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ABSTRACT 
The Brain-Computer Interface (BCI) is a kind of 

communication channel between the brain and the outside 

world that is not dependent on the nervous system. The recent 

improvement of deep neural network (DNN) in a 

classification task lead several researchers to apply DNN 

methods for BCI motor imagery (MI) classification. However, 

DNN based classification methods for MI classification either 

record low accuracy or take a long time to classify MI signal 

due to the high dimensional nature of the MI signal. This issue 

prevents the DNN based MI systems from being deployed in a 

real application. An ideal DNN classification framework for 

the MI classification was proposed in this study, which can be 

trained with better accuracy in a short period. To address the 

long DNN training time and the challenges of low 

classification accuracy, a new method was proposed that uses 

the FBCSP method to reduce the data dimension and increase 

class discrimination by extracting the best subject-specific 

features of the CSP from raw EEG data as input into the 

DNN. The DNN is designed with a few layers, and several 

DNN hyperparameters have been evaluated. A configuration 

that has performed better in terms of minimum training time 

and good classification accuracy has been selected. To 

investigate the accuracy of the proposed DNN methods called 

FBCSP-DNN; first, we use traditional approaches such as 

LDA, SVM, and KNN to create a baseline; second, we choose 

some DNN studies used in other studies that have been 

applied to the same dataset used in this study; third,  

we look at the use of transfer learning, a network pre-training 

methodology for one data collection of some subjects and then 

fine-tuning for another to improve some subjects with low 

accuracy; finally, the results obtained using the proposed were 

compared to traditional methods and other competing DNN 

methods used in other studies. The performance of the 

proposed FBSCP-DNN method is evaluated using BCI 

competition IV dataset 2a. The results show that the proposed 

method (81.43%) is superior to the traditional classification 

methods (SVM: 72.37%; KNN: 61.06%; LDA: 72.07%). We 

also compared the proposed DNN method and other DNN 

methods proposed by other studies using the same dataset. 

The proposed method outperforms other studies in terms of 

accuracy of the MI classification for within-subjects and 

cross-subjects, which improved by 6% and 9% respectively. 

The FBCSP-DNN classification framework proposed in this 

paper has the advantages of short training time and high 

classification accuracy, which ensures reliability for the 

practical application of BCI-motor imagery systems. 

Keywords  
Brain-Computer Interface (BCI), Deep Neural Network 

(DNN), Motor Imagery (MI), Filter Bank Common Spatial 

Pattern (FBCSP), electroencephalography (EEG). 

1 INTRODUCTION 
Brain-Computer Interface (BCI) is a communication 

technology between the human and external devices, which 

measures and translates brain signals into a command for the 

interactive application [1]. BCI applications aim to address the 

inability of a patient with muscle impairment, paralyzed 

persons and myotropic lateral sclerosis (ALS) patient, by 

providing them with an alternative way to communicate, 

which translates their mental state into a command for the 

control of external devices without any physical activity. 

Electroencephalography (EEG) is a non-invasive and is by far 

the most used to acquire the user's brain signal due to its less 

risk and easy setup for BCI, unlike invasive which requires 

brain surgery to measure the user’s brain signal [2]. 

Motor imagery (MI) has been widely applied in non-invasive 

BCI as a communication approach [3]. When imagining 

moving some body parts such as hands, feet, and tongue it 

leads to a change in the power of EEG signals in some 

specific frequency bands [4]. The increase of EEG signal 

power in a given frequency band is called an Event-Related 

Synchronizations (ERS). In contrast, a decrease of EEG signal 

power is called an Event-Related Desynchronizations (ERD) 

[5]. As an example, the imagination of a left-hand movement 

leads to a contralateral ERD in the motor cortex (i.e., in the 

right motor cortex for left-hand movement) in the  

aboutand  aboutbands during movement 

imagination, and to an ERS in the band just after the 

movement imagination ending. Recently [6] proposed a novel 

MI pattern classification based on the movement direction of 

both hands. They used a common spatial pattern (CSP) 

method for feature extraction and support vector machine 

(SVM) to discriminate between the hands' movement 

direction.  [7] proposed a method to improve the 

convolutional neural network (CNN) models by fusing CNNs 

with different characteristics and architectures to improve 

EEG MI classification accuracy. However, these approaches 

either record low accuracy or take a long time to develop the 

motor imagery System. 

