 1. This means that

at most one object can be selected in each group. They improve the
solutions obtained by Akbar et al. [30] but penalized with a signif-
icant increase in computation time. Hifi et al. [17] propose several
approaches for the MMKP. They investigate two algorithms that
are later included in a main algorithm. The first is a constructive
procedure to product an initial feasible solution. The second aimes
to improve the quality of the solution found. The main algorithm is
a guided local search that uses a penalization strategy. In Mansi et
al. [31] and Shojaei et al. [32], the authors summarize the state of
the art of the best approaches proposed for the MMKP. Mansi et al.
[31] investigate an iterative algorithm to find an upper and lower
bounds for the optimal solution of the MMKP using different fam-
ily of cuts. Mansi et al. [25] describe a new linear programming
relaxations based on solution which reduces the problem by fixing
some particular variables. These solutions are used to update the
global lower and upper bounds. Akbar et al. [30] obtained good
results especially for the uncorrelated instances when compared to
the algorithms of Moser et al. [4]. In doing so, they use a genera-
tion of convex hulls and the aggregation of MDKP constraints into
a single one using a penalty vector.
In [20], Chaitr et al. provide an empirical study on particular test
instances to show the performance of their greedy heuristics for the
MMKP.
In [24], Cherfi and Hifi describe an exact approach for the MMKP
that uses a variant of the column generation algorithm and a round-
ing heuristic to solve some of the problems at the branching nodes.
The authors compare their approach with the heuristic described in
[18] using a set of benchmark instances. In 13 of 30 instances, the
value of the best known lower bound was improved.
Cherfi et al. [24] describes three new approaches for the MMKP.
The patterns are, respectively, based on a local branching algo-
rithm, on a hybrid algorithm combining local branching with col-
umn generation, and on a truncated branch-and-bound algorithm
that embeds the previous hybrid method.
Htiouech et al. [13] describe an oscillation heuristic which explores
both sides of the feasibility border; it uses surrogate constraint in-
formation for building the choice rules. In order to strengthen their
constraint information, the authors enhance the method with con-
straints normalization. In [27], Htiouech et al. propose a tabu search
algorithm using a Lagrangian relaxation informations to generate
others choice rules. Numerical results show that the performance
of his approach is better than previously published results.
In [36], Chen and Hao propose a ’reduce and solve’ heuristic that
combines problem reduction techniques with integer linear pro-
gramming. Their method recognizes variables which are highly
likely to be part of the optimal solution and fixes them to one (group
fixing).
More recently, Stefan Vo and Eduardo Lalla-Ruiz [33] gives a refor-
mulation of the MMKP. A set of partitioning problems are proposed
to allow for new insights into modeling the MMKP. The computa-
tional experimentation provides new insights into the problem it-

self and shows that the new model is able to improve the best of the
known results for some of the most common benchmark instances.
Multi-agent systems can be defined as computational systems in
which several agents interact or work together in order to achieve
goals. In recent years, agent-based computation methods have
gained great importance from the artificial intelligence research
community [37] [38]. To our knowledge, very few papers ad-
dressing the solving of knapsacks problem family by multi-agents
systems are available. In [34], a distributed algorithm is proposed
for the 0−1 knapsack problem based on the mobile agent, and it is
feasible and effective in theoretical analysis. The authors combine
the mobile agent technology with a traditional parallel algorithm of
the knapsack problems. The theoretical analysis demonstrates that
the algorithm has smaller communication spending and good load
balance for certain nodes. In [35], Brent A. Smolinski introduces a
market model based on agent decomposition and market auctions
for approximating the 0-1 multiple knapsack problem, and an
algorithm that implements the proposed model.

More recently, Ben rejeb, Htiouech and Bouamama [28] pro-
pose a new approach to solve the MMKP using CPU-GPU
architecture using CUDA. To do this, the authors apply an efficient
parallel implementation of the branch and bound algorithm
developed by Hifi and Sbihi et al. [17] on a CPU-GPU.

In this paper, a multi-agent system is proposed for the MMKP. We
describe how agents should cooperate and negotiate extra resources
to solve their subproblems and how to assign sub-problems effi-
ciently to each agent. We explain how to define each sub-problem
by a set of groups starting from the initial problem, redistribute
the resources to the sub-problems an solve them using autonomous
agents.

