
International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

47

 Network Anomaly Detection and User Behavior Analysis

using Machine Learning

Priti H. Vadgaonkar
PG Student

SSVPS’s B.S. Deore College of Engineering
Dhule, Maharashtra, India

ABSTRACT
Millions of people and hundreds of thousands of institutions

communicate with each other over the Internet every day. In

the past two decades, while the number of users using the

Internet has increased very rapidly. Align to these

developments, the number of attacks made on the Internet is

increasing day by day. Although signature-based detection

methods are used to avert these attacks, they are failed against

zero-day attacks. In this study, the focus is to detect network

anomaly using machine learning methods. For the

implementation of proposed classifier, the graphics processing

unit (GPU)-enabled TenserFlow will be used and for

evaluation purpose the benchmark KDD Cup 99 and NSL-

KDD datasets will be used for its wide attack diversity.On this

dataset, several different machine learning algorithms will be

trained and tested to make the model robust and accurate.

General Terms
Deep learning, anomaly detection, auto-encoders, network

security, KDD.

Keywords
Anomaly detection, deep learning, auto encoder, PCA.

1. INTRODUCTION
Every day millions of people and institutions communicate

with each other using the Internet. In the past few decades,

while the use of Internet by the people has increased speedy,

today this number has exceeded 4 billion and this increase is

continuing speedy [2].

Comparable to these developments, the number of attacks

happen on the Internet is increasing day by day. In opposition

to these attacks, there are two basic methods used to detect the

attacks in order to ensure information security; signature

based identification, and anomaly based detection.

Signature-based methods use the database which are created

to detect attacks. This method is pretty successful, but the

databases need to be kept regularly updated and new attack

information processed. As well, even if the databases are up-

to-date, they are still vulnerable to the zero-day attacks. Since

these attacks are not in the database, it is impossible to

prevent these attacks. In anomaly-based approach the focus is

on detecting unusual network behaviours by inspecting

network flow. This method is successful in detecting attacks

which are not encountered before, thus is effective against

zero-day attacks [3].

Additionally, the usage of more than half of today's internet is

encrypted using SSL / TLS (Secure Sockets Layer / Transport

Layer Security) protocols, and this rate is increasing day by

day [4]. Because of the incapability to observe the contents of

the encrypted internet stream, signature-based methods are not

effective on this type of data. Although, the anomaly-based

approach examines the data by using its general properties

such as size, connection time, and a number of packets. So,

there is no need to see the message content and the analysis of

encrypted protocols can also be done. Due to all these

advantages, the detection and prevention of network attacks

being done using anomaly-based detection method.

The provision of a powerful and effective Network Intrusion

Detection System (NIDS) is one of the big challenges in

network security. Despite the remarkable advances in NIDS

technology, many of solutions still operate using less-capable

signature-based techniques, in opposition to anomaly

detection techniques. There are several reasons for this

hesitation to switch, including the high false error rate,

difficulty in obtaining reliable training data, the longevity of

training data, and the behavioural dynamics of the system.

Today's situation will reach a point by which reliance on such

techniques leads to unprofitable and inaccurate detection. To

create a widely-accepted anomaly detection technique that is

capable of controlling limitations in modern networks is an

objective of this challenge.

The classification of Intrusion Detection System is done based

on where the detection takes place and based on what the

detection method is used [5].

Detection takes place at:

1. Network based Intrusion Detection System (NIDS) :

To observe traffic from all devices on the network, Network

intrusion detection systems (NIDS) are placed within the

network. An analysis of passing traffic is performed on the

whole subnet, and therefore the traffic that's passed on the

subnets gets matches to the library of known attacks. Once an

attack is spotted, or abnormal behaviour is noticed, the alert is

often sent to the administrator. Installing NIDS on the subnet

where firewalls are located to test if someone is trying to

interrupt into the firewall is an example of NIDS. Ideally one

would scan all inner and outer traffic, however, doing so

might create a bottleneck that might reduce the general speed

of the network. OPNET and NetSim are commonly used tools

for imitating network intrusion detection systems. Another use

of NIDS is, to link and drop harmful detected packets that

have a signature matching the records within the NIDS, these

systems are capable of comparing signatures for similar

packets.

