An Enhanced Detection Technique for Blackhole Attack in MANET

Nivedita Leo
1PG Scholar, Department of Computer Science Engineering, GGITS, Jabalpur, M.P, India

Sharda Patel
2Asst.Professor, Department of Computer Science Engineering, GGITS Jabalpur, M.P, India

ABSTRACT
A mobile ad-hoc network (MANET) is a self-optimizing infrastructure-less network. AODV (Ad-hoc On-demand Distance Vector) routing protocol is a loop free protocol used in ad-hoc networks. It is designed such that it can self-start in an environment where all the nodes are mobile in nature. It can also resist a variety of network behaviors such as mobility, failure of links and much more. The ad-hoc network is susceptible to black-hole attack. In a black hole attack, the router drops the packets instead of relaying them and is a type of denial-of-service attack.

The proposed work enhances the AODV routing protocol for detecting a black hole attack more efficiently and hence reducing the delay and communication overhead in the MANET. In the proposed work, the behavior of the source node is modified by broadcasting the pirated RREQ which includes its own sequence number instead of destination sequence number and preprocess RREP () function is also added which makes it more secure than the existing solutions. For this the network simulation 2.35 is used. The results obtained from the proposed methodology shows that the end-to-end delay has been decreased; packet delivery ratio and throughput have been increased.

Keywords
MANET, AODV, Black hole Attack, NS-2

1. INTRODUCTION
Mobile ad-hoc network (MANET) has various properties such as operation flexibility and simple installation. Due to these properties, over the last few years, many researchers have shown their interest in MANET. In Ad-hoc network all nodes are mobile, there is no physical connection while communicating with each other. One of the main characteristics of it is its ability to operate without any central coordinator. There are many real-world applications of this network, ranging from military to civilian, in search and rescue missions, in the collection of data’s, and in virtual classrooms and conferences. Multi-hop radio relaying results in frequent link breakage due to mobile nodes in the network. It also has a resource constraint like bandwidth, computing power, battery lifetime and many more. [7]. As there are various functions that take place in the MANET like packet forwarding and others, the security is one of the essential components.

One of the most popular routing protocol used in MANET is Ad-hoc on-demand distance vector (AODV) routing protocol. As compared to others, AODV routing protocol offers several benefits such as dynamic in nature, self-starting, and multiple-hops routing. Furthermore, it can adapt various functions of MANET such as the change in topology, loop-free, and can automatically reject the inactive routes [2]. Unfortunately, AODV routing protocol is vulnerable to many attacks. Among them, the blackhole attack is one of the most critical attacks in AODV based MANET. This attack occurs by sending false routing information to the victim nodes to cause fake route entries of nodes in the routing tables [11]. As a result, many fake routes come into existence and cause a bottleneck in the communication channels.

Figure 1: Mobile Ad-Hoc Network

Figure 2: Propagation of RREQ
1.2 Black Hole Attack

Black holes in the network refer to the location where an incoming or outgoing packet is silently discarded (or “dropped”), a source has no information about the data that did not reach its intended recipient. The black hole intruder enters to the broadcast group and tries to separate the packets from the multicast. This type of attack deletes one or more of the recipient packets instead of sending them, as a result the packet delivery rate becomes low [5, 12]. The black hole node waits to receive a RREQ. It answers to the RREQ node before the other nodes do, without verifying its routing list and thereby introducing itself as a fittest path from all the other nodes in the whole network and succeed in gaining all network packets, and can destroy entire network paths and prepare a DOS attack [15, 3, and 4].

Dhama et al. [13] proposed a detection of black hole attack and prevention mechanism for mobile ad-hoc networks. In this paper they introduce a cross layer queue at the transport layer so that when black node is detected or when a link is broken the packets can be buffered at transport layer queue mean while the nodes will find a new route to the receiver.

Limitation: Improvement over protocol is required so that even when mobility of nodes is increased, the through put will remain same.

