
International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 15, August 2020

11

Very Long Instruction Word: A Higher Performance

Processor

Adedoyin Odumabo
PhD Student

Computer Science Dept.,
Lagos State University,

Nigeria

Ademola Adedokun
PhD Student

Computer Science Dept.,
Lagos State University,

Nigeria

Akinlolu Adekotujo
PhD Student

Computer Science Dept.,
Lagos State University,

Nigeria

Oluwatosin
Ogunbodede

PhD Student
Computer Science Dept.,
Lagos State University,

Nigeria

ABSTRACT
The quest for improvements in the execution of system

instructions whilst upholding processor efficiency begot

different discoveries. Hardware solutions, such as having

multiprocessors seem to be more expensive and had some

challenges with it. Over the years, different software

approaches have been discovered and explored.

Unfortunately, some of these approaches still hugely depend

on the permissibility of the hardware facility which could

hinder productivity. Very Long Instruction Word (VLIW)

processor adopts an instruction level parallelism (ILP) method

that is fully software based. This paper provides an overview,

performs a comparison with other related architectures such as

CISC, RISC and highlights VLIW’s development over the

years as well as reasons to adopt this technology. The

methodology and techniques used in this work include

analysis of available documents, and content analysis

techniques. This Analysis shows that VLIW machine

performed better compared to other traditional machines using

instruction’s size, format, semantics as well as memory,

registers and hardware design as metrics for comparison.

VLIW is indeed a step ahead of the others and allows higher

performance without the complexity inherent in other designs.

General Terms
Microprocessor Architecture

Keywords

Very long instruction word

1. INTRODUCTION
There has been much development in microprocessor

architecture such as Complex Instructional Set Computing

(CISC) and Reduced Instructional Set Computing (RISC).

The advancement in integrated circuit (IC) technology and

high-level language compiler technology, will force vendors

to move with this new trend of VLIW in microprocessor

instruction sets. A processor traditionally executes every

instruction one after the other. This makes for inefficient and

ineffective use of processor resources, yielding potentially

poor performance [1]. The efforts towards improving the

performance have yielded different hardware and software

solutions. Most developments that are software based have

hardware issues. This led to VLIW architectures which are

purely software solutions and rely on compile-time detection

of parallelism [2]. The compiler examines the program and

identifies operations to be executed in parallel. After one

instruction has been fetched all the corresponding operations

are issued in parallel. No hardware component is needed for

run-time detection of parallelism [2]. The compiler can

potentially analyze the program to detect parallel operations

unlike the hardware complexity encountered in pipelining,

super scalar architecture and out of order execution.

VLIW executes operations in parallel, based on a fixed

schedule, determining when programs are compiled. Since

determining the order of execution of operations is handled by

the compiler, the processor does not need the scheduling

hardware as required by other methods [3]. Thus, VLIW

CPUs offer more computing prowess with less hardware

complexity than most superscalar CPUs. VLIW architectures

are simpler and cheaper than RISC because of enhanced

hardware modifications and simplifications. They however,

require more compiler support. It is different from a vector

processor, in that no high level regularity in the user’s code is

needed to make effective and efficient use of the hardware

support. So also unlike a multiprocessor, there is no penalty

for communication and synchronization between processes

[1].

This paper provides an overview, performs a comparison with

other related architectures such as CISC, RISC and highlights

VLIW’s development over the years as well as reasons to

adopt this technology.

The paper is structured as follows: Section 2 presents the

overview of VLIW while Section 3 presents the comparative

analysis of CISC, RISC and VLIW. Section 4 presents

advantages and disadvantages of VLIW. VLIW scheduling

Algorithm is discussed in section 5 and Conclusion is

presented in Section 6.

2. OVERVIEW OF VLIW
The idea was firstly conceptualized by Josh Fisher in his

research at Yale University (1983). His development of Trace

Scheduling algorithm in the practice of horizontal microcode

compaction could exploit more ILP than any existing

processor could provide. Before VLIW, the notion of pre-

scheduling execution units and instruction-level parallelism in

software was well established in the practice of developing

horizontal microcode[4]. John Ellis describes the first VLIW

compiler in his Ph.D. thesis under the supervision of Fisher.

