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ABSTRACT 

Wheeled Mobile Robot (WMR) navigation is subjected to 

noise that brings several factors of uncertainties in the robot’s 

motion positioning as well as pose tracking. The uncertainty 

in motion makes the robot’s pose-tracking to be a difficult 

task. Motion models have been designed to track the robot 

poses within trajectories based on the robot’s inertial velocity-

based information or the odometry readings obtained from its 

wheel encoders. This paper introduces a holonomic motion 

model based on geometric relationships between a robot’s 

laser-scanner and the landmarks in the environment. The 

laser-scanner is attached to an Omnidirectional Mobile Robot 

(OMR) capable of holonomic drive and thus the observation-

based motion-tracking approach can capture the trajectory 

obtained of holonomic motions as well. In this method, 

despite the pioneering methods, the pose information in the 

laser-base-frame is used instead of the robot’s inertial 

information. In this way, a different perspective of sensing is 

provided that can enhance the robot’s pose tracking task. The 

method can be used along with a common robot’s motion 

model to further reduce the uncertainties in motion. The 

experiment is conducted based on a KUKA Youbot equipped 

with a Hokuyo URG-04lx laser range scanner in its front that 

suggests that the method can successfully track the robot’s 

trajectory with a good level of consistency in restricted areas 

where the landmark distribution has covered the whole 

trajectory. 
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1. INTRODUCTION 
Mobile robots in distinction with robots with fixed-base 

platforms operate in more unrestricted workspaces. Mobile 

robots are composed based on wheels, trains, legs, and 

etcetera or based on the combination of several locomotion 

devices [1]. Wheeled Mobile Robot (WMR) is a common 

mechanism used in a broad range of applications. A variety of 

different wheel mechanisms have been utilized in mobile 

robot designs which among them omnidirectional wheels also 

known as multidirectional wheels have attracted a wide range 

of studies. Utilizing an omnidirectional wheel can provide a 

mobile robot with a holonomic drive able to drive in any 

direction without requiring a change in the robot’s heading 

direction. A well-detailed study on different types of 

Omnidirectional WMR (OMR) is available in our previous 

work [2]. Utilizing four Mecanum wheels [3] in a car-like 

configuration results in achieving a stable holonomic drive. A 

study on a four Mecanum wheel-based car-like configuration 

is available in our previous work [4]. OMR pose tracking is 

challenging even though the motion without changing the 

bearing enhances the pose tracking, but the fact is that the 

robot in the real world would have a change in direction as 

well as changes in its rotation anyway. The robot’s pose 

tracking usually is done within motion models which the 

majority of them are designed based on non-holonomic 

WMRs. The existing approaches use either robot’s inertial 

velocity-based information or the odometry readings obtained 

from the wheel encoders and the uncertainty in motion is 

usually dealt with in noise processing in sampling stages 

using methods such as probabilistic motion models in SLAM 

and localization frameworks based on different methods such 

as: particle filters [5], Kalman filters  [6], Extended Kalman 

filters (EKF), unscented KF (UKF)  [7], adaptive UKF  
(AUKF) [8], Markov chain  Monto Carlo [9], etc. Different 

methods involving different areas of studies have been 

conducted to deal with uncertainty in mobile robot navigation 

uncertainty, for instance, heuristic [10], non-heuristic methods 

[11], nonlinear approximating methods [12] and Neural 

Network (NN) [13]  Fuzzy logic approaches [14], [15], etc.  