2. Host based Intrusion Detection System (HIDS) :

Independent hosts or devices are used to run Host intrusion

detection systems (HIDS) on the network. The inner and outer

packets from the device are monitored by HIDS and alert is

send to the user or administrator if suspicious activity is

detected on the packets. A snapshot of existing system files is

taken and matches it to the past snapshot. If the critical system

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

48

files were adapted or found, an alert is sent to the

administrator to inspect. Mission-critical machines, which are

not expected to change their configurations can be an example

of HIDS [5].

Detection methods are:

1. Signature based Intrusion Detection System (SIDS) :

The detection of attacks by considering specific patterns, such

as network traffic byte sequences, or known vicious

instruction sequences used by malware is suggested by

Signature-based IDS. This terminology is derived from anti-

virus software, which assigns to these detected patterns as

signatures. It is crucial to detect new attacks, for which

pattern is not available even if the signature-based IDS can

easily detect known attacks.

2. Anomaly based Intrusion Detection System (AIDS) :

To detect unknown attacks the Anomaly-based intrusion

detection systems were essentially introduced, to a certain

extent due to the fast development of malware. The basic idea

is to use machine learning to create a model of accurate

activity, and then compare new behaviour against this model.

The machine learning-based method has a better-popularized

property compared to traditional signature-based IDS since

these models can be trained as stated by the applications and

hardware configurations. It may suffer from false positives:

previously unknown legitimate activity may also be classified

as anomalous even if the detection of previously unknown

attacks is enabled by this approach. Most of the existing IDSs

suffer from the time-consuming during detection process that

reduces the performance of IDSs. Because of the efficient

feature selection algorithm, the classification process used in

detection becomes more reliable.

Anomaly detection identifies anomalous events or an

unexpected behavior termed as anomalies or outliers [5].

2. RELATED WORK
Different Machine learning techniques including supervised,

unsupervised, and semi-supervised, have been proposed to

increase the performance of the anomaly detection systems.

Supervised approaches such as k-nearest neighbor (k-NN),

neural networks, and support vector machine (SVM) have

been studied broadly for anomaly detection.

Dong and Wang accept a published and experimental

comparison between the use of traditional NIDS techniques

and deep learning methods [6]. The authors conclude that

there is improvement in detection accuracy across all of

sample sizes and anomaly types over the traffic using deep

learning-based methods. The authors also show that problems

associated with inconsistent datasets can be overcome by

using the oversampling technique which is Synthetic Minority

Oversampling Technique (SMOTE).

Zhao et al. [7] proposed a state-of-the-art survey of deep

learning applications within machine health monitoring. The

conventional machine learning methods are experimentally

compared against four deep learning methods (auto-encoders,

Restricted Boltzmann Machine (RBM), Convolutional Neural

Network (CNN) and Recurrent Neural Network (RNN). Their

conclusion is that deep learning methods give better accuracy

than conventional methods.

This literature review point out several proposed deep

learning methods specifically for NIDSs.

Alrawashdeh and Purdy [8] proposed a solution using RBM

with one hidden layer to perform unsupervised feature

reduction. To produce a DBN the weights are passed to

another RBM. The pre-trained weights are passed through a

fine-tuning layer consisting of a Logistic Regression classifier

with multi-class soft-max. The KDD Cup ‟99 dataset is used

to evaluate propose a solution. The authors declared 97.90%

detection rate and 2.47% false-negative rate. This is an

improvement over the results of similar papers.

Potluri and Diedrich [11] present a method using 41 features

and their DNN has 3 hidden layers (2 auto-encoders and 1

soft-max). The obtained results were mixed, the result

focusing on less classes were more accurate than those with

more classes. The authors allocated this to insufficient

training data for some classes.