Previous researches used traditional classifiers and feature 

extraction methods to improve the motor-imagery-based BCI 

system. Methods such as Principle Component Analysis 

(PCA), Independent Component Analysis (ICA), 

autoregression, and other feature extraction methods 

[7][8][10][11] were used to lower the data dimension and 

extract features. Classifiers can easily use this lower 

representation of the data. The classifiers used were Gaussian 

classifiers [12], logistic regression [13], regularized linear 

discriminant analysis (RLDA) [14][15], support vector 

machines (SVM) [16] and linear discriminant analysis (LDA) 

[17].  
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Recently, Deep Neural Network (DNN) has improved the 

ability to classify images, recognize speech, identify objects, 

and described contents. This improvement led several 

researchers to apply DNN methods for motor imagery 

classification [11], [18]–[24]. Restricted Boltzmann machine 

(RBM), convolutional layer, and autoencoders are the basic 

building blocks to construct deep neural networks (DNN). 

RBMs, convolutional layer, and autoencoders can be stacked 

and train in a layer-by-layer manner to form DBN (Deep 

Belief Network), CNN (Convolutional Neural Network), and 

stacked autoencoders (SAE) respectively which learn to 

extract a deep hierarchical representation of the training data. 

These DNN methods could be a solution for motor imagery 

classification. However, DNN networks have a large number 

of parameters. Consequently, it requires a large number of 

training data and the user cannot perform several long pieces 

of training before actually using a BCI application. It is 

difficult to gather many motor imagery data for DNN training 

[25]. Hence, there is less utilization of DNN in motor imagery 

classification. However, the Transfer learning method can 

enable to reduce long training by pre-training DNN models on 

large BCI data from other multiple subjects for the target BCI 

user or other periodic training for a known user [26]. A DNN 

will be able to learn from all subjects and use the learned data 

for new subjects without being retrained or by training on 

small data from the new data. This method could increase 

motor imagery-based application for DNN models. 

Generally, The DNNs can be applied directly to the time-

domain feature and frequency-domain feature of the raw EEG 

data. For example, A DBN method has been used in [27] on 

the time-domain feature of the raw EEG data signals for the 

classification of left and right-hand motor imagery based on a 

certain single channel. A weak classifier was trained by DBN, 

then copied the idea of the Ada-boost algorithm to joined the 

trained weak classifiers as a more powerful one. Several 

RBMs were stacked by putting the hidden layer of the bottom 

layer RBM as the visible layer of the next RBM, and the 

Contrastive Divergence (CD) algorithm was also used to train 

multilayered DBN. The performance of this DBN method was 

observed using different combinations of hidden units and 

hidden layers on multiple subjects. The new results showed 

that the method performs better with eight hidden layers, an 

improvement of 4-6% in certain cases in comparison with 

SVM was reported. In another work [28], the frequency-

domain features were computed via fast Fourier transform 

(FFT) and wavelet packet decomposition (WPD). The 

obtained frequency domain of motor imagery signal was then 

fed into the DNN for training. Three RBMs were stacked 

together with an output layer to perform a classification task. 

Only band-pass filtering and data normalization were applied 

to the raw motor imagery data for preprocessing. The result 

shows that converting the motor imagery signal from the time 

domain to the frequency domain led to a significant increase 

in performance. 

However, training the above DNNs on raw EEG data results 

in long DNN training and testing time due to the high 

dimensionality of the training data and a large number of 

DNN parameters [28], which is not feasible for real 

application. In BCI, it is desired to reduce the time necessary 

to record sufficient data, train, and test a model. The model 

has to be trained and tested in a few minutes or seconds to 

enable the practical application. Thus, to design an ideal DNN 

framework that can be used for a real application with good 

performance, there is a need to preprocess the raw EEG data 

to lower the dimension and extract relevant features to feed 

the DNN. To address long DNN training and testing time, the 

DNN should be carefully designed with few parameters while 

keeping good accuracy. 