Localization [16] and pose-tracking, in general, the relative 

navigation is a challenging task especially because of the 

existence of noise in robot’s motion coming from systematic 

and non-systematic errors existing in robot’s mechanism and 

the environment’s dynamic nature. The majority of researches 

has been focused on the effects of the dynamic factors, noise, 

and conditions on the system where they try to improve the 

accuracy of robots observation under uncertainties the 

assumption of most methods is that the motion model is 

obtained and the observation is supposed to overcome the 

errors in motion model. Moreover, most studies have been 

conducted regardless of the differences in the characteristic 

nature of different motion in different types of WMR 

locomotion mechanisms. Furthermore, the Light Detection 

and Ranging (LIDAR) laser scanners have been used to 

determine the locations of landmarks and to establish the map 

of the environment with respect to robot’s poses. In this paper, 

the description of a geomatic motion model based on the 

relationships between the landmarks distributed in the 

environment and the robot’s laser scanner is presented. The 

sensory readings are taken to determine the robot’s poses 

rather than determining the locations of the landmarks as it is 

usually done in observation models. In this way, a 

measurement on the robot’s trajectory obtained through a 

third source of sensing is available that can be used along with 

the robot’s motion model to enhance the robot’s positioning. 

However, the noise formation and inertial-based motion 

model design are out of this scope, this study shows that 

tracking the sensor’s information can result in obtaining a 

robot’s trajectory. Figure 1 shows a schematic of such systems 

that both perspectives of sensing is used. The laser-based 

motion tracking along with robot’s inertial based pose 

tracking can be both used in a motion model to decrease the 

uncertainty. Section 2 mathematically describes the geometric 

relationships among the robot and the landmarks to establish 

the robot’s pose tracking. Section 3 shows a trajectory 

obtained in experiments using a KUKA Youbot WMR and 
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section 4 is the conclusion and future works. 

 

Fig 1: System schematic. 

2. LASER-BASED POSE TRACKING 

2.1 System description 
In our system, the robot is equipped with four Mecanum 

wheels (see Figure 2) capable of holonomic omnidirectional 

motion. A Hokuyo URG-04lx laser range scanner is attached 

to the front side of the robot’s base platform. Hokuyo laser is 

capable of scanning 240-degrees with a maximum radius of 4 

(m) in each beam, however, due to the configuration of the 

sensor in front of the robot 180-degrees of observations is 

available on the system. 

 

Fig 2: Mecanum wheel schematic. 

To track the robot’s positions, the method simply takes six 

angles in the account (see Figure 3) according to the robot’s 

motion direction and the availability of the landmark in that 

range. And thus, only an available landmark in the related 

range will be used in the calculations. There are several 

methods (i.e. triangulation) for landmark detection and 

tracking in literature, simply a definition of a priority to 

choose a landmark is used and then by calculation the 

differences in the angles and ranges, the system obtains the 

robot’s locations and the amount of robot’s movement in 

respect to the landmarks.  

 

Fig 3: Landmark location possibilities. 

The priority is the beam at the range of 𝜏/2 beam for 

longitudinal movement, 0 or 𝜏 degree for the transversal drive, 

and 𝜏/4 for orthogonal movement obtained from a 

simultaneous longitudinal and transversal drive.  

Moreover, the motion model based on velocity or odometry 

information is out of the scope of this paper but it’s assumed 

to be partially available. 

2.2 Pose Tracking 
To keep track of the robot’s motion the approach tracks the 

distance between the robot’s laser scanner and the landmark’s 

location. The priority of choosing a landmark for tracking the 

laser-pose is the ones in the direction of the robot’s motion 

direction. 

 

(a) 

 

(b) 

 

(c) 

Fig 4: Landmarks in motion directions 

In case of motions towards the landmark, in other words, 

when  ∅𝛽−1 = ∅𝛽  (see Fig. 4), the length of motion 𝑙 can be 

measured directly by measuring the length of the beam 

towards the landmark as follow: 

𝑙 = 𝛽𝑡−1 − 𝛽𝑡                                                                        (1) 

𝑍𝑡 = 𝑍𝑡−1 +  
𝑙 cos∅𝑅
𝑙 sin∅𝑅

0

                                                         (2) 

Where 𝛽𝑡  is the laser beam at time t, ∅𝑅  is the angle of the 

beam and 𝒁𝒕 < xt, yt,θt > is the robot pose obtained based on 

the observation in the laser-frame as well. To compute the 

robot’s angle at each measurement the measured x and y are 

used as follow: 

θt = tan−1  
yt

xt
                                                                       (3) 