In [8] Sharma and Bisen, proposed a detection as well as removal of black hole attack in Manet. Here we have noticed that, there are two mechanisms based intrusion detection drop_ratio_analysis and trap_request for detecting and preventing blackhole attacks. Limitation: increases network overhead.

3. PROPOSED WORK

In this section, the algorithm to perform the enhanced detection technique for black-hole attack is disclosed:

a) The source node broadcasts the pirated RREQ packet by the whole of its own source sequence number and address instead of destination sequence number and destination address.

b) When an intermediate nodes receives the pirated RREQ packet, the dealer node alternately calls for Preprocess RREP () method and stores all newly created RREP in the routing table new_RREP tab. Each participant in routing table is assigned by source sequence number.

c) It compares RREP dealer sequence number from the new_RREP_tab and RREQ source sequence number from routing table. If RREP source sequence number is around greater than RREQ source sequence number, the source node discards this position entry in the new_RREP_tab, the table is not empty.

d) If new_RREP_tab is not empty, it will associate the dealer sequence number in pirated RREQ packet it received by the whole of the sequence number of the source described in the table.

e) As the source node sends its own sequence number, it will be more indisputable that it will be the fresh one. The intermediate node will have the source sequence less than the described in pirated RREQ packet. So it will not reply mutually RREP packet.

f) But, if in the network there reside any blackhole node previously it advertises itself as having the shortest path with highest source sequence number and will reply with the RREP packet.

g) The source node will then detect the black hole nodes exist in the network.

Pseudo code of proposed method

Notations:

P: Packet
SN: Source_node
DN: Destination_node
IN: Intermediate_node
RREQ: Route_request
RREP: Route_reply
HC: Hop count
Hdr: Header
Src: Source
Sq. N.: Sequence Number

Instead of destination seq. no. Limitation: In the absence of timer it increases end-to-end delay and also increases the network overhead.
Drp: Drop
Rcv_time: receiving RREP time.
wait_RREP_time: Waiting time for RREP at source Node.
storeEntry: routing table entry for storing RREP_Entry.
new_RREP_tab: new routing table for storing routing table entry.

Step: 1- // Incoming packets //
// There are four types of controls packets in AODV //
Switch (AODVTYPE_P)
{
Handler()
}
If (AODVTYPE_P_RREQ)
{
// if I am the source or previously seen it //
Do (“Drp_P”);
}

Step: 2- // BlackHole node gets RREQ packet for Establishing a fake route to destination //
blackholeAODV:: recvRequest (packet *p) {
Struct hdr_ip *ip = HDR_IP(P);
Struct hdr_AODV_request *rq = HDR_AODV_request(p);
BlackholeAODV rt_entry *rt;
}

Step: 3- // BlackHole node creates a RREP packet immediately to respond this route request packet //
Send reply (rq ->rq_src)
// impose I am not the destination, but I may have a fresh enough route //
Sq N = max [SqN(u_int32), rq->dst_Sq N >rq_Src_Sq N];
// Comparing of Seq.No.

Step: 4- // when source node got RREP packet from malicious blackhole node //
Preprocess_ RREP_RecvReply (packet p)
{
RrepHeaderRREP_Entry;
P_->RemoveHeader (RREP_Entry);
Rcv_time = receive RREP;
Set_time = Rcv_time + wait_RREP;
storeEntry.add(RREP_Entry);
}

Step: 5 // Store new_RREP tab entry//
While(Rcv_time <= Set_time)
{
new_RREP_tab.add(storeEntry);
}

Step: 6 // if new_RREP_tab is not empty//
While (new_RREP_tab is not Empty)
{
If (RREP.Src_SqN.storeEntry-RT.Src_Sq N >)(RREQ.Src_Sq N)
{// Blacklist the node(Node is attacker) //
new_RREP_tab.DeleteRout(RREP_Src_SqN.storeEntry)
}
Choose packet from new RREP tab and call normal method RecvReply (Packet) of AODV.
}