Common Spatial Pattern (CSP) is by far the most used feature 

extraction method in the current Motor-imagery-based 

systems due to the ERD nature of the motor-imagery signal. 

CSP finds spatial filters that maximize the distance between 

multiple classes after which CSP features were obtained as the 

representation of the data. Some studies showed that these 

CSP features were inputted into linear classifiers such as SVM 

to yield good accuracy [29]. 

 Some methods were proposed to improve the performance of 

the conventional CSP  such as Common Spatial-spectral 

Pattern (CSSP) which optimizes a simple filter that employed 

one time-delayed sample with the CSP algorithm [30]; 

Common Sparse Spatial-spectral Pattern (CSSSP) was also 

used to improve the CSSP methods, which find the spectral 

pattern of all the channels instead of finding a spectral pattern 

for each channel in CSSP [31]; and Sub-band Common 

Spatial Pattern (SBCSP) filtered motor imagery signal at 

multiple bands and features are extracted from each band [32]. 

However, not all bands contain relevant information, using 

features from all bands decrease the performance of the motor 

imagery system. Due to the nature of motor imagery which is 

subject-specific, FBCSP has often used to selects the relevant 

features from the bands  [33]. To the best of our knowledge, 

no study used the FBCSP method combined with DNN for 

motor imagery classification. 

In this study, a novel DNN framework was proposed using 

FBCSP for improving the MI-based BCI system. An FBCSP 

method was used to lower the data dimension and increase the 

discrimination between classes by extracting the best subject-

specific CSP features from the raw EEG data as an input into 

the DNN. The DNN also trains on the CSP feature to extract 

high-level features for higher classification accuracy. To 

address the long DNN training time, the DNN was designed 

with a few layers, and several DNN hyperparameters were 

evaluated, and a configuration that performed better in terms 

of minimum training time was selected. 

2 METHODS AND DATA 

DESCRIPTION 

2.1 Dataset Description 
The data set [34], [35]consisted of four different motor 

imaging tasks, namely the movement of the left hand (Class 

1), the right hand (Class 2), the two legs (Class 3) and the 

tongue (Class 4). Two sessions on different days have been 

recorded for each subject. Each session consists of six runs 

which are separated by short breaks. A run consists of 48 

trials (12 for each of the four possible classes) resulting in a 

total of 288 trials per session. The subjects were sitting in a 

comfortable chair in front of a computer screen. At the 

beginning of the trial (t= 0 s), a cross was shown on the black 

screen. After two seconds (t= 2 s), a sign in the form of an 

arrow pointing either to the left, right, down or up 

(corresponding to one of the four classes left hand, right hand, 

foot or tongue) appeared and remained on the screen for 1.25 

s. This prompted the subjects to perform the desired task of 

motor imagery. No feedback has been provided. The subjects 

were asked to perform the task of motor imagery until the 

cross-fixing disappeared from the screen at t= 6 s. There 

followed a short break where the screen was black again. 
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Figure 1: Timing scheme of the paradigm 

Twenty-two electrodes were used to acquire each motor 

imagery data. They were recorded using bipolar recording 

with a sampling frequency of 250 Hz. Filter was used to band-

pass filter between 0.5 Hz and 100 Hz, and a notch filter at 50 

Hz. As shown in Figure 1, we extracted the EEG segment of 

2.5-seconds lengths from 3.5-6.0-seconds of each trial MI 

EEG recording. EEG recordings are sampled as 250 samples 

per second (Each EEG recording contains 626 samples)  

2.2 Filter Bank CSP (FBCSP) 
Filter Bank CSP (FBCSP) was applied to the raw EEG data 

for every 2.5 seconds long trial. In the case of the 250 Hz 

signal, this is corresponding to 626 samples. FBCSP filter 

EEG in multiple frequency bands (4-8, 6-10, 12-14… 26-30) 

before the computation of CSP, this used to select the most 

discriminative subject-specific features from the best band 

(see Figure 2) FBCSP was indeed the algorithm used in the 

winning-entries of all EEG data sets from the last BCI 

competition[2]. Moreover, For each frequency band, spatial 

filters are optimized using the CSP algorithm; this selects both 

the best spectral and spatial filters since each feature 

corresponds to a single frequency band and CSP spatial 

filter[36]. CSP uses the spatial filters w which extremize the 

following function: 

