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ABSTRACT 
The quest for improvements in the execution of system 

instructions whilst upholding processor efficiency begot 

different discoveries. Hardware solutions, such as having 

multiprocessors seem to be more expensive and had some 

challenges with it. Over the years, different software 

approaches have been discovered and explored. 

Unfortunately, some of these approaches still hugely depend 

on the permissibility of the hardware facility which could 

hinder productivity. Very Long Instruction Word (VLIW) 

processor adopts an instruction level parallelism (ILP) method 

that is fully software based. This paper provides an overview, 

performs a comparison with other related architectures such as 

CISC, RISC and highlights VLIW’s development over the 

years as well as reasons to adopt this technology. The 

methodology and techniques used in this work include 

analysis of available documents, and content analysis 

techniques. This Analysis shows that VLIW machine 

performed better compared to other traditional machines using 

instruction’s size, format, semantics as well as memory, 

registers and hardware design as metrics for comparison. 

VLIW is indeed a step ahead of the others and allows higher 

performance without the complexity inherent in other designs. 
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1. INTRODUCTION 
There has been much development in microprocessor 

architecture such as Complex Instructional Set Computing 

(CISC) and Reduced Instructional Set Computing (RISC). 

The advancement in integrated circuit (IC) technology and 

high-level language compiler technology, will force vendors 

to move with this new trend of VLIW in microprocessor 

instruction sets. A processor traditionally executes every 

instruction one after the other. This makes for inefficient and 

ineffective use of processor resources, yielding potentially 

poor performance [1]. The efforts towards improving the 

performance have yielded different hardware and software 

solutions. Most developments that are software based have 

hardware issues. This led to VLIW architectures which are 

purely software solutions and rely on compile-time detection 

of parallelism [2]. The compiler examines the program and 

identifies operations to be executed in parallel. After one 

instruction has been fetched all the corresponding operations 

are issued in parallel. No hardware component is needed for 

run-time detection of parallelism [2]. The compiler can 

potentially analyze the program to detect parallel operations 

unlike the hardware complexity encountered in pipelining, 

super scalar architecture and out of order execution. 

VLIW executes operations in parallel, based on a fixed 

schedule, determining when programs are compiled. Since 

determining the order of execution of operations is handled by 

the compiler, the processor does not need the scheduling 

hardware as required by other methods [3]. Thus, VLIW 

CPUs offer more computing prowess with less hardware 

complexity than most superscalar CPUs. VLIW architectures 

are simpler and cheaper than RISC because of enhanced 

hardware modifications and simplifications. They however, 

require more compiler support. It is different from a vector 

processor, in that no high level regularity in the user’s code is 

needed to make effective and efficient use of the hardware 

support. So also unlike a multiprocessor, there is no penalty 

for communication and synchronization between processes 

[1]. 

This paper provides an overview, performs a comparison with 

other related architectures such as CISC, RISC and highlights 

VLIW’s development over the years as well as reasons to 

adopt this technology. 

The paper is structured as follows: Section 2 presents the 

overview of VLIW while Section 3 presents the comparative 

analysis of CISC, RISC and VLIW. Section 4 presents 

advantages and disadvantages of VLIW. VLIW scheduling 

Algorithm is discussed in section 5 and Conclusion is 

presented in Section 6. 

2. OVERVIEW OF VLIW 
The idea was firstly conceptualized by Josh Fisher in his 

research at Yale University (1983). His development of Trace 

Scheduling algorithm in the practice of horizontal microcode 

compaction could exploit more ILP than any existing 

processor could provide. Before VLIW, the notion of pre-

scheduling execution units and instruction-level parallelism in 

software was well established in the practice of developing 

horizontal microcode[4]. John Ellis describes the first VLIW 

compiler in his Ph.D. thesis under the supervision of Fisher. 

The compiler was named Bulldog, after Yale's mascot. Fisher 

left Yale University in 1984 to startup a company named 

Multiflow, along with cofounders John O'Donnell and John 

Ruttenberg. Multiflow produced the TRACE series of VLIW 

system in 1987[4] 

The Very Long Instruction Word (VLIW) refers to a type of 

instruction set architecture designed to exploit instruction 

level parallelism and performance. VLIW is sometimes 

viewed as the next step beyond the Reduced Instruction Set 

Computing (RISC) architecture. In a VLIW processor, one 

instruction encodes multiple operations, taking one operation 
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for each execution unit of a device at the least [3]. The whole 

operation will be broken down into multiple functioning units 

for concurrent and seamless execution [5]. The main objective 

of VLIW is to eradicate the complicated or complex 

instruction scheduling and parallel dispatch that ensues in 

most common modern microprocessors. 