Step: 7 End

Figure 5: Flowchart of proposed work

4. PREVENTION OF BLACKHOLE ATTACK THROUGH MODIFIED AODV
The changes are done in the AODV protocol. By doing so, the effect of the Blackhole node attack is decreased the overall throughput and packet delivery ratio is increased. To implement it, the simulation of blackhole node attack in AODV is done by using Network Simulator (version 2.35). A new protocol is implemented after modifying AODV in which the data packets are bypassed. For evaluating the performance of new protocol, the various simulation parameters are needed such as, traffic mobility model and many more. The following parameters are used in performing the simulation.
Table 1 Simulation Parameters

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel_type</td>
<td>Wireless_channel</td>
</tr>
<tr>
<td>Radio_propogation_model</td>
<td>Two_ray_ground</td>
</tr>
<tr>
<td>Mac_type</td>
<td>802.11</td>
</tr>
<tr>
<td>Antenna_model</td>
<td>Omni directional antenna</td>
</tr>
<tr>
<td>Number_of_mobile_nodes</td>
<td>50</td>
</tr>
<tr>
<td>Routing_protocol</td>
<td>AODV</td>
</tr>
<tr>
<td>Queue Length</td>
<td>150</td>
</tr>
<tr>
<td>Simulation Area</td>
<td>1000*1000</td>
</tr>
<tr>
<td>Mobility speed</td>
<td>0-10 m/s</td>
</tr>
<tr>
<td>Paused time(seconds)</td>
<td>1-2s</td>
</tr>
<tr>
<td>Traffic</td>
<td>CBR(Constant bit rate)</td>
</tr>
<tr>
<td>Packet size</td>
<td>512 bytes</td>
</tr>
<tr>
<td>Simulation time</td>
<td>300s</td>
</tr>
</tbody>
</table>

5. RESULTS AND GRAPHS

In this section, the results obtained from simulation on various scenarios are presented and discussed in detail. The Blackhole attack is simulated and the effect of an attack on the basis of performance metrics such as Packet Delivery Ratio (PDR), Throughput, End-to-End Delay (EED) is determined by varying mobility speed and number of nodes. Simulation parameters used to build the scenarios are shown in table 1. Simulations are performed using NS-2(version-2.35)

The comparison of AODV, Black hole AODV and Enhanced Detection Technique (EDT) AODV is evaluated on the basis of Packet delivery ratio, throughput, and end-to-end delay. In figure 6, the packet delivery ratio is evaluated on the basis of mobility. The packet delivery ratio in case of EDT AODV improves over Blackhole AODV.

Figure 6: Mobility speed v/s Packet delivery ratio

Throughput: In a given amount of time the data packets transmitted across the network from one end to another end is known as throughput. As compared to the black hole attack in AODV the throughput of EDT AODV is improved.

Figure 7: Mobility speed v/s avg. Throughput

End to End delay: It is described as the average time taken by the data packet to be transmitted from source to destination. The end-to-end delay in case of EDT AODV decreases as compared with blackhole AODV.

Figure 8: Mobility speed v/s avg. End-to-End Delay

Figure 9 shows the results of attack with increase in number of nodes in the network. As the number of nodes increases, the PDR of EDT AODV becomes greater than AODV because the enhanced detection technique discussed is able to identify a malicious node which greatly increases the network PDR.

Figure 9: Number of Nodes v/s avg. PDR

Figure 10 shows the effect of AODV under attack and EDT AODV on average end-to-end delay. It can be observe from the figure that the EDT AODV significantly decreases average end-to-end delay.
future work the stability of routing protocol in presence of multiple blackhole node needs to be studied, and should identify which type of protocol gives the best performance if the size of network will increase sustainably and also found out the simulation result in presence of different scenario in large size of the network with cooperative blackhole nodes and number of mobile nodes.

7. REFERENCES