𝐽𝑐𝑠𝑝 𝑤 =
𝑤𝑋𝑖𝑋𝑖

𝑇𝑤𝑇

𝑤𝑋𝑖𝑋𝑖
𝑇𝑤𝑇

  =
𝑤𝐶𝑖𝑤

𝑇

𝑤𝐶𝑖𝑤
𝑇

                            
(1) 

Where T denotes transpose, Xi is the training band-pass 

filtered signal matrix for class i. 𝐽𝑐𝑠𝑝 𝑤  is a Rayleigh 

quotient. Therefore, Generalized Eigen Value Decomposition 

(GEVD) can solve extremizing it. The spatial filters w that 

maximizes or minimizes JCSP(w) is thus the eigenvectors 

corresponding to the largest and lowest eigenvalues, 

respectively, of the GEVD of matrices C1 and C2. Typically, 

44 filters (i.e., 22 pairs), corresponding to the 22 largest and 

22 lowest eigenvalues are used. Once these filters obtained, a 

CSP feature f is described as in equation ((2). Each trial data 

is spatially filtered using equation  (3), WCSP is the spatial 

filter, and Zm is the spatially projected data.  

 

 

 

Figure 2: FBCSP Method 

zm = wTX                      (3) 

The CSP variance-based features are then extracted from each 

trial using (4) 

fi=log  
var (Zm  )

sum (var (Zm  ))
   (4) 

Where fi is the i-th feature, and var (Zm) denotes the variance 

f = log wXXTwT = log wCwT = log var wX   (2) 
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of the m-th row of Z. The features fi is then combined to form 

the feature vector of each trial. The features fi is then 

combined to form the feature vector of each trial. The FBCSP 

procedure can be summarized as the following: 

1. The EEG signals from all recorded channels are 

filtered using a filter bank with nine subsequent 

band-pass filters, starting at 4 Hz and with a 

bandwidth of 4 Hz (4–8 Hz, 8–12 Hz, . . .). All 

filters are type II Chebyshev filters.  

2. Spatial filters for each output of the filter bank are 

computed using CSP. This is done by equation (1). 

3. Spatial filters corresponding to the 2 ×   extreme 

eigenvalues (largest and smallest eigenvalues) are 

selected. Each of the extreme spatial filters is then 

paired with each other correspondingly.  

4. Energy (log variance) of the spatially filtered 

channels are obtained based on the equation (4). 

5. CSP is designed for a two-class problem; in the case 

of multiclass tasks like this in this study, a one-

versus-rest or one-versus-one strategy must be 

employed. In FBCSP, the former is chosen, and it 

will lead to a maximum of class number x 2 ×   

features. The values   2 and are selected using cross-

validation. With the competition data containing 

four classes, the maximum number of features used 

for classification will be 32. 

2.3 FBCSP-DNN framework 
Multiple band-pass filters were used to filter the raw EEG 

data. Then, Spatial filtering using CSP is applied on each 

band-pass filtered data and the CSP variance-based features 

are extracted. The DNN is then trained using the selected 

features from session 1 and the trained DNN is used to 

classify features from session 2. The summary of the FBCSP-

DNN framework is shown in Figure 2. 

Figure 3: CSP-DNN proposed framework 

2.4 DNN structure 
Since the EEG signal is dynamic and varies for the same 

subject from subject to subject as well as for specific tests; 

hence a discriminative collection of features is needed to 

classify the data accurately. Among the DNN models, we 

choose the autoencoders to extract high-level features from 

the FBCSP features in a way to obtain a reliable and 

consistent representation of features across subjects. We 

designed four (4) layers DNN consisted of an input layer, two 

(2) hidden layer and an output layer. The FBCSP feature 

matrix is the inputs to the DNN. The second layer has 288 

neurons, and the third layer has 100 neurons. The fourth layer 

is the Soft-max layer for classification. An auto-encoder 

comprises an encoder and a decoder. An auto-encoder will 

receive features, and "encode" them into features in a way that 

"decoder" can re-construct the same features as its output, the 

auto-encoder operation described in equation (5) and (6). 