Very-long-instruction-word (VLIW) is a processor that 

describes computer-system architecture where a language 

compiler breaks down program instruction into basic and 

distinct actions that can be accomplished by the processor in 

parallel, performing all these actions at same time [6, 7] It is a 

technique that makes use of and combines multiple standard 

instructions into one long instruction word. The instructions 

are very intuitive and make use small variants of logic instead 

of large unreadable chunks.  

Central processing unit (CPU) allows programs to state how 

its instructions will be executed and this is mostly done 

sequentially. Whereas, Very Long Instruction Word (VLIW) 

processors also specifically allow written programs to clearly 

specify how its instructions should be executed and this is 

often done concurrently albeit in parallel. This is a design 

designated to increase performance of a computer system in 

order to avoid complexity that is frequently found in other 

designs. 

However, since Instruction level processors try to increase the 

speed at which a program is executed in parallel rather than 

the conventional sequential programs, it belongs to a 

processor family that enhances the speed of execution of 

programs or instructions with its design, allowing individual 

systems or machines to execute instructions in parallel. ILP 

has powered the highest performance uniprocessors for 

decades with several systems built on it, and this makes ILP 

alongside its new techniques a popular approach [8].  

One of the major keys to higher performance in 

microprocessors is that it allows large range of applications 

[9]. This is because VLIW employed fine-grain, instruction-

level parallelism which includes the followings: 

a. Pipelining: It is now used in the design of high 

performance processors.   

b. Multiple processors: The use of multiple processors 

improves performance for only a restricted set of 

applications.  

c. Superscalar implementation: It uses improved 

performance for all types of applications. Superscalar 

simply means the ability to fetch and complete more than 

one instruction at a time. The implementation of 

superscalar is an important requirement if architectural 

compatibility software is to be preserved which will 

ensure software legacy. 

d. Specifying multiple operations per instruction: It creates 

very long instruction word architecture. VLIW and 

superscalar are similar in the sense that they issue and 

complete more than one operation at a time. For the 

VLIW implementation, the long instruction word 

encodes the concurrent operations. This encoding leads 

to great reduction in hardware complexity compared to a 

high-degree superscalar implementation in RISC or 

CISC.  

2.1 Basic Structure of Vliw Architecture  
Very Long Instruction Words (VLIW) is fetched directly from 

the memory, via a common register file that has multiple ports 

for collecting the operands and safeguarding results. Parallel 

random-access to the register-file connected to the memory, is 

only possible through the read and write cross bar. Execution 

in the various functional units is carried out concurrently and 

in parallel with the load and store operation of data between 

Random Access Memory (RAM) and the register file. 

VLIW’s are characterized by a single stream of execution 

(One program counter, and one control unit); a very long 

instruction format that provides adequate control bits to 

independently and directly control the actions of every 

functional unit in every cycle; and very large numbers of 

functional units and data paths, in which the control is 

planned at specified compile times. 

VLIWs use multiple, independent functional units separately 

grouped. Instead of attempting to issue multiple, independent 

instructions to the aforementioned units, a VLIW bundles the 

multiple operations into one very long instruction [8]. 

Multiple functional units execute all the operations in an 

instruction concurrently, providing       fine-grain parallelism 

within each instruction. Also, instructions directly control the 

hardware with no interpretation and minimal decoding. A 

powerful optimizing compiler is responsible for locating and 

extracting ILP from the program and for scheduling 

operations to exploit the available parallel resources. 

The differences in these architectures however, have direct 

effects on the implementations. These architectures use the 

traditional-state machine-model of computation. Each 

instruction effects an increased change in the memory and 

register state of the computer, and the hardware fetches and 

executes instructions sequentially until a branch instruction 

generates a change control flow direction [7].  

2.2 Vliw Processors 
Early VLIW processors were established to be scientific super 

computers; newer processors were used mainly for stream, 

image and digital signal processing, low power mobile 

computers, multimedia codec hardware, etc.  Recently, some 

of these processors enjoyed moderate commercial success in 

Philips Trimedia, TI TMS320C62x DSPs, and Intel Itanium 

than Transmeta Crusoe model. Also, Fu et. al. implemented 

an Executable Quantum Instruction Set Architecture 

(eQASM) which combined efficient timing specification, 

single-operation-multiple-qubit (SOMQ) execution, and 

VLIW architecture, relieves the quantum operation issue rate 

problem, by presenting better scalability than Quantum 

microarchitecture set (QuMIS) [10]. Moreover, VLIW 

compiler technologies are equally applicable to super scalar 

processors. Stream and media processing applications are 

used with predictable branch behavior and large amounts of 

ILP [9]. Examples of VLIW processors are Defoe, Transmeta 

Crusoe, Intel IA-64, Multiflow TRACE, Cydrome Cydra etc. 

