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ABSTRACT 

The operational condition of a machine affects the quality and 

efficiency of its work, and letting a problem arrive in a critical 

state results in negative consequences, which can cause 

equipment loss and extensive downtime in a factory. The 

maintenance of machines, therefore, is a concern that came to 

exist along with the creation of the industry. This work shows 

the development of a platform that takes advantage of recent 

advances in sensor technology and machine learning to assist 

the predictive maintenance process, identifying problems in 

advance before serious failures can occur. The work proposes 

a supervisory system which receives high frequency vibration 

data, stores it, and analyzes the functioning of a machine to 

classify its behavior as normal or anomalous, generating 

alerts. The results achieved show that it is appropriate to use 

machine learning to monitor machines, since well-structured 

algorithms can detect possible problems before they become 

apparent to humans. 
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1. INTRODUCTION 
A deterioration of equipment conditions leads to deviations in 

the production process and a drop in quality. Only proper 

maintenance can guarantee that the process will not lose 

quality due to deviations caused by the equipment [1]. 

In addition to the drop in product quality, the reduction in 

productivity due to unscheduled downtime is an obvious harm 

of the lack of proper maintenance. Less obvious is the drop in 

productivity even if the equipment is not stopped. This 

condition leads the company to look for the origin of the 

deficiency in factors such as tooling, materials, and operators; 

increasing the operational costs in a measurable way, and 

having effects of non-measurable costs, such as the erosion of 

the company's image. [1]. 

Machines are subject to failure in their operation, which 

incurs high costs due to the replacement of more parts and 

time lost while a repair is carried out. 

Preventive maintenance, which takes place at fixed intervals 

of time according to a manufacturer's recommendation, is one 

of the maintenance options. It involves changing parts before 

the time of failure, to reduce the failure rate of the equipment. 

This practice, however, is not the most efficient because the 

intervention in healthy equipment generates costs that can be 

avoided. 

Predictive maintenance, in contrast, is based on the principle 

of analyzing the machine's operating conditions to determine 

whether intervention is required. Thus, maintenance costs are 

restricted to equipment that in fact presents the possibility of 

imminent failure. 

Vibration analysis for diagnosis and condition evaluation has 

a long history of application to mechanical and energy 

equipment. Many types of defects increase the vibration level 

of machines or change their behavior in some way [2]. 

In this context, “subjective monitoring” is the monitoring that 

is performed by maintenance personnel using their senses - 

when a mechanic touches a housing, for example, he can 

perceive its vibration. Thus, a more experienced mechanic can 

provide greater precision in diagnosing a machine [3]. Such 

monitoring techniques, however, have numerous 

shortcomings: the diagnosis is subjective, depends on 

experienced personnel and does not provide continuous 

analysis. 

In recent years, electrical machine condition monitoring 

systems have become increasingly efficient and sophisticated. 

For autonomous monitoring, the vibration must be converted 

into an electrical signal. Some types of hardware that can be 

used are piezoelectric accelerometers and MEMS (Micro 

Electromechanical Systems) [4]. The increasing automation of 

detection processes has made automated diagnostic and 

prognostic systems a valuable tool for maintenance personnel 

and can even replace humans [5]. In this context, machine 

learning is a tool to aid in the decision-making process that 

has been gaining popularity due to its ease of adaptation to 

unfamiliar scenarios and the ability to solve difficult problems 

solved through simple mathematical modeling. Machine 

learning approaches have already been used successfully to 

identify failures in rotating machines [6]. 

The present work aims to explore the field of using machine 

learning for application in predictive maintenance. 

2. BIBLIOGRAPHIC REVIEW 

2.1 Failure prediction methods 
According to [5] existing methods of failure prediction can be 

grouped into three main categories: 

 Traditional reliability method (prediction based on 

past events - preventive maintenance) 

 Prognostic method (prediction based on condition 

monitoring) 

 Integrated method (prediction based on past events 

and condition monitoring) 
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The first and last category, which involve the statistical 

distribution of past events, are not always possible because 

data from past events are only useful for other equipment in 

identical working conditions [5]. Machines in the industry 

often operate under unique conditions and do not have such 

historical data available. 