The compiler was named Bulldog, after Yale's mascot. Fisher

left Yale University in 1984 to startup a company named

Multiflow, along with cofounders John O'Donnell and John

Ruttenberg. Multiflow produced the TRACE series of VLIW

system in 1987[4]

The Very Long Instruction Word (VLIW) refers to a type of

instruction set architecture designed to exploit instruction

level parallelism and performance. VLIW is sometimes

viewed as the next step beyond the Reduced Instruction Set

Computing (RISC) architecture. In a VLIW processor, one

instruction encodes multiple operations, taking one operation

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 15, August 2020

12

for each execution unit of a device at the least [3]. The whole

operation will be broken down into multiple functioning units

for concurrent and seamless execution [5]. The main objective

of VLIW is to eradicate the complicated or complex

instruction scheduling and parallel dispatch that ensues in

most common modern microprocessors.

Very-long-instruction-word (VLIW) is a processor that

describes computer-system architecture where a language

compiler breaks down program instruction into basic and

distinct actions that can be accomplished by the processor in

parallel, performing all these actions at same time [6, 7] It is a

technique that makes use of and combines multiple standard

instructions into one long instruction word. The instructions

are very intuitive and make use small variants of logic instead

of large unreadable chunks.

Central processing unit (CPU) allows programs to state how

its instructions will be executed and this is mostly done

sequentially. Whereas, Very Long Instruction Word (VLIW)

processors also specifically allow written programs to clearly

specify how its instructions should be executed and this is

often done concurrently albeit in parallel. This is a design

designated to increase performance of a computer system in

order to avoid complexity that is frequently found in other

designs.

However, since Instruction level processors try to increase the

speed at which a program is executed in parallel rather than

the conventional sequential programs, it belongs to a

processor family that enhances the speed of execution of

programs or instructions with its design, allowing individual

systems or machines to execute instructions in parallel. ILP

has powered the highest performance uniprocessors for

decades with several systems built on it, and this makes ILP

alongside its new techniques a popular approach [8].

One of the major keys to higher performance in

microprocessors is that it allows large range of applications

[9]. This is because VLIW employed fine-grain, instruction-

level parallelism which includes the followings:

a. Pipelining: It is now used in the design of high

performance processors.

b. Multiple processors: The use of multiple processors

improves performance for only a restricted set of

applications.

c. Superscalar implementation: It uses improved

performance for all types of applications. Superscalar

simply means the ability to fetch and complete more than

one instruction at a time. The implementation of

superscalar is an important requirement if architectural

compatibility software is to be preserved which will

ensure software legacy.

d. Specifying multiple operations per instruction: It creates

very long instruction word architecture. VLIW and

superscalar are similar in the sense that they issue and

complete more than one operation at a time. For the

VLIW implementation, the long instruction word

encodes the concurrent operations. This encoding leads

to great reduction in hardware complexity compared to a

high-degree superscalar implementation in RISC or

CISC.

2.1 Basic Structure of Vliw Architecture
Very Long Instruction Words (VLIW) is fetched directly from

the memory, via a common register file that has multiple ports

for collecting the operands and safeguarding results. Parallel

random-access to the register-file connected to the memory, is

only possible through the read and write cross bar. Execution

in the various functional units is carried out concurrently and

in parallel with the load and store operation of data between

Random Access Memory (RAM) and the register file.

VLIW’s are characterized by a single stream of execution

(One program counter, and one control unit); a very long

instruction format that provides adequate control bits to

independently and directly control the actions of every

functional unit in every cycle; and very large numbers of

functional units and data paths, in which the control is

planned at specified compile times.

VLIWs use multiple, independent functional units separately

grouped. Instead of attempting to issue multiple, independent

instructions to the aforementioned units, a VLIW bundles the

multiple operations into one very long instruction [8].

Multiple functional units execute all the operations in an

instruction concurrently, providing fine-grain parallelism

within each instruction. Also, instructions directly control the

hardware with no interpretation and minimal decoding. A

powerful optimizing compiler is responsible for locating and

extracting ILP from the program and for scheduling

operations to exploit the available parallel resources.