3. METHOD IN DETAILS
Different variants of knapsack problems are found in the literature
[19][9], including, the multidimensional (MDKP)[2][3], multiple-
choice (MCKP) knapsack problems[10][11], and bounded prob-
lems [12], and others. The MMKP is a variant of the MDKP where
items are divided into groups, and exactly one item per group must
be selected. In this section, we use a decomposition of the initial
problem into a set of sub-problems which will be executed inde-
pendently and concurrently. This decomposition is possible thanks
to the properties of the MMKP problem where all groups of objects
are disjoint. If we assign to each sub-problem a part of the available
resources, it becomes a new MMKP problem.
Finding a feasible solution to each sub-problem will necessarily
lead to a feasible solution of the initial MMKP. The merging of all
feasible solutions of sub-problems provides feasible solution of the
initial MMKP with a profit equal to the sum of all profits of sub-
problems (Fig. 1). The division phase of the initial MMKP into
several smaller MMKP amounts to choosing the right parameters
in order to distribute the available resources proportionally to the
resource vectors of each object. The quality of our multi agent sys-
tem should specify :

(1) How the assigning agent (AA) should assign the part of re-
sources for each agent from the initial resource vector b.

(2) The performance of the used algorithm by agents to solve its
problems and the result of the negotiations between CA and
executive Agents for extra resources.
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Fig. 1. The principle of AMMKP

3.1 Resources assigning
The task of the assignment officer (AA) is the most delicate. In-
deed, AA must take into account several parameters, such as the
profits of the objects, the resource vectors of each group of objects.
AA will classify groups of objects with the closest characteristics,
and choose them for assigning to the same sub-problem. This strat-
egy allows us to minimize the resolution efforts to the agents, since
the sub-problems to be solved will have very close correlations.

3.2 Behavior of agents
In this work, each agent is responsible for solving a part of the ini-
tial problem. First, a Coordinator Agent (called CA) divides the ini-
tial problem into several sub-problems using rules defined in sub-
section 3.1. Then, each sub-problem will be assigned to an agent
with its part of resources. Each agent is responsible of the reso-
lution of exactly one sub-problem. During the resolution, agents
could negotiate CA for additional resources to improve the quality
of solutions. This negotiation is done by sending a message to CA
containing the missing resources vector and the estimated improve-
ment value.
The negotiation and decision to distribute extra resources are made
through CA, which decide to respond positively to an agent’s re-
quest or not.
Probably, CA could receive many agents messages for additional
resources.
The CA tries to satisfy agents which will offer the best (in terms of
objective function value) and the most economical (in terms of re-
source consumption) improvements. This situation can be modeled
formally as a multidimensional knapsack problem as follows :

Maximize
na∑
i=1

Aixi (6)

Subject to
n∑

i=1

δji xi ≤ Bj , j = 1, . . . ,m (7)

xi ∈ {0, 1}, i = 1, . . . , na (8)

Where Ai represents the improvement value proposed by the agent
i, and δji is the extra resource required by the agent i in the dimen-
sion j. The solution of this problem represents the list of agents that
CA can satisfy. The agent having completed its job returns a list of
best solutions found, and must imperatively return the remaining
resources to the CA to satisfy more requests for other agents.
A collector agent (Called COA) is responsible for gathering and
merging solutions to build the final solution of the initial MMKP
problem. It can decide in some cases to refuse the quality of solu-
tions provided by some agents and require to improve it by provid-
ing more resources.
Each agent has a list of algorithms. The choice of the algorithm
to use is primordial. Each agent uses rules to choose the appropri-
ate algorithm for the resolution of its sub-problem. We propose, in
our case, an exact and an approximate approach from the litera-
ture. The exact algorithm used is proposed by Sbihi in [23]. The
author uses a branch and bound algorithm with the best-first search
strategy.The algorithm becomes very greedy when the number of
groups is greater than 10. When the sub-problem is still relatively
large (more than 10 groups) the agent could use the heuristic due to
Htiouech et al. [27] which explore both sides of the feasibility bor-
der to find a hight quality solution in a reduced time. This heuristic
involves tabu search techniques and starts by either feasible or not
feasible solution.
To improve the quality of the solution S by CA. The procedure pro-
posed by Htiouech et al. [13] use surrogate constraint information
as choice rules to intensify the research. The authors use a normal-
ization phase to strengthen the surrogate constraint information in
order to improve the computational results.