For the prognostic method based on condition monitoring, the 

predictions are further divided into three subcategories [7]: 

 Physical model 

 Data-driven model 

 Hybrid models, which combine the two previous 

categories. 

The prediction based on condition with a physical model (and, 

by extension, also with a hybrid model) implies the 

construction of a comprehensive mathematical model that 

describes the physical relationships of the system and its 

failure modes. This brings some advantages to the process; 

notably, as physical models do not depend on comparing 

training data, errors associated with data extrapolation are 

reduced and the model is immediately effective. There is also 

the possibility to simulate scenarios for which data collection 

would be rare or difficult, and to determine the operation of 

the machine under adverse conditions [8]. 

However, these models have little scalability and the adoption 

of physical modeling is expensive due to the fact that each 

monitored machine requires a detailed model of its normal 

operation and failure modes. The model is affected in a 

complex way by the operating condition to which the machine 

in question is subjected and by the interaction between its 

internal components. 

In contrast to this, a data-driven model has less need for 

specific knowledge of the domain in which the machine is 

inserted, has greater simplicity, scalability, and reduced 

development cost. Another advantage is the fact that once 

trained, its use is computationally more efficient than that of 

physical models [9]. 

2.2 Indicative factors of machine health 
From the raw vibration data, it is possible to process the signal 

to obtain some characteristics that tell us more than just the 

intensity of vibration at a given time. Some of them are: 

 RMS - root mean square, is a characteristic that 

measures the energy in a signature vibration. It can 

be highly effective in detecting unbalance in 

rotating systems [2]. 

 Kurtosis - is defined as the fourth moment of 

distribution and measures how smooth or pointed 

the distribution is, in relation to a normal 

distribution. It is indicative of large peaks in the 

data set [2]. 

 Peak to peak - difference between highest and 

lowest recorded values. It gives an idea of the 

amplitude of the vibration signal. 

 Crest factor - defined as the largest peak in the 

window divided by the RMS value, a high crest 

factor indicates amplitude values well above the 

average present in the data set. 

These characteristics are scalar obtained through the 

application of a mathematical operation over several points in 

a time series. Thus, they can be more directly compared 

between windows of the same size at different times. 

3. PROBLEM DEFINITION 
Rotating electrical machines are widely used in industries 

such as processing, oil, and gas. These industries need 

machines to operate continuously at an optimum level. The 

performance of such machines is mainly dependent on the 

condition of their components such as bearings, transmissions, 

pumps, compressors, engines, and generators [6]. 

In the industry, the application of preventive maintenance 

occurs through experience or recommendations from the 

equipment supplier and is based on a scientific statistical 

approach. In most cases, it is performed at regular time 

intervals [10]. However, preventive maintenance plans copied 

from the manufacturer's manual in general are not applicable 

because [11]: 

 Each machine works under different conditions and 

environments, and therefore requires different plans. 

 Machine designers often do not have the same 

experience with machine failures and preventive 

modes as those who operate and maintain them. 

 Machine suppliers may have a hidden agenda for 

maximizing parts exchange through plans that 

recommend more frequent maintenance than 

necessary. 

Predictive maintenance, unlike preventive maintenance, is 

characterized by the measurement and analysis of machine 

variables that can predict a possible failure. With this, the 

maintenance team can plan for the intervention and purchase 

of parts (maintenance cost), reducing inventory expenses and 

avoiding unnecessary stops [1]. 

For condition-based predictive maintenance, there are three 

key elements: (i) the collection and storage of information, (ii) 

the conditioning and extraction of learning attributes for 

acquired data, and (iii) the decision process for recommending 

actions maintenance through fault diagnosis or prognosis. [5]. 