The differences in these architectures however, have direct

effects on the implementations. These architectures use the

traditional-state machine-model of computation. Each

instruction effects an increased change in the memory and

register state of the computer, and the hardware fetches and

executes instructions sequentially until a branch instruction

generates a change control flow direction [7].

2.2 Vliw Processors
Early VLIW processors were established to be scientific super

computers; newer processors were used mainly for stream,

image and digital signal processing, low power mobile

computers, multimedia codec hardware, etc. Recently, some

of these processors enjoyed moderate commercial success in

Philips Trimedia, TI TMS320C62x DSPs, and Intel Itanium

than Transmeta Crusoe model. Also, Fu et. al. implemented

an Executable Quantum Instruction Set Architecture

(eQASM) which combined efficient timing specification,

single-operation-multiple-qubit (SOMQ) execution, and

VLIW architecture, relieves the quantum operation issue rate

problem, by presenting better scalability than Quantum

microarchitecture set (QuMIS) [10]. Moreover, VLIW

compiler technologies are equally applicable to super scalar

processors. Stream and media processing applications are

used with predictable branch behavior and large amounts of

ILP [9]. Examples of VLIW processors are Defoe, Transmeta

Crusoe, Intel IA-64, Multiflow TRACE, Cydrome Cydra etc.

2.2.1 Defoe
Defoe is a 64-bit VLIW architecture and it is compressed. It

has a set of 64 programmer visible general purpose registers

that are 64 bits wide. The predicate registers are special 1-bit

registers, which require a true or false value and register R0

always contains zero. There are 16 programmer visible

predicate registers called PR0 to PR15. All operations are

predicated, i.e. each instruction contains a predicate register

field (PR) that contains a predicate register number. In an

uncompressed VLIW architecture, MultiOps have a fixed

length i.e. operations are not accessible within a MultiOp,

NOPs are inserted into those slots, while a compressed VLIW

architecture uses variable length MultiOps to get rid of those

NOPs and achieve high code density. Also, operations are

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 15, August 2020

13

encoded as 32-bit words. A special stop bit in the 32-bit word

indicates the end of a MultiOp.

2.2.2 The Intel Itanium Processor
The Itanium-1 processor is Intel’s major implementation of

the IA-64 ISA series, which is developed both by Intel and

HP. It is an Explicitly Parallel Instruction Computing (EPIC)

form of VLIW which consist a 64-bit, 6 issue VLIW

processor with four integer units, four multimedia units, two

load/store units, two extended precision floating point units

and two single precision floating point units. This processor

running at 800 MHz on a 0.18 micron process and has a 10

stage pipeline. The IA-64 architecture used a fixed-width

bundled instruction format with dependent instructions.

MultiOp is called instruction group, where each MultiOp

consists of one or more 128 bit bundles. However, each 128

bit bundle consists of three operations and a template. The

opcode in each operation specifies a type field; the template

encodes commonly used combinations of operation types.

Defoe and IA-64 uses a decoupling buffer to improve its issue

rate. Though the IA-64 registers are nominally 64 bits wide,

there is a hidden 65th bit called NaT (Not a Thing). Also, all

operations are predicated with 64 predicate registers.

2.2.3 The Transmeta Crusoe Processor
The Crusoe processor was developed by Transmeta

Corporation. The Crusoe was designed to build a processor

with modest performance and efficiently outdo the ISA of

other processors, mainly the 80x86 and the Java virtual

machine. In the design, complex mechanisms of achieving

ILP were replaced with simpler and more power efficient

alternatives; and whereas out of order issue and dynamic

scheduling were not considered. In the Crusoe, long

instructions are either 64 or 128 bits; a 128-bit instruction

word is called a molecule which encodes 4 operations called

atoms. The molecule format determines how operations are

sent to functional units. The Crusoe consist of two integer

units, a floating point unit, a load/store unit and a branch unit.

It has 64 general purpose registers and uses condition flags

compared to predication used by Defoe.

