
International Journal of Computer Applications (0975 – 8887) 

Volume 175– No. 12, August 2020 

35 

Distributed Request Tracing using Zipkin and Spring 

Boot Sleuth 

Mallanna S. D. 
Department of Telecommunication, 

Siddaganga Institute of Technology, Tumakuru, 
Karnataka 

 

Devika M. 
Department of Electronics and Communication, 
Brindavana college of engineering, Bangalore, 

Karnataka 

 
 
ABSTRACT 

Modern cloud computing systems have brought scalability 

and agility by enabling the creation of microservices with the 

implementation of the service-oriented architecture (SOA) or 

a fine-grained microservice architecture (MSA). While the 

creation of microservices provides the agility for the 

development, it also brings complexity to the flow request and 

response tracing system-wide. Isolation of faults and the 

origin of the issue becomes a daunting task. Since the services 

can potentially be distributed on multi cloud environments, 

tracing the flow and sequence of calls in the inter service 

communication is quite challenging. Without the innovative 

mechanisms, the service faults cannot be located. Request 

tracing is a concept where a unique identifier is tagged at the 

origin and persisted all the way in the flow of information till 

the life cycle of the request ends. Request tracing is complex 

but can be possible with the help of some distribution tracing 

software. This paper attempts to throw some light on the flow 

of data in a distributed service environment and innovative 

approaches for tracing the request flows. 

General Terms 

Distributed Systems, Cloud Computing, Micro-Services. 

Keywords 

Request Tracing, Microservices, Service Decomposition, 

Spring Boot, Java, Sleuth, Brave and Zipkin. 

1. INTRODUCTION 
With the introduction of the modern cloud computing 

systems, creating, standing up, and deploying the services 

became a ‘walk on the cake’ easy process. It in-turn increased 

the velocity of building the services and delivering the newly 

developed features in a smaller batch with less or no effect on 

the rest of the deployable microservices [6] [7]. 

While creating the distributed microservices brought the 

agility to the development of the business applications it also 

brought complexity to infrastructure and the maintenance as 

explained by authors like Chaitanya K. Rudrabhatla [5]. When 

all the application functionality is built into single monolithic 

unbroken deployable .war or .ear archives, it is much easier to 

debug the applications. 

In the case of a monolithic application intercepting and 

tracing any problem much easy. Is a request getting dropped? 

It’s in the monolithic application. Isn’t a component not 

returning an expected result? It’s in the monolith. Is there a 

memory leak issue? It’s in the monolith. With the introduction 

of the broken distributed microservices everything changes. 

In monolith application, all the requests are handled on the 

single part of the application however once monolithic 

applications are broken down into multiple microservices 

either based on the Single Responsibility Principle (SRP) or 

the Common Closure Principle (CCP), the request can enter 

service and traverse across multiple services before returning 

the response to the API user. For example, when using a 

retails system like amazon, a user needs to add the production 

into a cart and then need to check out from the cart and finally 

make the payment. When a user is trying to pay for the 

product, a payment request can enter from a service endpoint, 

let’s say from the service (S1) and can make multiple internal 

calls with the other services to check various details like 

availability of the product, deliverability of the product, etc., 

let’s say between micro-services(S2-Sn) and finally returning 

the response to the S1. Adding to it, the cloud-first application 

supports dynamic scalability and load balancing. The dynamic 

scalability with load balancing needs to have multiple 

instances of the same services running to service the incoming 

request. In such distributed systems, debugging for bug 

becomes extremely difficult as the request flow must be 

traced across multiple microservices and multiple instances of 

the same services [8]. Distributed tracing helps pinpoint the 

problem where failure occurs. Systems behave differently 

under load and scale. Setting a context helps to identify the 

nature of the requests as they pass through a service. As the 

Josh Long and Kenny Bastani mentioned in the book Cloud 

Native Java [1] - You can’t trace bugs in a system until 

you’ve established a baseline for what normal is. 

In theory, request tracing is easy. Attach a unique identifier at 

the beginning of the request and keep passing it wherever the 

request flows. 

Below image from the documentation [2] better illustrate the 

complexity that a tracing involves on a distributed system. 

 

1.1 Who can use the Distributed Tracing? 
Distributed tracing or distributed request tracing is such a 

useful tool for the IT and DevOps teams. It helps them to 

monitor and debug the failures more efficiently. 



International Journal of Computer Applications (0975 – 8887) 

Volume 175– No. 12, August 2020 

36 

2. TRACER 

2.1 Terminology  
a) Trace ID: Unique identifier that represent each 

incoming request. 

b) Span: As we discussed above, a request can flow 

across multiple service, say, 1 to N. N being any 

number. A Span of a request shows the its journey 

on number of distributed services its covered and 

the response it returned finally. 

c) Tags: These are the used definer annotations of a 

span to query and filter on it. 

d) Logs: Documentation of specific movement or the 

event. 

e) Sampling: Number for Tracer to keep. 

2.2 Tracers 
Tracer created and lives within the application container to 

record the requests metadata and timing when it happens. A 

tracer’s main job is 

- Capture the context and pass metadata in it to the 

next service. 

- Encoding and decoding the context metadata over 

the network calls. 

- Causality tracking: Track the Parent-Child, forks, 

Joins. 

At the beginning of the request, a Tracer Interface should 

create a span and it should it should Extract the metadata 

(Incoming) or Inject the metadata (outgoing). 

Tracer should also record the events information such as the 

component name, API endpoints, etc. 