When the landmarks are not available at front of the direction 

(Figures 5 and 6 (a) parametrization to (b)) or if the robot’s 

motion is curve motion rather than a straight forward motion 

towards the landmark, in other words, if  ∅𝛽−1 <> ∅𝛽 , the 

system still can measure the robot’s position in coordinate 

with the landmark.  In general, if the location of a landmark is 

known the one can calculate the robot’s pose using the 

sensory data and the landmark’s information by having 

𝑋𝑅 =  𝑥𝑟 , 𝑦𝑟 𝑡  , 𝐿𝑘 =  𝐿𝑥 , 𝐿𝑦 𝑡  , 𝑧𝑡 = (𝛽𝑡 ,∅𝑡). 

𝑥𝑡 = 𝐿𝑥 − 𝛽𝑡 cos∅𝑅
𝑦𝑅 = 𝐿𝑦 − 𝛽𝑡 sin∅𝑅

                                                              (4) 

𝑋𝑅 = 𝐿𝑘− 𝛽𝑡 .  
𝑐𝑜𝑠 ∅𝑅
𝑠𝑖𝑛 ∅𝑅

                                                           (5) 

Where 𝑋𝑅  is the robot’s location with respect to a landmark in 

𝑋𝑅𝑅𝑌𝑅  frame. To transform the pose from the laser-frame 

coordinate to world coordinate the approach does as follow: 

𝑋𝑡−1 𝑋𝑡  
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 𝐿𝑘  
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 ∅𝑅 =
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4
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𝜋
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𝑇𝑊 
𝑅 =  

𝑠𝑖𝑛 𝜃𝑤
𝑐𝑜𝑠 𝜃𝑤

                                                                      (6) 

𝑋𝑡 = 𝑋𝑅 . 𝑇𝑊 
𝑅                                                                          (7) 

Suppose that a detected landmark’s location is not known and 

∅𝛽−1 <> ∅𝛽 , the estimation of the robot’s position is 

obtained by taking the relation between two observations at 

two states in account.  

 

Fig 5: Landmarks location in robot-frame and robot 

location in world-frame 𝐗𝐰𝐖𝐘𝐰. 

We define two approaches according to ∅𝑅  the angle between 

two observations at two states, first when ∅𝑅 > 90° and the 

second approach for ∅𝑅 ≤ 90°. 

(a) (b) 

Fig 6:  A location in different robot poses and the gap.  

The idea is that when ∅𝑅 > 90°  it covers a wider area around 

the landmark, so it is more likely for the robot to meet a 

known landmark by which can make a more reliable tracking 

of its pose, and also it consequently does a more reliable 

detection on the new landmark. And to obtain ∅𝑅  the 

following relation is utilized: 

∅𝑅 = ∅𝑡−1 − ∅𝑡                                                                      (8) 

Where the angle of the sensor’s signal in world coordinate ∅ 

at each time step can be transformed from ∅𝑡  the robot’s 

coordinate by applying the following equation: 

∅𝑡 = ∅𝑡 + 𝜃𝑡                                                                          (9) 

When  ∅𝑅 > 90° more informative parametrizations can be 

obtained as shown in figure 7: 

𝑥′ = 𝑘 + 𝑜                                                                           (10) 

𝑦′ = 𝑣 − 𝑖                                                                            (11) 

𝑘 = 𝛽𝑡 cos∅𝑡                                                                        (12) 

𝑜 = 𝛽𝑡−1 sin𝜑                                                                     (13) 

𝑣 = 𝛽𝑡−1 cos𝜑                                                                    (14) 

𝑖 = 𝛽𝑡 sin∅𝑡                                                                         (15) 

We also can measure 𝑙 the traveled distance, by applying the 

law of cosines as follow: 

𝑙2 = 𝛽𝑡
2 + 𝛽𝑡−1

2 − 2 𝛽𝑡 .𝛽𝑡−1 𝐶𝑜𝑠∅𝑅                                  (16) 

𝑙 =   𝑙2                                                                               (17) 

By having these parameters, the system can make efficient 

estimations and measurements on the poses. 