Table1: Architectural comparison of CISC, RISC and VLIW

ARCHITECTURE

CHARACTERISTIC

CISC RISC VLIW

Instruction size Varies One size, usually

32 bits

One size, usually

64 or 128 bits

Instruction format Field placement

varies

Regular,

consistent

placement of

fields

Many simple,

independent

operations

Instruction

semantics

Varies from simple

to complex

Almost always

one simple

operation

Many simple,

independent

operation

Registers Few, sometimes

special

Many, general

purpose

Many, general

purpose

Memory references Bundled with

operations in many

different types of

instructions

Not bundled with

operations, i.e.

load/store

architecture

Not bundled with

operations, i.e.

load/store

architecture

Hardware design

focus

Exploit microcode

implementations

Exploit

implementations

with one pipeline

and no microcode

Exploit

implementations

with multiple

pipeline, no

microcode & no

complex dispatch

logic

3. COMPARISON OF CISC, RISC, AND

VLIW
The differences between CISC, RISC and VLIW are in the

formats and semantics of the instructions. Table 1 compares

architecture characteristics.

CISC instructions vary in size, often specify a sequence of

operations, and can require serial (slow) decoding algorithms.

CISCs tend to have few registers, and the registers may be

special-purpose, which restricts the ways in which they can be

used. Memory references are typically combined with other

operations (such as add memory to register). CISC instruction

sets are designed to take advantage of microcode.

RISC instructions specify simple operations, are fixed in size,

and are easy (quick) to decode. RISC architectures have a

relatively large number of general-purpose registers.

Instructions can reference main memory only through simple

load-register-from-memory and store-register-to -memory

operations. RISC instruction sets do not need microcode and

are designed to simplify pipelining.

VLIW instructions are like RISC instructions except that they

are longer to allow them to specify multiple, independent

simple operations. A VLIW instruction can be thought of as

several RISC instructions joined together. VLIW architectures

tend to be RISC-like in most attributes.

4. SCHEDULING ALGORITHMS OF

VLIW
Instruction scheduling algorithms are important to the

performance of a VLIW processor. The writing of code for

VLIW processors is difficulty even more than super scalar

processor. Why? The super scalar processor program is

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 15, August 2020

14

fundamentally sequential and depends on the hardware to

extract parallelism from the sequential program, while during

VLIW processor code generation; the compiler is met with the

task of concurrently extracting parallelism from a sequential

algorithm and scheduling independent operations [9]. Below

are the three main scheduling algorithms:

4.1 Trace Scheduling
The first-generation ILP processors/compilers used a three

phase method to generate code which failed such as create a

sequential program and analyze each block for independent

operations; if sufficient hardware resources are available, list

independent operations within the same block in parallel; and

when possible, move operations between blocks. The failure

is because operations in a basic block are dependent on each

other and choices made during scheduling basic blocks may

make it difficult to move operations between blocks.

Therefore, trace scheduling algorithm was introduction to

solve the above problems by Joseph Fisher. In trace

scheduling, a set of commonly executed sequence of blocks is

gathered together into a trace and the whole trace is scheduled

together. Trace scheduling operates on a linear sequence of

blocks i.e. it allow operations from one side of conditional

branch. It typically misses code motions that move operations

from one trace to another. Trace scheduling operates such that

extracting ILP from sequential programs will require code

motion across multiple basic blocks. It is driven by profile

data not static branch analysis. The trace scheduling algorithm

can be seen in B Mathew’s work [9].

4.2 Trace Scheduling-2
Trace scheduling - 2 is an advancement on trace scheduling

which allows nonlinear code motion, i.e. it allows operations

from both sides of a conditional branch. It uses an expected

value function called speculative yield to consider the cost of

speculative execution and resolve whether or not to move

operations from one block to another. This algorithm works

by picking clusters of operations where each cluster is a

maximal set of operations that are connected without back

edges in the flow graph of the program.