An illustration shows on OpenTracing[3] 

 

3. ZIPKIN AND SLEUTH 
Zipkin is one of the OpenTracing supported distributed Tracer 

System. It helps gathering the metadata needed to trace and 

troubleshoot the latency problems on a distributed service 

architecture. 

3.1 Zipkin Architecture Overview 
As mentioned on 2.2, tracer live insider the container 

capturing the metadata. Zipkin uses the safe instruments to 

attach the propagationID to tell the receiver that there is a 
trace in progress. Once completed the flow, spans are reported 

to Zipkin for logging and analysis. 

Example[4]: When an operation is traced, when an outgoing 

http request is formed, a few headers are added to propagate 

ID. 

Component which sends the span and metadata to the Zipkin 

Collector is called as Reporter. Zipkin Collectors write the 

trace data to storage which later can be queried for the 

analysis. An illustrative architecture diagram[4] is shown 

below. 

 

Here is an example to show the complete data flow – 

 

3.2 Components of Zipkin 
There are 4 main components 

- Collector: Is responsible for validating, storing, and 

indexing the data for the lookups. 

- Storage: Is where the indexed data is stored. 

Supported DBs - Cassandra, ElasticSearch and 

MySQL 

- Query Service: Tool to query and read the indexed 

data. 

- Web UI: A nice interface for viewing the trace data. 

3.3 Brave 
Brave is a distributed tracing instrumentation library which 

send the trace data to Zipkin. It basically intercepts the 

production incoming request to gather timing data, correlate 

and propagate the trace contexts. 



International Journal of Computer Applications (0975 – 8887) 

Volume 175– No. 12, August 2020 

37 

The data collected would be typically sent to Zipkin server or 

can be sent over to AWS Cloudwatch/X-ray using the 

customized libraries. 

Brave provides a dependency free Java library which includes 

the filters for Servlet and correlate for Log4J.  

3.4 Spring Boot Sleuth 
When build the cloud native Java application, Spring Boot 

provides the best solutions and standup and Deploy the micro 

service with the help of its auto-configurations. Spring Boot 

Sleuth is no exception to it. Spring boot Sleuth has the auto-

configurations for Distribution Tracing. Sleuth is built on top 

the Brave the tracer library. 

Spring Boot Sleuth autoconfigures everything that IT or 

DevOps needs to get started. Auto Configurations include 

- Span: where the trace data is sent to. 

- Sampling: number of tracers to setup. 

- Baggage: Remote Fields 

- Libraries Traced. 

Sleuth sets up the instrumentation not just to track timing but 

to track the errors as well so that they can be analyzed and 

correlated with Log4J. 

Here is the example of Web UI showing the trace. 

 

Request is red color indicate the errored or failed. To see the 

further details, one can click on the error trace. 

 

4. ADDING SLEUTH AND ZIPKIN TO 

THE SPRING BOOT PROJECTS. 
Staring up with the Sleuth and Zipkin is very easy since the 

Spring boot takes care of many auto configurations. 

Spring Boot provides the flexibility of choosing both the all 

the components of the Zipkin or just the log correlation with 

the Sleuth. 

4.1 Adding both Zipkin and Sleuth 
Leaving many of the configurations to the Spring Boot, one 

can just add the dependency via the Maven or the Gradle to 

start over.For its readability and simplicity, we are showing 

how to add the dependency through Gradle. By adding the 

below code to a build.gradle file, one can start with the 

configuration. 

compile "org.springframework.cloud:spring-cloud-starter-

zipkin" 

4.2 Adding Sleuth (Only Log Correlation) 

to the project 
One can add the dependency to the project to get started with 

the Sleuth as below - 

compile "org.springframework.cloud:spring-cloud-starter-

sleuth" 

Here is a sample log documented –  

 

Here Zipkin-service-id is the unique service name. 

12v44d0t19e41d00 is trace ID and Span ID. 

5. ACKNOWLEDGMENTS 

We thank all the scholars and researchers on Reference 

section who provided the enough information for us to 

understand the Distributed Tracing systems. 

6. REFERENCES 
[1] Cloud Native Java: Designing Resilient Systems with 

Spring Boot, Spring Cloud, and Cloud Foundry. Long, J. 

and Bastani, K. O'Reilly Media, Incorporated. 2017.  

ISBN/ 9781449374648. LCCN/ 2017277168. 

[2] Spring Cloud Sleuth. Adrian Cole, Spencer Gibb, Marcin 

Grzejszczak, Dave Syer, Jay Bryant at 

https://cloud.spring.io/spring-cloud-

sleuth/reference/html/ 

[3] OpenTracing: https://opentracing.io/ 

[4] OpenZipkin: https://zipkin.io/ 

[5] Chaitanya K Rudrabhatla. A Systematic Study of Micro 

Service Architecture Evolution and their Deployment 

Patterns. International Journal of Computer 

Applications 182(29):18-24, November 2018 

[6] S. Newman, Building Microservices. " O'Reilly Media, 

Inc.", 2015. 

[7] D. Namiot and M. Sneps-Sneppe, " On micro-services 

architecture," International Journal of Open Information 

Technologies, vol. 2, no. 9, 2014. 

[8] Xiaolu Zhou, Yang Xie, Hui Xie, Guihua Wang, 

"Research on Session Sharing of Distributed Application 

Service Technology", Advanced Information Technology 

Electronic and Automation Control Conference (IAEAC) 

2018 IEEE 3rd, pp. 894-899, 2018. 

 

IJCATM : www.ijcaonline.org 

https://cloud.spring.io/spring-cloud-sleuth/reference/html/
https://cloud.spring.io/spring-cloud-sleuth/reference/html/
https://opentracing.io/
https://zipkin.io/