 
Fig 7: Extend parametrization of location-relations 

Firstly, the location of a new landmark 𝐿∗𝑘  can be estimated 

using the known robot’s pose or from a pose obtained through 

a motion model and a motion correction obtained from the 

previous states of the robot. 

𝐿𝑘
∗
 𝑡−1  

= 𝑋𝑡−1 +  
𝑜
𝑣
 . 𝑇𝑊 

R                                                    (18) 

𝐿𝑘
∗
 𝑡  

= 𝑋𝑡 +  
𝑘
𝑖
 . 𝑇𝑊 

R                                                           (19) 

𝜀𝐿 = 𝐿𝑘
∗
 𝑡−1  

−  𝐿𝑘
∗
 𝑡  

                                                              (20) 

𝐿𝑘
∗
 𝑡−1  

 is the new landmark detected at t-1 and 𝐿𝑘
∗
 𝑡  

 is the 

landmark detected at t, 𝜀𝐿  is the error representing the 

difference between these two observations. 𝜀𝐿 <> 0 means 

that the landmark’s location is with error and one of the 

following three conditions may be true: first, one of the 

observations is correct 𝐿𝑘
∗
 𝑡−1  

 𝑜𝑟 𝐿𝑘
∗
 𝑡  

. To figure out if this 

condition is true, the system may compute the robot’s poses 

using the measured landmark’s information to find out which 

one is correct. If a correct measure is found then the system 

chooses the correct measurements for 𝐿𝑘
∗ . 

𝑋 𝑡−1 = 𝐿𝑘
∗
 𝑡−1  

−  
0
𝑣
                                                             (21) 

𝑋"𝑡−1 = 𝐿𝑘
∗
 𝑡  

  −  
0
𝑣
                                                             (22) 

𝛼𝑡  = 𝑋𝑡−1 − 𝑋 𝑡−1                                                               (23) 

𝛼′𝑡 = 𝑋𝑡−1 − 𝑋"𝑡−1                                                             (24) 

The measurements only take 𝑋𝑡−1 in account suppose that the 

system has had the poses correctly estimated so far. By doing 

so several assumptions also can be made as follow: 

1- If 𝛼𝑡 =0 or 𝛼′𝑡 = 0 then the system knows that either the 

observation at t-1 or t is correct and so it can use it for 𝐿𝑘
∗ . 

2- If the both variable 𝛼𝑡  𝑎𝑛𝑑 𝛼′𝑡 <> 0 then the system 

knows that both observations are noisy. On this case, the 

system assumes that however, it knows that the 𝐿𝑘
∗  is noisy 

but still, it doesn’t know if the robot’s pose at the t state 𝑋𝑡  is 

correct or not, so that the approach takes both parameters in 

the account and estimates the location of the landmark using 

both 𝑋𝑡−1 and 𝑋𝑡 . In this way, if 𝑋𝑡  were not correctly 

estimated, it will be corrected in the next state and there the 

location of 𝐿𝑘
∗  also can be re-corrected again. Thus, the 

following equations are driven: 

𝜑 

𝑙 

∅𝑅  𝛽𝑡−1 
𝛽𝑡  
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𝐿𝑘
∗ =

𝐿𝑘
∗
 𝑡  

+𝐿𝑘
∗
 𝑡−1  

2
                                                                     (25) 

𝑋 𝑡−1 = 𝐿𝑘
∗ −  

0
𝑣
                                                                   (26) 

𝑋′𝑡 = 𝐿𝑘
∗ −  

𝑘
𝑖
                                                                      (27) 

𝛼𝑡  = 𝑋𝑡−1 − 𝑋 𝑡−1                                                               (28) 

𝛼′𝑡 =  𝑋𝑡   − 𝑋′𝑡                                                                    (29) 

𝐺 =  − 𝛼𝑡+ 𝛼′ 𝑡
2

                                                                       (30) 

𝑋"𝑡 = (𝐿𝑘
∗ + 𝐺) −  

𝑘
𝑖
                                                          (31) 

𝑋𝑡 =
𝑋𝑡+𝑋"𝑡

2
                                                                           (32) 