Y = f(wyx + by ) (5) 

Z = f(wzy + bz) (6) 

Where x is the input to the encoder and y is its output. Y is 

also an input to the decoder, z an output of an auto-encoder 

and f is log-sigmoid activation function, Wy and Wz are the 

weights from input to hidden and hidden to output layers. by 

and bz are bias values of hidden and output layers. 

The representation learned by the encoders is useful for 

extracting relevant features for classification. The number of 

hidden neurons in an auto-encoder after training produces the 

same number of hidden neurons of newly learned features. 

Log-sigmoid function (describe in equation (7) has been used 

for the auto-encoders.  

f = f a =
1

(1 + exp⁡(−a))
 

(7) 

We stacked the soft-max layer with the auto-encoders for 

training and classification.  Each Auto-encoder was trained for 

200 epochs and then trained the soft-max layer for 200 

epochs. A scaled conjugate gradient descent algorithm was 

used for training the SoftMax-layer. Cross-entropy has been 

used as the loss function. To improved classification 

performance, we retrained the whole network in a supervised 

fashion by performing back-propagation on the whole multi-

layer network. This method used training set inputs and its 

corresponding target output (labels) to build a proper network 

behavior by computing the difference (E) using equations (9-

10) to minimize the error between inputs and the target output. 

In this way, it adjusts the network parameters to find the 
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network model by minimizing the cost function E using 

equation (8). Here E (x, z) is the reconstruction error when the 

network is trained to reconstruct the output values equal to the 

applied input values.   

arg min[E x, z ]   (8) 

The network then uses equation (11-(13) to update the 

network parameters. 

wi,j
m k + 1 =  wi,j

m k −∝  
∂E(x,y)

∂w i ,j
m  k 

   (9) 

bi,j
m k + 1 =  bi,j

m k −∝  
∂E(x,y)

∂b i ,j
m  k 

    (10) 

w = w−∝
∂E x,y  

∂w
  (11) 

by = by−∝
∂E(x,y)

∂by
               (12) 

bz = bz−∝
∂E(x,y)

∂bz
                     (13) 

∝ is the learning rate of the algorithm.  

 

Figure 4:  DNN architecture of the proposed method FBCSP-DNN

2.5 DNN Hyperparameter Search 
Table 1: showing methods and hyperparameters used for DNN model selection 

DNN parameters FBCSP-DNN 

layers 1-10 

nodes 50-1800 

Learning rate 0.001 to 10. 

No of inputs 4-32 

 

Table 2: showing the selected hyperparameters for the proposed FBCS-DNN 

DNN parameters nodes epochs 

No of inputs 

Layers 1 

16 

288 

- 

100 

Layers 1 100 100 

Softmax - 100 
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We choose the DNN parameters, which include several 

hidden nodes, the number of epochs, and other network-

related parameters that are considered as hyperparameters and 

can be optimized for each layer. There are also hyper-

parameters governing the unsupervised pre-training for each 

layer and hyper-parameters for fine-tuning the whole model 

for classification. We used two hyper-parameters for the 

unsupervised learning part, which include the number of 

hidden nodes and maximum epochs. For the classification 

layer part, which is the supervised learning, we used the only 

number of maximum epochs, and all other parameters are 

fixed. Our objective was to select a set of hyper-parameters  

to obtained high accuracy within a reasonable training time. 

We set hyper-parameters   for each 

layer, then for each iteration or hyper-parameter, we start from 

small values to the higher values until we get the desired 

result. For better results, the procedure has been repeated for 

several iterations.  