4.3 Super Block Scheduling
Super block scheduling developed partnership with Impact

compiler at the University of Illinois. It operates like trace

scheduling, by extracting ILP from sequential programs which

requires code motion across multiple basic blocks. Super

block scheduling is driven by static branch analysis. It is a set

of regular basic blocks that control, may arrive at the top only,

but may depart at more than one point. Super blocks uses a

process called tail duplication which identify traces first and

then eliminate side entries into a trace. Static analysis based

super block scheduling achieved more results than profile

based methods.

5. MERITS AND DEMERITS OF VLIW
In every development especially Microprocessor Architecture

has both benefits and drawbacks. The merits and demerits of

VLIW are below:

5.1 Merits of VLIW
There are many advantages of VLIW over CISC and RISC.

Besides VLIW being easier, simpler and cheaper to assemble,

below are its other advantages:

 Increased performance

 It removes complicated instruction scheduling and

parallel problems that are found in super scalar

approaches

 It is compiler friendly and improves hardware

performance

 Handles Interrupts and exceptions relatively easily

 It can highly predict run-time behavior, hence

allowing real-time applications and greater result for

code optimization

 Simple hardware is required, which is normal and

straightforward

 Pure VLIW machines do not need complicated logic

to check for dependencies

 Potentially easier to program

 Can add more execution unit compartments and

allow more instructions to be packed into the VLIW

instruction set.

 Parallelism will be exploited at the instruction level

5.2 Demerits of VLIW
 In some algorithms, parallelism is underutilized

 High power consumption

 Increased memory usage because of high memory

bandwidth requirement

 There is no object code compatibility between

generations

 Increased code size due to empty “slots”

 Program size is large

 Compiler complexity

6. CONCLUSION
This work compares CISC, RISC AND VLIW, and highlights

how VLIW machines perform better than other traditional

machine. It buttresses the fact that VLIW architectures are the

new trend in microprocessor architecture and were designed

to leverage on instruction level parallelism.

Recent and known high performance processors depend on

Instruction-Level-Parallelism to achieve high execution speed

and performance. ILP processors achieve their high

performance ratings by allowing multiple operations to

execute in parallel and concurrently, using combined compiler

and hardware techniques. Indeed, VLIW is a step ahead of the

others and allows higher performance without the complexity

inherent in these other designs. The processor will not make

any run-time control decision below the program level which

helps reduce complexity and increase turnaround time.

7. REFERENCES
[1] R. P. Colwell, R. P. Nix, J. J. O'donnell, D. B. Papworth,

and P. K. Rodman, "A VLIW architecture for a trace

scheduling compiler." pp. 180-192.

[2] J. A. Fisher, P. Faraboschi, and C. Young, Embedded

computing: a VLIW approach to architecture, compilers

and tools: Elsevier, 2005.

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 15, August 2020

15

[3] L. H. John, and A. P. David, Computer Architecture; A

Quantitative Approach, fourth ed.: MK Morgan

Kaufmann Publishers, 2007.

[4] R. P. Colwell, W. E. Hall, C. S. Joshi, D. B. Papworth, P.

K. Rodman, and J. E. Tornes, "Architecture and

implementation of a VLIW supercomputer." pp. 910-

919.

[5] M. Lam, "Software pipelining: An effective scheduling

technique for VLIW machines." pp. 318-328.

[6] A. Aiken, and A. Nicolau, " Perfect pipelining: A new

loop parallelization technique ". pp. 221–235.

[7] Schaum’s, Outline of Theory and Problems of Computer

Architecture The McGraw-Hill Companies Inc. Indian

Special Edition, 2009.

[8] B. R. Rau, and J. A. Fisher, “Instruction-level parallel

processing: history, overview, and perspective,” The

journal of Supercomputing, vol. 7, no. 1-2, pp. 9-50,

1993.

[9] B. Mathew, “very long instruction word architecture

(VLIW processors and trace scheduling)”, 2006.

[10] X. Fu, L. Riesebos, M. A. Rol, J. van Straten, J. van

Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen,

V. Newsum, K. K. L. Loh, J. C. de Sterke, W. J.

Vlothuizen, R. N. Schouten, C. G. Almudever, L.

DiCarlo, and K. Bertels, "eQASM: An Executable

ƒ antum Instruction Set Architecture."

IJCATM : www.ijcaonline.org