𝐿𝑘
′  = 𝑋𝑡   +   

𝑘
𝑖
                                                                   (33) 

𝐿𝑘
′′ = 𝑋𝑡−1 +  

𝑜
𝑣
                                                                  (34) 

𝐿𝑘
∗ =

𝐿𝑘
′′ +𝐿𝑘

′

2
+ 𝐺                                                                   (35) 

3- If 𝛼𝑡 = 0 and 𝛼′𝑡 = 0 then: both observations are correct 

and the error has happened due to the wrong estimation of the 

𝑋𝑡 . If observations are more likely to be correct (𝜀𝐿 = 0), to 

check the uncertainty in robot’s poses the one can use the 

following relation: 

𝑙′ =  
 (𝑥𝑡−𝑥𝑡−1)2+(𝑦𝑡−𝑦𝑡−1)2

2
                                                  (36) 

𝜀𝑥 = 𝑙′ − 𝑙                                                                           (37) 

If 𝜀𝑥 = 0, the method defines the poses of the robot and 

landmarks as reliable estimations. If 𝜀𝑥 ≤ 0.5 for a new 

landmark, it flags the 𝑋𝑡  pose as an uncertain pose which means 

this pose cannot be used for another new landmark detection. 

However, the topology of the environment in the system is in 

such a way that the robot would not meet two new landmarks in 

a row, hence, the robot will be able to correct its pose in its next 

state by using known landmark information. If 𝜀𝑥 > 0.5m it 

means the misallocation is over half meters and probably there is 

a risk of robot’s platform collision or large wheel slippage, in 

other words, practically the system has entered a critical state 

and out of usage. 

When  ∅𝑅 ≤ 90°, suppose that the landmark location is not 

known, the system can measure the landmark’s position through 

the second approach. Figure 8 shows two examples where ∅𝑅  is 

smaller than 90 degrees. 

𝐿𝑘  𝑡−1  
= 𝑋𝑡−1 +  

𝛽𝑡−1 𝐶𝑜𝑠∅𝑡−1

𝛽𝑡−1 𝑠𝑖𝑛 ∅𝑡−1
                                         (38) 

𝐿𝑘  𝑡     = 𝑋𝑡 +  
𝛽𝑡  𝐶𝑜𝑠∅𝑡
𝛽𝑡  𝑠𝑖𝑛 ∅𝑡

                                                     (39) 

𝐿𝑡−1 = 𝐿𝑘  𝑡−1  
. 𝑇𝑊 
𝑅                                                              (40) 

𝐿𝑡 = 𝐿𝑘  𝑡−1  
. 𝑇𝑊 
𝑅                                                                  (41) 

 

(a) 

 

(b) 

Fig 8:  location-Relation possibilities when ∅𝐑 < 90. 

By having landmark 𝐿𝑘  being observed at two different states 

a stronger belief can be made. One way is to simply take the 

average value between these two observations on the same 

landmarks, in case if one of the observations were not 

accurate: 

𝐿 𝑘 =
𝐿𝑡−1+𝐿𝑡

2
                                                                         (42) 

Then by computing 𝑋𝑡  robot’s location according to 𝐿 𝑘  the 

new observed landmark’s location and 𝑍𝑡  the beams from the 

laser range finder, it can be estimated that which one of the 

observations had come with a better measurement: 

𝑋 𝑡 = 𝐿𝑘 − 𝛽𝑡−1.  
cos∅𝑡
sin∅𝑡

                                                       (43) 

𝑋 𝑡−1 = 𝐿𝑘 − 𝛽𝑡−1.  
cos∅𝑡−1

sin∅𝑡−1
                                               (44) 

With 𝛼𝑡 = 𝑋 𝑡-𝑋  ,  𝛼𝑡−1 = 𝑋 𝑡−1 − 𝑋𝑡−1, the system can decide 

with comparing their differences: 