2.2.1 Defoe 
Defoe is a 64-bit VLIW architecture and it is compressed. It 

has a set of 64 programmer visible general purpose registers 

that are 64 bits wide. The predicate registers are special 1-bit 

registers, which require a true or false value and register R0 

always contains zero. There are 16 programmer visible 

predicate registers called PR0 to PR15. All operations are 

predicated, i.e. each instruction contains a predicate register 

field (PR) that contains a predicate register number. In an 

uncompressed VLIW architecture, MultiOps have a fixed 

length i.e. operations are not accessible within a MultiOp, 

NOPs are inserted into those slots, while a compressed VLIW 

architecture uses variable length MultiOps to get rid of those 

NOPs and achieve high code density. Also, operations are 
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encoded as 32-bit words. A special stop bit in the 32-bit word 

indicates the end of a MultiOp.  

2.2.2 The Intel Itanium Processor 
The Itanium-1 processor is Intel’s major implementation of 

the IA-64 ISA series, which is developed both by Intel and 

HP. It is an Explicitly Parallel Instruction Computing (EPIC) 

form of VLIW which consist a 64-bit, 6 issue VLIW 

processor with four integer units, four multimedia units, two 

load/store units, two extended precision floating point units 

and two single precision floating point units. This processor 

running at 800 MHz on a 0.18 micron process and has a 10 

stage pipeline. The IA-64 architecture used a fixed-width 

bundled instruction format with dependent instructions. 

MultiOp is called instruction group, where each MultiOp 

consists of one or more 128 bit bundles. However, each 128 

bit bundle consists of three operations and a template. The 

opcode in each operation specifies a type field; the template 

encodes commonly used combinations of operation types. 

Defoe and IA-64 uses a decoupling buffer to improve its issue 

rate. Though the   IA-64 registers are nominally 64 bits wide, 

there is a hidden 65th bit called NaT (Not a Thing). Also, all 

operations are predicated with 64 predicate registers.  

2.2.3 The Transmeta Crusoe Processor 
The Crusoe processor was developed by Transmeta 

Corporation. The Crusoe was designed to build a processor 

with modest performance and efficiently outdo the ISA of 

other processors, mainly the 80x86 and the Java virtual 

machine. In the design, complex mechanisms of achieving 

ILP were replaced with simpler and more power efficient 

alternatives; and whereas out of order issue and dynamic 

scheduling were not considered. In the Crusoe, long 

instructions are either 64 or 128 bits; a 128-bit instruction 

word is called a molecule which encodes 4 operations called 

atoms. The molecule format determines how operations are 

sent to functional units. The Crusoe consist of two integer 

units, a floating point unit, a load/store unit and a branch unit. 

It has 64 general purpose registers and uses condition flags 

compared to predication used by Defoe.  

Table1: Architectural comparison of CISC, RISC and VLIW 

ARCHITECTURE 

CHARACTERISTIC 

CISC RISC VLIW 

Instruction size Varies One size, usually 

32 bits 

One size, usually 

64 or 128  bits 

Instruction format Field placement 

varies 

Regular, 

consistent 

placement of 

fields 

Many simple, 

independent 

operations 

Instruction 

semantics 

Varies from simple 

to complex 

Almost always 

one simple 

operation 

Many simple, 

independent 

operation 

Registers Few, sometimes 

special 

Many, general 

purpose 

Many, general 

purpose 

Memory references Bundled with 

operations in many 

different types of 

instructions 

Not bundled with 

operations, i.e. 

load/store 

architecture 

Not bundled with 

operations, i.e. 

load/store 

architecture 

Hardware design 

focus 

Exploit microcode 

implementations 

Exploit 

implementations 

with one pipeline 

and no microcode 

Exploit 

implementations 

with multiple 

pipeline, no 

microcode & no 

complex dispatch 

logic 

 

3. COMPARISON OF CISC, RISC, AND 

VLIW  
The differences between CISC, RISC and VLIW are in the 

formats and semantics of the instructions. Table 1 compares 

architecture characteristics.  

CISC instructions vary in size, often specify a sequence of 

operations, and can require serial (slow) decoding algorithms. 

CISCs tend to have few registers, and the registers may be 

special-purpose, which restricts the ways in which they can be 

used. Memory references are typically combined with other 

operations (such as add memory to register). CISC instruction 

sets are designed to take advantage of microcode.  

RISC instructions specify simple operations, are fixed in size, 

and are easy (quick) to decode. RISC architectures have a 

relatively large number of general-purpose registers. 

Instructions can reference main memory only through simple 

load-register-from-memory and store-register-to -memory 

operations. RISC instruction sets do not need microcode and 

are designed to simplify pipelining.  