Kang and Kang [12] proposed the unsupervised DBN to train

parameters to boot the DNN, which allows improved

classification results. Their assessment shows improved

performance in terms of classification errors.

In addition, there is other compatible work, including the

DDoS detection system proposed by Niyaz et al. [13]. A deep

learning-based DDoS detection system for a software-defined

network (SDN) is proposed by them. Perform an evaluation

using custom generated traffic traces. The authors claimed to

achieve 99.82% of binary classification accuracy and 95.65%

8-class classification accuracy.

An automatic security auditing tool for short messages (SMS)

is proposed by You et al. [10]. This method is based upon the

RNN model. The authors claimed that their accuracy of

evaluation is 92.7% than existing classification methods (e.g.

SVM and Naive Bayes).

The work by Hou et al. [9] describes their commercial

Android malware detection framework, Deep4MalDroid.

Their method contains the use of stacked auto-encoders with

the best accuracy obtained from 3 layers. The 10-fold cross-

validation used, showing that as compared to shallow

learning, their approach gives improved detection

performance.

Lee et al. [14] give a deep-learning approach to fault

monitoring in semiconductor manufacturing. A Stacked de-

noising Auto-encoder (SdA) approach is used to provide an

unsupervised learning solution. A comparison with

conventional methods has shown that throughout different use

cases, the accuracy is increased by up to 14% in different use

cases.

The discovery from this literature shows that while the high

accuracies of detection being achieved, there's still an

opportunity for improvement. Such a fault includes the

dependency on human operators, lengthy training times,

uncertain or average accuracy levels, and also the heavy

conversion of datasets. The realm remains in an infantile

stage, for combining various algorithms and layering

approaches to provide the foremost accurate and efficient

solution for a selected dataset most researchers still

experimenting with.

3. BACKGROUND
In this section, the background information required to

understand the concepts behind the model proposed in this

paper.

3.1 Deep Learning
Deep learning is an advanced sub-part of machine learning,

which promotes Machine Learning closer to Artificial

Intelligence. It eases the modeling of complex relationships

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

49

and concepts using multi-levels of representation. To

construct successively higher levels of abstraction defined

using the output features from lower levels, Supervised and

unsupervised learning algorithms are used [15].

1) Auto encoder-The desired technique currently used

within deep learning research is auto-encoders, which is

used by the proposed solution in this paper. An auto

encoder is an unsupervised neural network-based feature

extraction algorithm, which learns the most effective

parameters required to rebuild its output as near its input

as possible. One of it advisable characteristics is that the

capability to supply more a powerful and non-linear

generalization than Principle Component Analysis

(PCA).

This is performed by applying backpropagation and setting

the target values to be adequate for the inputs. An auto-

encoder typically has an input layer, output layer and a hidden

layer. This hidden layer normally features a smaller

dimension than that of the input.

Figure 1: Example of a single auto-encoder.

First the input is passed through a typically lower-dimensional

space which is an encoder, and then expanded to breed the

initial data that is the decoder. Once a layer is trained, its code

is passed to the following, to raised model highly non-linear

dependencies within the input. This model focuses on

minimizing the dimensionality of input data. There is a

special layer - the code layer [16], at the center of the deep

auto-encoder structure to achieve this. This code layer is

employed as a compact feature vector for classification or for

combine within a stacked auto-encoder.

Encoding is done by the hidden layer that it creates a low

dimensionality version of high dimensionality data. By

decreasing dimensionality, the most important features of the

data distribution are forced to capture by the auto-encoder. In

a supreme scenario, the auto-encoder generated data features

will provide a more robust representation of the data points

than the raw data itself.

The function shown in (1) is try and learn by auto-encoder.

ℎ𝑊,𝑏 (x) ≈ x (1)

Here, h represents a non-linear hypothesis with the parameters

W for weighting and b for bias, which might fit the given data

(x).

Simply, it tries to find out an approximation to the identity of

a function, where x′ is most just like x. The learning process is

expressed as a reconstruction error minimization function, as

shown in (2).