4. EXPERIMENTATIONS AND TESTS
4.1 Experimental design
In this section, we detail the computational results provided by
our approach (called AMMKP). We compare our heuristic to other
methods from the literature.
The set of 13 regular instances (named I01 − I13) due to Khan
et al. [6] are correlated instances and frequently used to test recent
MMKP algorithms [40] [13][41]. For each instance, we present in
Table 1 the number of groups n, the number of items ni in each
group i, the number of constraints m and the total number N of
variables N =

∑n
i=1 ni.

4.2 Experimental results
Table 2 shows the performance results of different approaches in-
cluding ours. To evaluate our algorithm, we compare the results
(Table 2) with existing literature approaches for the MMKP, namely
respectively, Moser [4](Moser in 1997), Iqbal et al. [21](Ant in
2010), Htiouech et al. [13](OSC in 2013) and Xia et al. [41](SLS
in 2015). The values in bold indicate that our results are greater
than or equal to the best results. The available resources vector is
decreased by a factor f = 5% and given to CA for more flexibility
to satisfy agents requests. We conduct experiments on a intel i5 2.3
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Table 2. Solution Quality Comparison

Inst Moser Ant Osc SLS AMMKP #agent

I01 151 173 173 173 173 1
I02 291 364 364 364 364 1
I03 1464 1602 1594 1602 1594 2
I04 3375 3569 3514 3592 3592 2
I05 3905.7 3905.7 3905.7 3905.7 3905.7 3
I06 4115.2 4799.3 4799.3 4799.3 4799.3 3
I07 23556 24159 24162 24311 24310 5
I08 35373 36240 36405 36463 36530 8
I09 47205 48367 48567 48580 48711 10
I10 58648 60475 60858 60661 60911 12
I11 70532 72558 73022 72778 73200 15
I12 82377 84707 85284 84889 85338 18
I13 94166 96834 97545 97082 97744 20

Table 1. Instances details

Inst n ni m N

I01 5 5 5 25
I02 5 10 5 50
I03 15 10 10 150
I04 20 10 10 200
I05 25 10 10 250
I06 30 10 10 300
I07 100 10 10 1000
I08 150 10 10 1500
I09 200 10 10 2000
I10 250 10 10 2500
I11 300 10 10 3000
I12 350 10 10 3500
I13 400 10 10 4000

GHz machine. All procedures were implemented in Java, we use
the Java Agent DEvelopment Framework (JADE) platform version
4.4.0 to implement agents.
The values in bold indicate that our results are greater than or equal
to the best published results. We initially noted that our approaches
could generate a feasible solution for all instances. We come to
this success thanks to the strategic distribution of resources (sub-
section 3.1). A top view also shows that the quality of solutions is
interesting : greater than or equal to the best solution among those
Moser, Ant, Osc and SLS are found in 11/13 cases. The exceptions
being for instances I03 and I07 that achieve an objective function
value 1.08% close to optimum are due to the parameters choice.
This shows that our approach based on the decomposition of the
initial problem in several sub-problems provides a good start for
the agents which guide the search process towards the elite solution
areas.
We benefit from the fairly important amount of resources that is left
to select promising items not selected in their sub-problems due to
lack of available resources. For large instances (I07 − I13), our
approaches give the best results in a very short time (< 10s).
AMMKP provides solutions with total value on average equal to
0.81% close to the optimum and better performance than those ob-
tained by Moser [4]( 3.62%), Iqbal et al. [21](1.58% ), Htiouech et
al. [13](1.03% ) and Xia et al. (1.26% ). For instance I13 (which
is a very large instance of MMKP; 4000 variables), note that our
approach takes more lower computational time to reach its result
which is 0.69% of the optimal solution (given by CPLEX).

5. CONCLUSION AND FURTHER WORKS
In this work, an agent-based approach to solve the multidimen-
sional multi choice knapsack problem has been proposed. Our so-
lution seems to confirm that agent-base computing can provide
important advantages in term of computational times, thanks to
their ability to divide the initial MMKP instance in several sub-
problems.
Experimental results show that AMMKP produces a very compet-
itive solutions quality. We believe first, that it is possible to use a
multi-agent system effectively to implement a decomposition based
optimization approach, second, that our approach can be adapted
to solve other variants of knapsack problems successfully. Future
work includes using other efficient algorithms by agents could give
more flexibility and intelligence for agents.
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