VLIW instructions are like RISC instructions except that they 

are longer to allow them to specify multiple, independent 

simple operations. A VLIW instruction can be thought of as 

several RISC instructions joined together. VLIW architectures 

tend to be RISC-like in most attributes. 

4. SCHEDULING ALGORITHMS OF 

VLIW 
Instruction scheduling algorithms are important to the 

performance of a VLIW processor. The writing of code for 

VLIW processors is difficulty even more than super scalar 

processor.  Why? The super scalar processor program is 
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fundamentally sequential and depends on the hardware to 

extract parallelism from the sequential program, while during 

VLIW processor code generation; the compiler is met with the 

task of concurrently extracting parallelism from a sequential 

algorithm and scheduling independent operations [9]. Below 

are the three main scheduling algorithms: 

4.1 Trace Scheduling 
The first-generation ILP processors/compilers used a three 

phase method to generate code which failed such as create a 

sequential program and analyze each block for independent 

operations; if sufficient hardware resources are available, list 

independent operations within the same block in parallel; and 

when possible, move operations between blocks. The failure 

is because operations in a basic block are dependent on each 

other and choices made during scheduling basic blocks may 

make it difficult to move operations between blocks. 

Therefore, trace scheduling algorithm was introduction to 

solve the above problems by Joseph Fisher. In trace 

scheduling, a set of commonly executed sequence of blocks is 

gathered together into a trace and the whole trace is scheduled 

together. Trace scheduling operates on a linear sequence of 

blocks i.e. it allow operations from one side of conditional 

branch. It typically misses code motions that move operations 

from one trace to another. Trace scheduling operates such that 

extracting ILP from sequential programs will require code 

motion across multiple basic blocks. It is driven by profile 

data not static branch analysis. The trace scheduling algorithm 

can be seen in B Mathew’s work [9]. 

4.2 Trace Scheduling-2 
Trace scheduling - 2 is an advancement on trace scheduling 

which allows nonlinear code motion, i.e. it allows operations 

from both sides of a conditional branch. It uses an expected 

value function called speculative yield to consider the cost of 

speculative execution and resolve whether or not to move 

operations from one block to another. This algorithm works 

by picking clusters of operations where each cluster is a 

maximal set of operations that are connected without back 

edges in the flow graph of the program.  

4.3 Super Block Scheduling 
Super block scheduling developed partnership with Impact 

compiler at the University of Illinois. It operates like trace 

scheduling, by extracting ILP from sequential programs which 

requires code motion across multiple basic blocks. Super 

block scheduling is driven by static branch analysis. It is a set 

of regular basic blocks that control, may arrive at the top only, 

but may depart at more than one point. Super blocks uses a 

process called tail duplication which identify traces first and 

then eliminate side entries into a trace. Static analysis based 

super block scheduling achieved more results than profile 

based methods. 

5. MERITS AND DEMERITS OF VLIW 
In every development especially Microprocessor Architecture 

has both benefits and drawbacks. The merits and demerits of 

VLIW are below: 

5.1 Merits of VLIW 
There are many advantages of VLIW over CISC and RISC. 

Besides VLIW being easier, simpler and cheaper to assemble, 

below are its other advantages: 

 

 

 

 Increased performance 

 It removes complicated instruction scheduling and 

parallel problems that are found in super scalar 

approaches 

 It is compiler friendly and improves hardware 

performance 

 Handles Interrupts and exceptions relatively easily 

 It can highly predict run-time behavior, hence 

allowing real-time applications and greater result for 

code optimization 

 Simple hardware is required,  which is normal and 

straightforward 

 Pure VLIW machines do not need complicated logic 

to check for dependencies 

 Potentially easier to program 

 Can add more execution unit compartments and 

allow more instructions to be packed into the VLIW 

instruction set. 

 Parallelism will be exploited at the instruction level 

5.2 Demerits of VLIW 
 In some algorithms, parallelism is underutilized 

 High power consumption  

 Increased memory usage because of high memory 

bandwidth requirement 

 There is no object code compatibility between 

generations 

 Increased code size due to empty “slots” 

 Program size is large 

 Compiler complexity 

6. CONCLUSION 
This work compares CISC, RISC AND VLIW, and highlights 

how VLIW machines perform better than other traditional 

machine.  It buttresses the fact that VLIW architectures are the 

new trend in microprocessor architecture and were designed 

to leverage on instruction level parallelism.  

Recent and known high performance processors depend on 

Instruction-Level-Parallelism to achieve high execution speed 

and performance. ILP processors achieve their high 

performance ratings by allowing multiple operations to 

execute in parallel and concurrently, using combined compiler 

and hardware techniques. Indeed, VLIW is a step ahead of the 

others and allows higher performance without the complexity 

inherent in these other designs. The processor will not make 

any run-time control decision below the program level which 

helps reduce complexity and increase turnaround time.  
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