L(x, d (f (x))) (2)

Here, L is a loss function disciplined d (f (x)) for being

dissimilar to x, d represents a decoding function and f

represents an encoding function.

2) Stacked Auto-Encoder- far from a simple auto-

encoder, a deep auto-encoder is formed using two

symmetrical deep-belief networks.it contains four or five

shallow layers for encoding, and the second set

containing four or five layers for decoding. Deep

learning can be applied to auto-encoders, thus the hidden

layers are the straightforward concepts and multiple

hidden layers are accustomed to provide depth, in a

stacked auto-encoder. This increased depth is ready to

scale down computational costs and the amount of

training data required, as well as acquiring greater

degrees of accuracy [23].

The output from each hidden layer is the input for a

progressively higher level. Hence, the first layer of a stacked

auto-encoder commonly learns first-order features in raw

input. The second layer learns second-order features

according to patterns that display in the first-order features.

Following higher layers learn higher-order features. An

example of a stacked auto-encoder is shown in Fig. 2.

Figure 2: Example of stacked auto-encoder.

4. SYSTEM MODEL
In the anomaly detection task, the output is generated from the

input. The input is network traffic on the internet and the

output is the alert generated if the data is malicious.

In the detection model, the data is preprocessed. Then feature

extraction is done on that data. The model is created using

predefined parameters. Random forest machine learning

algorithm is applied on the training data. The model is trained

with lots of data. With the use of the test dataset performance

of the model is evaluated. The detailed about the model is

given in the following sub section.

4.1 Data Preprocessing
Data Preprocessing is one of the censorious steps in data

mining process which prepare and transform of the original

dataset. The varied steps are included in Data preprocessing,

such as Data cleaning, Feature reduction, Feature construction

[17]. Feature extraction and Feature selection are included in

feature reduction. In data preprocessing, Feature extraction,

selection, and construction all are independent methods.

These methods can be combined based on the problem

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

50

analyzed like feature extraction followed by feature selection,

feature construction followed by feature selection [18].

1. Feature Extraction and Selection:

Feature Extraction performs a transformation on data from

high dimensionality to low dimensionality. Feature extraction

is a process that discovers what evidence can be taken from

audit data is most useful for analysis [19]. Here, the Principal

Component Analysis method is employed for feature

extraction. PCA is a linear method in dimensionality

reduction for data analysis and compression. It is supported by

transforming a comparatively large number of uncorrelated

features by finding an orthogonal linear combination of the

original features with the greatest variance [20].

Steps in PCA algorithm

1. Get the input data

2. Find the mean

3. Subtract the mean

4. Calculate the covariance matrix

5. Calculate the Eigen vector and Eigen value of the

covariance matrix

6. Sort the Eigen value in decreasing order and

forming feature vector

7. Derived the new dataset with reduced feature

The input to the PCA program is our dataset. We will find the

Eigen value and Eigen vector from covariance by using the

equation

 𝐴 − λI =0 (3)

Based on the Eigen value, sort the Eigen vector. The Eigen

vector with the highest Eigen value represents the primary

principle component of the data. For feature reduction, the K

Eigen vectors with the highest Eigen values are selected.

2. Feature set for anomaly NIDS:

In anomaly detection, separate feature sets are built for every

anomaly detector. A feature set of multiple connection

derivative features is included for traffic based anomaly

NIDS, which specifies the number of connections to a

particular destination IP address and port [17].

4.2 System Workflow
The objective of this work is to identify the anomalous

network communication and to find out the attacks and

malicious intentions

To solve above problems, network anomaly detection system

is generated as shown in fig 3

The above system works as follows,

1. The network traffic data is captured and passed to the

next phase

2. It is then passed to the Intrusion/Anomaly detection

phase where the following things happen:

 Data pre-processing of the data to clean the

missing/garbage values

 Feature ranking & selection to slice data for the

most important features

 Then the machine learning based Classifier is

trained and tested

 Now the model is tested for anomaly detection and

decision making

3. Then based on the detection, results alerts are generated.

Figure 3: System architecture of network anomaly

detection system

4.3 Methodology
1) Non Symmetric deep auto-encoder-

Non-symmetric deep auto-encoder is an auto-encoder

featuring non-symmetrical multiple hidden layers. Basically,

the present shift from the symmetric encoder-decoder pattern

and towards utilizing non-symmetric i.e. just the encoder

phase is involved in Non-symmetric deep auto-encoder. The

reason behind this idea is to give the proper learning structure,

it is possible to reduce both computational and time

overheads, with minimum impact on accuracy and efficiency.