The present work aims to develop an algorithm regarding the 

last two points above, adopting the point of view of a system 

that receives vibration data from any source, preferably in real 

time. From this data, the algorithm must predict the 

imminence of a failure. 

4. PROPOSED SOLUTION 
In view of the advantages of predictive maintenance based on 

vibration analysis and prioritizing the flexibility of the 

algorithm to be applicable to different situations in the 

industry, the present work will implement an algorithm and 

platform aimed at vibration analysis for maintenance based on 

condition oriented to data. 

A platform must receive continuous data from a given 

electrical machine to train its condition monitoring model. 

For the development and reliability test of the developed 

algorithms, this work will be used as reference the data set 

referring to a test bench provided by NASA [12]. In the test, 

bearings were subjected to a radial load until they reached a 

point of failure. An example of the raw data contained in the 

experiment can be seen in Figure 1  
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Figure 1 - Visualization for one second of raw data. 

The graph shows the acceleration data recorded by one of the 

sensors, for an interval of 1 second. The X axis indicates the 

measurement number, made at an acquisition rate of 20 kHz. 

The data set consists of windows like this, 1 second each, 

recorded at 10-minute intervals. 

4.1 Time classifiers and aggregate 

characteristics 
One approach of detecting points outside the curve is the 

temporal detection of anomalies, which is concerned with data 

over time. In this context, there are still several subdivisions 

of methodologies that can be used: time or multidimensional 

series, point-to-point, or windowed analysis, continuous or 
discrete series, and availability or non-availability of previous 

anomalous data. [13]. Thus, the presented solution will 

explore the methodologies that use the series of points in 

chronological order (time series) that comes from the 

vibration signals of a monitored electric machine. 

In Figure 2 we can see the result of processing the 

characteristics applied to the data set provided by NASA. In 

this case, windows of one second with an acquisition 

frequency of 20 kHz were computed and measurements made 

every 10 minutes. 

The caption “Ch 1 ... 4” refers to the measurement channels 

(accelerometers for each of the 4 monitored bearings). 

 

Figure 2 - Scalar under windows 

4.2 Grouping classifiers 
The solution developed, therefore, can benefit from different 

approaches, each with advantages and disadvantages. 

Fortunately, work developed in the field of machine learning 

is not necessarily restricted to one method or another; in the 

case of the present work, the temporal analysis or analysis of 

scalar characteristics aggregated over time. 

Clusters are sets of classifiers that aim to increase the 

reliability of a system through the union of several models. A 

grouper, also called a multiple classifier or committee, is a set 

of individual classifiers whose predictions are combined to 

create a new prediction. Clusters have been shown to be an 

efficient way to improve the accuracy of a complex problem, 

transforming it into several subproblems. [14]. 

Figure 3 shows the hierarchy of elements present in a possible 

grouping system for vibration-based maintenance. 

 

Figure 3 - Classifier cascade by grouping 

In the first level, there are the raw data and characteristics 

extracted from signal time windows. These data and 

characteristics alone do not predict the condition of a 

monitored system. Therefore, it is necessary that they are 

consumed by machine learning models (second level). Models 

are trained with known non-anomalous observations and then, 
given a new observation, classify it as normal or anomalous. 

The grouper, in turn, receives the classifications of several 

models on the same observation and determines the final 

classification. It is important to ensure that the grouping 

combination process is robust, as inappropriate synthesis can 

be detrimental to the performance of the model. [15]. 

The specific group chosen for the development of the work 

was Locally Selective Combination in Parallel Outlier 

Ensemble (LSCP) [15]. Being an aggregator classifier, the 

LSCP initially receives several untrained anomaly detection 

sub-models. It then conducts individual training for each of 

them. 

The types of sub-models chosen to use LSCP were as follows: 

 kNN (K-Nearest Neighbor) - Anomalous point 

detection based on the distance from a point to its 

nearest neighbor at level k [16]. 