𝑓 𝑥 =  

𝐿𝑡−1 , 𝛼𝑡−1 < 𝛼𝑡
𝐿𝑡       , 𝛼𝑡 < 𝛼𝑡−1

𝐾. 𝐿 𝑘 , 𝛼𝑡 > 0.5 𝑎𝑛𝑑 𝛼𝑡−1 > 0.5  (𝐷𝑖𝑠𝑡𝑜𝑟𝑡𝑒𝑑)

         (45) 

K is the gain in case if both observations had over 0.5(m) 

differences which means either the observations are false or 

the position estimated by the motion model is false, in other 

words, the system would know that in this case a non-

systematic uncertainty by some other factors, either related to 

the robot platform such as wheel slippage, drift, etc. has 

happened or the beams from the landmark are distorted (i.e. 

glassy landmarks). If the information of such landmarks were 

important, the system could deal with it by flagging the 

landmark as a distorted landmark and use some sampling 

algorithms to identify a better belief which that would be out 

of the scope of this paper. In this paper, the landmarks are not 

a priority to this project so that the system can isolate the 

possible uncertainty in robot’s position and define K=0, in 

other words, it deleted the landmark and let the uncertainty of 

the robot’s location to be dealt with in next states where the 

robot would meet some known landmarks.  

 
(a) 

 
(b) 

Fig 9:  Observations when ∅𝐑 ≤ 𝟗𝟎°  and ∅𝐛 ≈ 𝟎 
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Furthermore, in this approach, the landmarks are taken the 

same as the tables or the spots landmarked with special 

objects where the robot is supposed to meet at each stop, 

however in case of larger environments with less number of 

landmarks where not all motions would have an available 

landmark to use as its  coordinator for position correction 

using the measurement, the robot may still be able to track its 

positioning by solely using the motion model until it 

eventually detects an available landmark, then the system will 

correct the robot’s movements according to the detected 

landmark under the condition that the motion uncertainty will 

not be more than a meter, the measurement uncertainty will 

not be over 0.5 (m) and the position of the essential landmarks 

related to robot’s task trajectory are known. 

Moreover. places without landmarks can be assumed to be 

known if there are known landmarks in other observable 

locations. In other words, not having any available landmarks 

at a specific space can be considered as an abstract landmark 

that can still give some information about the robot’s 

approximate location as well. This idea is especially useful to 

locate the robot where it is confused between several poses.  

 

Fig 10:  Pose relations in coordination to landmarks. 

S represents the ranges that would be available to the robot. It 

indicates that if the robot were in the S range, it could detect 

the landmark 𝐿3. With S an approximation of the place where 

surely robot is not located can be obtained. Having a close 

look at figure 10, one can predict that the robot’s more likely 

position is in the area (𝐴 × 𝐵) that can provide the system 

with the information that determines the robot’s location at 

the time 𝑋𝑡 ′ is surely in  (𝐴 × 𝐵) area and thus if the robot’s 

pose is estimated out of this area an error in robot’s motion 

has happened that can be dealt with in the same manner as it’s 

described earlier in this paper. A and B can simply be 

calculated from 𝑋𝑡  and 𝑋𝑡−1 considering the robot pose on its 

path 𝑋′
𝑡 
′
−1

to 𝑋𝑡 ′. However, in a more reliable approach, in 

cases where a prior map exists, it’s possible to define this kind 

of area in the map as abstractive landmarks. 

3. EXPERIMENTS 
To experiment with the described approach, a Hokuyo URG-

04lx laser scanner is attached to the front fame of a KUKA 

Youbot OMR base-platform (see Figure 11). The robot is 

equipped with four Mecanum wheels which makes it to be 

capable of the holonomic drive towards 8 directions as shown 

in Figure 12, and the laser is capable of scanning 240-degrees 

with 4 (m) radius range of beams. 

 

Fig 11:  OMR platform. 

The workspace is a static 6 × 6 meters indoor lab environment 

with a flat even surface. There are several cylinder-shaped 

landmarks manually distributed in known locations as well as 

unknown landmarks. The robot is driven to 14 stops with 16 

motion commands. A pre-movement to the navigation is 

executed to calibrate the robot and to tune the motion gains. 