As a hierarchical unsupervised feature extractor that balances

well to accommodate high-dimensional inputs, Non-

symmetric Deep Auto Encoder will use. A similar training

strategy that is used for typical auto-encoder is applied to

learn non-trivial features. An illustrated example of this is

presented in the following Fig. 4 [22].

Figure 4: Comparison of a typical auto-encoder and a

Non-symmetric deep auto-encoder.

The proposed Non-symmetric deep auto-encoder takes an

input vector x ∈ 𝑅𝑑and gradually maps it to the latent

representations ℎ𝑖 ∈ 𝑅𝑑𝑖 (where d is the dimension of the

vector) using a deterministic function shown in (4) below:

ℎ𝑖 = 𝜎 𝑊𝑖 . ℎ𝑖−1 + 𝑏𝑖 ; 𝑖 = 1, 𝑛 (4)

Here, ℎ0 = x, σ is an activation function (sigmoid function σ

(t) = 1/ (1 + 𝑒−𝑡) is used in this work) and n is the number of

hidden layers.

Far from a conventional auto-encoder and deep auto-encoder,

the non-symmetric deep auto-encoder does not contain a

decoder. Its output vector is calculated by alike formula to (5)

as the latent representation.

𝑦 = 𝜎(𝑊𝑛+1. ℎ𝑛 + 𝑏𝑛+1) (5)

The model estimator θ = (𝑊𝑖 , 𝑏𝑖) is gained by minimising the

square reconstruction error over m training samples

(𝑥(𝑖), 𝑦(𝑖))𝑖=1
𝑚 , as shown in (6).

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

51

𝐸(𝜃) = (𝑥(𝑖) − 𝑦(𝑖))2

𝑚

𝑖=1

(6)

2) Stacked Non Symmetric deep auto-encoder-

This section describes the creative deep learning

classification model created to deal with the problem spot

with present non-symmetric deep auto-encoder as presented

by Nathan Shone, Tran Nguyen Ngoc, Vu Dinh Phai, and Qi

Shi [22].

The model is basically relied upon using the non-symmetric

deep auto-encoder technique for deep learning. This is

achieved by stacking non-symmetric deep auto-encoders to

form a deep learning hierarchy. A layer-wise unsupervised

representation learning algorithm that is offered by stacking

non-symmetric deep auto-encoder, which allow the model to

learn the complex relationships between different features

Because of the data using which this model is proposed, the

aim is to design the model that can handle large and

sophisticated datasets. Even with the 42 features present in the

KDD Cup ‟99 and NSL-KDD datasets being comparatively

small. Here, the deep learning power of stacked non

symmetric deep auto-encoder is combined with a shallow

learning classifier. Random Forest is used as shallow learning

classifier.

Figure 5: Stacked non-symmetric deep auto-encoder

Classification Model.

Random Forest is an ensemble learning method, the principle

of which is to group „weak learners‟ to create a „strong

learner‟ [21]. In this instance, many individual decision trees

(the weak learners) are combined to form a forest. RF can be

considered as the bagging of these un-pruned decision trees,

with a random selection of features at each split. It boasts

advantages such as robustness to outlier's robustness, bias's

low levels, and overfitting correction, all these are useful in a

network intrusion detection system scenario.

In this model, to classify network traffic into normal and

attacking the RF classifier is trained using the encoded

description learned by the stacked NDAEs is used. As per Fig.