 LOF (Local Outlier Factor) - Detection of 

anomalous points based on the principle of local 

outlier factors, analyzing the density of points, and 

determining the probability that a given point does 

not belong to the standard set [17]. 

 PCA (Principal Component Analysis) - model based 

on the difference between the values of 

characteristics of greater weight in the data [18]. 

 

Final Model
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5. RESULTS AND DISCUSSION 
Figure 4 shows the results of applying the algorithm to the 

data set of [12] for channel number 1 of test 2. 

 

Figure 4 - Raw data, training, and prediction. 

The graph shows the calculated values of RMS intensity, crest 

factor, peak to peak and kurtosis throughout the experiment. 

The green colored area represents the section used for training 

the model, and the orange colored area represents the points 

for which abnormal functioning was detected and an alert was 

generated. The blank area, therefore, represents the points 

where the operation was analyzed and considered normal. 

For easier visualization of the values of different magnitudes, 

the values shown were normalized to the range of 0 to 1, 

where 1 is the highest intensity reached during the 

experiment. 

For the data window in question, the failure occurred was a 

defect in the outer ring of the bearing. A gradual increase in 

RMS, peak to peak and kurtosis values can be observed in the 

period between 02/16 and 02/17. Approximately in the middle 

of 02/17, there is a big peak in the measured quantities. 

In Figure 4, the model identified the anomaly just before the 

measured values started to rise gradually, and approximately 

36 hours before there was the big peak in machine vibration. 

For the data referring to this experiment (channel 1 of test 2 of 

the dataset), no false positives generated by the model were 

observed (warning triggers without the operation being in fact 

anomalous). 

The training time used was 51 observations, comprising an 

interval of 8.3 hours. As the standard for the dataset, 

observations comprise intervals of 1 second each at 20 kHz, 

spaced 10 minutes apart. 

The supervisory system was developed through the 

integration of the database with Grafana, an open 

visualization solution. The dashboard with information 

captured by the system can be seen in Figure 5. 

 

Figure 5 - Vibration data dashboard. 

In figure 5, the raw data and the status, of anomaly detected or 

not, for the current moment and some previous days can be 

observed. 

The display range can be easily configured to show more 

details or a longer-term view, using the time selector indicated 

by marker 1. There is also the possibility to define a fixed 

interval, so that, for example, the last two days are always 

displayed, with automatic update of the visualization. 

Marker 2 indicates the monitoring station selector. Each 

station can represent, for example, a machine, so it is through 

this control that you define which sensor you want to observe. 

Marker 3 shows the detail of raw data that is obtained by 

placing the mouse over a certain point on the graph. In the 

small window, the actual data for each quantity variable is 

shown, and the exact time of that point are is shown. 

Marker 4 shows the heart-shaped indicator that indicates that 

graph is connected to the alert generation system. When 

passing the red line for a configurable period, an alert is sent 

by the configured means (for instance, by e-mail). 

6. CONCLUSION 
Throughout the work, the necessary steps to create a fault 

prediction system with open-source technologies were 

presented and developed. From the algorithm to the 

specification of the infrastructure used, open solutions were 

found that provided a result that in the eyes of the author was 

satisfactory. 

The results obtained by the algorithm were good when it came 

to predicting failures in stages that are not obvious to a human 

being, and the platform was developed in such a way that the 

system could be easily adapted to a large number of sensors / 

machines. Due to the open nature of the libraries and tools 

used, there is no monetary impediment to anyone who is 

inspired to create a similar system. 

Future works that come to address a similar theme may 

develop, as a suggestion, customizations of the algorithms 

used at a lower level; perhaps with libraries such as 

TensorFlow or Pytorch, which present machine learning tools 

through neural networks, different from the statistical methods 

used by the present work. At the cost of the simplicity of the 

model, greater nuances can be captured in the anomaly 

detection process. 
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