Note that the calibration is not in the scope of this paper and 

the experiments cover the navigation after the robot had set on 

its 0,0 origin. The starting point of the navigation is taken as 

the center of the robot’s world; however, the mapping is not 

covered in this experiment. 

The approximate motion and directions of the robot is 

graphically indicated in Figure 12. 

 

Fig 12:  OMR approximate trajectory. 

Figure 13 shows the robot’s actual trajectory along with 

approximate locations of priorly known landmarks.  

 

Fig 13:  Robot’s Actual trajectory. 
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Figure 14 shows the poses obtained by the pose-tracking 

method. The circles indicate the center of landmarks, note that 

the exact diameter of the landmarks may differ with the real 

objects used in the experiments. In this test, only the robot’s 

pose is in our interest. 

 

Fig 14:  OMR approximate trajectory. 

Figure 15 shows the robot’s poses along with the actual 

trajectory that the robot has traveled. Note that the smoothing 

and trajectory correction due to the overall pass is not carried 

in the primitive motion model, that may cause differences in 

pose-to-pose distances that need to be dealt with. Moreover, 

as it’s indicated there may be several poses where the robot 

would either confuse between similar landmarks facing data 

association problem or no existed landmarks neither an 

abstractive landmark is recognized (see table 1). For this 

reason, once the robot’s pose is computed based on its 

inertial-based velocity, the information can be used for such 

conditions to obtain a trajectory as in Figure 16. 

 

Fig 15:  OMR approximate trajectory. 

 

Fig 16:  OMR approximate trajectory. 

 

Fig 17:  OMR approximate trajectory. 

Table 1. Numeric values. 

Actual robot Pose tracking 

2.07, 0.03, 0 2.05, 0, 0 

2.07, 2.011, 0 2.05, 2.02, 0 

4.091, 4.043, 0 4.26, 4, 0 

4.091, 4.043, 57.2958 4.25, 4,01, 54.2 

4.090, 4.043, 0.0936 4.25, 4,01, 0.07 

2.000, 1.85, 0.0936 1.98, 1.86, 0.09 

2.013, -0.23, 0.0936 1.99, -0.21, 0.09 

-0.057, -0.36, 0.094 - 

-0.037, -2.56, 0.0936 - 

2.096, -2.36, 0.0936 2.08, -2.34, 0.09 

2.096, -2.36, -57.3894 2.078, -2.33, -54.5 

2.096, -2.358, -114.592 2.07, -2.33, -113.6 

-0.11, -2.258, 114.684 - 

0.01, -0.226, -114.52 0.03, -0.23, -114.5 

0.02, -0.226, -57.2958 0.02, -0.22, -56.96 

0.605, 1.796, -57.296 - 

 

The measurements still include some level of uncertainty due 

to some amount of distortion in laser beams as well as the 

differences in detecting the landmark’s center-of-gravity 

measured in different locations. However, as it’s shown in 

Figure 17, the errors are in a reliable range. 

4. CONCLUSION AND FUTURE WORK 
Mobile robot navigation is subjected to noise. Motion models 

are designed to obtain robot pose and trajectory based on 

velocity or odometry information obtained from the robot’s 

inertial information. This paper mathematically indicated a 

detailed geometric pose tracking based on the information 

obtained from a laser-scanner. The method locates the laser 

within the environment in contrast to the common observation 

models that are responsible to locate the landmarks. The laser-

frame is considered as a part of the robot’s base frame that 

results in obtaining the robot’s pose within the presented 
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method. However, there are still several aspects that can be 

further studied. For instance, the landmark detection has a 

significant role in this approach that can be studied in detail. 

Moreover, the offered pose-tracking method can be used in a 

pose-correction method along with another source of sensing 

such as the robot’s traditional motion models. In future work, 

we tend to design a controller to decide between estimated 

poses obtained through an odometry-model and the poses 

obtained from the laser-based pose tracking method to obtain 

a more accurate robot trajectory. As the experiments are 

conducted, the method can be successfully utilized in indoor 

environments, however, by expanding the landmark detection 

task extending to unknown landmark detection, the method 

could be utilized in more complex spaces. 
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