5, this model uses two NDAEs organized in a stack and is

combined with the RF algorithm. 3 hidden layers are present

in each NDAE, with each hidden layer contains the same

number of neurons as features. By using numerous

combinations (i.e. numbers of neurons and hidden layers) of

cross-validating, these exact parameters are determined until

the most effective is identified. For this experiment, we used

the 5-fold cross-validation approach on the dataset using

Scikit Learn.

5. EXPERIMENTAL RESULTS
Proposed model uses lots of training data so GPU is required

to handle data efficiently. The proposed model is

implemented using Github‟s atom IDE, Tensorflow and

various packages provided by python. The model needs a

machine with a 2.3 GHz Intel Xenon processor, 16 GB

memory and NVIDIA GPU card coupled with 16 GB

memory.

5.1 Dataset
Experiment is performed on two challenging datasets

KDDCUP 99 and NSLKDD dataset.

5.1.1 KDDCUP 99
It consists of approx. 4,900,000 single connection vectors

with 41 features each. These include Basic features, Domain

knowledge features, and timed observation features. Each

vector is labelled as either normal or as malicious. The use of

10% of the full-size dataset is common practice, as this

provides reduced computational requirements with suitable

representation. This 10% subset is produced and spread

alongside the original dataset. Here the 10% subset is used,

which contains 494,021 records for training and 311,029

testing records for testing.

5.1.2 NSLKDD
The structure of NSL-KDD dataset has basically the same as

the KDD Cup ‟99 dataset (i.e. it contain 22 attack patterns or

normal traffic, and area for 41 features). The whole NSL-

KDD dataset is used for evaluations.

5.2 Methods to Compare
In this work, to compare the performance of proposed model,

some advanced methods of anomaly detection are used.

KDDCUP 99

The 5-class classification performance of the proposed

classification model is evaluated against the DBN model

published in [8] and S-DAE model publish in [22], using the

KDD Cup ‟99 dataset is given here.

By comparing the results of these three models, we can see

that overall the proposed model, the effectiveness and

accuracy of proposed model‟s results are better than those

achieved by the model in [8] and S-NDAE [22].

NDLKDD

The paper [8] does not come up with evaluations using the

NSL-KDD dataset. Hence the previously-discussed

TensorFlow DBN model will use for comparisons. To boost

comparability, two independent evaluations based on (A) 5-

class classification as KDD Cup ‟99, and (B) 13-class

classification from NSL-KDD are used.

1) 5-Class Classification: By using the same 5 generic class

labels as used in the KDD Cup ‟99 dataset, we can compare

the performance of the three models between the two datasets.

It the performance results are presented in Table 2. From the

table, it is proved that proposed model offers increased

accuracy, precision when compared to the DBN and S-NDAE

approach.

2) 13-Class Classification: according to previous discussion,

proposed model is designed to work with larger and complex

datasets. Thus, the model‟s classification capabilities are

evaluated on a 13-class dataset. These 13 labels are those

which are with more than the minimum 20 entries. The

purpose of this analysis is to check and compare the stability

of the model when the number of attack classes increases. So,

we don‟t compare these results against another model.

5.3 Evaluation Metrics
The main idea behind the evaluation is to see how well the

system reaches the goals and fulfills the requirements. These

evaluation metrics are computed using confusion matrix

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

52

which presents four measures as follows:

 True Positive (TP): if an anomaly is correctly

classified by model as an anomaly, it results as TP

 False Positive (FP): if a normal instance is

incorrectly classified by model as an anomaly, it

results as FP

 True Negative (TN) : if an anomaly is incorrectly

classified by model as normal instance, it results as

TN

 False Negative (FN): if a normal instance is

correctly classified by model as normal instance, it

results as FN

The following measures are used to evaluate the performance

of our proposed solution:

Accuracy:

The proportion of the total number of correct classifications is

measured by accuracy.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (7)

Precision:

The number of correct classifications penalised by the number

of incorrect classifications is measured by precision.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (8)

Recall:

The number of correct classifications penalised by the number

of missed entries is measured by recall.

Recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (9)

5.4 Result Analysis
The result shows that the anomaly detection Model is showing

remarkable output for the number of varying attack types as

compared with other existing methods. The training algorithm

of the anomaly detection model improves the performance of

the system.

The proposed anomaly detection model uses the KDDCUP 99

dataset to conduct the experiments. Table 1 reports the

experimental results of various models on the KDDCUP 99

testing set. From the results shown in Table 1, our anomaly

detection model achieves better performance.

Table 1 KDDCUP 99 Performance

Method Accuracy

(%)

Precision

(%)

Recall

(%)

DBN 97.90 97.81 97.91

S-NDAE 97.85 99.09 97.85

Proposed

System

99.94 99.85 99.93

As shown in above table 1, by comparing the results of all

above models it is clear that the effectiveness and accuracy of

the proposed system is better than the DBN and S-NDAE

model.

Figure 6: Performance comparison of various methods on

KDDCUP 99 dataset

Figure 6 shows the performance comparison of various

methods on the KDDCUP 99 dataset using accuracy,

precision, and recall measures. The performance of the

proposed anomaly detection model is compared against

various method‟s performance stated in the literature.

The proposed anomaly detection model uses the NSLKDD

dataset to conduct the experiments. Table 2 reports the

experimental results of various models on the NSLKDD

testing set.

Table 2 NSL-KDD 5-class Performance

Method Accuracy

(%)

Precision

(%)

Recall

(%)

DBN 80.58 88.10 80.58

S-NDAE 85.42 92.97 85.42

Proposed

System

86.48 94.97 74.10

As shown in above table 2, by comparing the results of all

above models using 5-class NSL-KDD classification it is clear

that the effectiveness and accuracy of the proposed system is

better than the DBN and S-NDAE model.

Figure 7: Performance comparison of various methods on

5-class NSLKDD dataset

Figure 7 shows performance comparison of various methods

on 5-class NSL-KDD dataset using accuracy, precision, and

recall measures.

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 13, August 2020

53

Table 3 NSL-KDD 13-class performance

 Accuracy (%) Precision (%) Recall (%)

Proposed

system

94.61 94.97 71.10

The above table shows the performance of NSL-KDD dataset

with 13-class classification. The purpose of this analysis is to

check the stability of proposed model when the number of

attack classes increases. That‟s why, there is no comparison of

these results against another model

6. CONCLUSION
The network anomaly detection system tries to detect

anomalies happens on the network more effectively. In

response to the problems faced by existing network intrusion

detection system (NIDS) techniques, the novel non-symmetric

deep auto encoder method for unsupervised feature learning is

proposed. The model is built upon a novel classification

model constructed from the stacked non-symmetric deep auto

encoder and the Random Forest classification algorithm. The

proposed model is implemented in TensorFlow and performed

extensive evaluations on its capabilities. For evaluations

purpose, KDD Cup ‟99 and NSL-KDD datasets are used and

achieved very promising results. The results show that the

proposed system offers high levels of accuracy, precision, and

recall together with less training time.

7. REFERENCES
[1] S. P. Shashikumar, A. J. Shah, Q. Li, G. D. Clifford, and

S. Nemati, “A deep learning approach to monitoring and

detecting atrial fibrillation using wearable technology,”

in Proc. IEEE EMBS Int. Conf. Biomed. Health

Informat, FL, USA, 2017, pp. 141–144.

[2] K. Kostas, "Anomaly Detection in Networks Using

Machine Learning", Research Proposal, march 2018, pp.

1-64.

[3] K. Leung and C. Leckie, “Unsupervised anomaly

detection in network intrusion detection using clusters”,

Proceedings of the Twenty-eighth Australasian

conference on Computer Science,2005, pp. 333-342.

[4] I. Sharafaldin, A. Gharib, A. H. Lashkari, and A. A.

Ghorbani, "Towards a reliable intrusion detection

benchmark dataset", Software Networking, 2017, pp.

177-200.

[5] Sonali Naikade, Akshaya Ramaswamy, Burhan

Sadliwala, Prof. Dr. Pravin Futane Atmaja

Sahasrabuddhel," Survey on Intrusion Detection System

using Data Mining Techniques", International Research

Journal of Engineering and Technology, may 2017, pp.

1780-1784.

[6] B. Dong and X. Wang," Comparison deep learning

method to traditional methods using for network

intrusion detection", Proc. 8th IEEE Int.Conf. Commun.

Softw. Netw., Beijing, China, june 2016, pp. 581–585.

[7] R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, and R. X.

Gao,, "deep learning and its applications to machine

health monitoring: A survey", Submitted to IEEE Trans.

Neural Netw. Learn. Syst, 2016, pp. 1-14.

[8] Purdy, K. A., “Toward an online anomaly intrusion

detection system based on deep learning", in Proc. 15th

IEEE Int. Conf. Mach. Learn. Appl., Anaheim, CA,

USA, Dec 2016, pp. 195–200.

[9] S. Hou, S. Hou, A. Saas, L. Chen, and Y. Ye, "

Deep4MalDroid: A Deep learning framework for android

malware detection based on linux kernel system call

graphs", in Proc. IEEE/WIC/ACM Int. Conf. Web Intell.

Workshops,Omaha, NE, USA,Oct 2016, pp. 104–111.

[10] L. You, Y. Li, Y. Wang, J. Zhang, and Y. Yang , " A

deep learning based RNNs model for automatic security

audit of short messages", in Proc. 16th Int. Symp.

Commun. Inf. Technol., Qingdao, China, sept 2016, pp.

225–229.

[11] S. Potluri and C. Diedrich," Accelerated deep neural

networks for enhanced intrusion detection system", in

Proc. IEEE 21st Int.Conf. Emerg. Technol. Factory

Autom., Berlin, Germany, sept 2016, pp. 1–8.

[12] M.-J. Kang and J.-W. Kang, "Intrusion detection system

using deep neural network for in-vehicle network

security", PLoS One, june 2016.

[13] Q. Niyaz, W. Sun, and A. Y. Javaid, "A deep learning

based DDOS detection system in software-defined

networking (SDN)", Submitted to EAI Endorsed

Transactions on Security and Safety, 2017.

[14] H.-W. Lee, N.-R. Kim, and J.-H. Lee, "Deep neural

network self-training based on unsupervised learning and

dropout", Int. J. Fuzzy Logic Intell Syst, Mar 2017, pp.

1-9.

[15] L.Deng, "Deep learning: Methods and applications",

Found. Trends Signal Process, Aug. 2014, pp. 197–387.

[16] G. E. Hinton and R. R. Salakhutdinov, "Reducing the

dimensionality of data with neural networks", Science,

2006, pp. 504–507.

[17] Davis J.J., Clark A.J., " Data preprocessing for anomaly

based network intrusion detection", Computer &

Security, 2011, pp. 353-375.

[18] SomanK.P. DiwakarS., AjayV, “Insight into Data

Mining Theory and Practice”, PHI Learning Pvt Ltd,

Third edition (2008).

[19] Sumathi S., Sivanandam S.N., “Data mining in security”,

Studies in Computational Intelligence (SCI), Springer

2006, pp. 629 -648.

[20] Neethu B., “Classification of Intrusion Detection Dataset

using machine learning Approaches”, International

Journal of Electronics and Computer Science

Engineering, 2012, pp. 1044-1051.

[21] L. Breiman, “Random forests,” Mach. Learn., 2001, pp.

5–32.

[22] Nathan Shone , Tran Nguyen Ngoc, Vu Dinh Phai , and

Qi Shi, N., "A Deep Learning Approach to Network

intrusion detection", ieee transactions on emerging topics

in computational intelligence, Feb. 2018, pp. 41-50.

[23] I. Goodfellow, Y. Bengio, and A. Courville,”Deep

Learning”, Cambridge, MA, USA: MIT Press, 2016.

[Online]. Available: http://www.deeplearningbook.org

IJCATM : www.ijcaonline.org