 The DNN has two layers where the first layer has a 288 

number of nodes with 100 as the maximum number of epochs 

and the second layer has a 100 number of nodes with 100 as 

the maximum number of epochs as shown in  

Table 2. We perform 10-fold cross-validation only once to 

select the parameters by training layer 1, layer 2, sampling 

from the following:  

For each layer, we chose: 

1. Several hidden nodes (between 3 and 288). 

2. Several layers (between 3 and 10). 

3. Several iterations of contrastive divergence to 

perform for pre-training (from 50 to 500). 

We chose a learning rate for the fine-tuning of the final 

classifier from 0.001 to 10. 

3 RESULTS  
In this section, the proposed model result was presented, as 

shown in Figure 5 which was determined by the 

hyperparameters search results. Then the final classification 

result of the proposed model was evaluated by comparing it to 

popular traditional methods and other DNN state of art 

methods.  

The experiments were conducted in a MATLAB environment 

on an Intel 3.2 GHz Core i7 desktop with 8 GB of RAM. BCI 

Competition IV dataset 2a was used to evaluate our proposed 

framework for a session to session and cross-subject 

classification. 

Several experiments were conducted before selecting the 

proposed FBCSP-DNN as explained above in section 2.5, 

both the size of FBSCP features and DNN hyperparameters 

were determined by taking classification accuracy and DNN 

training time into consideration. We used several kinds of 

inputs to train the proposed DNN, such as time-domain EEG 

data, frequency domain EEG data, band-passed raw EEG data, 

CSP feature data, and FBCSP feature data. Each input was 

trained with several DNN hyperparameters, as shown in Table 

1. Our analysis shows that the selected parameters are 

effective to the EEG data and the network is indeed learning 

from the input EEG data, proving that the DNN selection of 

parameters is meaningful to the input data as shown in  

Table 2. Note that applying DNN to raw EEG data is 

computationally expensive because we are applying a 403-by-

626 matrix for each subject. Hence the hyperparameters 

selection was applied only to FBCSP features, and the 

selected DNN parameters for the proposed FBCSP-DNN were 

applied to the rest of the inputs. 

 

Figure 5:showing  average accuracy results for all methods using 10 by 10-fold cross-validation 

To evaluate the proposed model, two techniques have been 

used, which are often used by researchers to train BCI dataset 

systems. One of them divides the EEG data for each subject 

into a training set and test set. EEG data is usually recorded in 

multiple sessions; hence some sessions are put in the training 

set and the rest in the test set. In this way, the system is tested 

on sessions it has not seen before, but they belong to the same 

subject. This training technique called within-subject training 

is preferred by researchers and gives higher accuracy than the 

others. The second training technique involves subject to 

subject information transfer. One subject used as a testing set 

and all the remaining belong to the training set. Hence in this 

technique, the system is tested on the new subject altogether, 

which it never saw before. This process is repeated for all 

users. This testing technique, called cross-subject training is 

more challenging than others, and the evaluation is more 

robust and generalized. We used both of these techniques for 

training and testing our proposed FBCSP-DNN method.   

The DNN was trained and tested on each subject. The 

classification accuracy of each subject was validated using 10-

fold cross-validation. The two (2) sessions, each consisting of 

288 trials were combined and randomly divided into 7/10 and 

3/10 for training and testing, respectively, and the results are 

shown in Table 3. We also analyzed transfer learning across 

sessions and subjects, then compare the FBCSP-DNN results 

to those obtained by traditional classifiers and other 
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competing methods. We could show in Table 4 and Table 5 

that the proposed framework (FBCSP-DNN) performed better 

than traditional methods and other studies respectively. 

3.1 Comparison of Traditional methods and 

proposed FBCSP-DNN  

Table 3: BCI competition IV dataset 2a Subjects Classification accuracy % (mean + standard deviation) for SVM, KNN, LDA 

and FBCSP-DNN 

Subjects SVM KNN LDA 
FBCSP-DNN (Proposed 

method） 

Subject 1 83.12 1.71 69.50  2.51 82.53 2.37 88.10  0.55 

Subject 2 72.71 1.82 58.41 3.73 72.12  1.74 73.94 0.88 

Subject 3 82.64 2.17 76.00  2.49 82.29 1.78 83.42  1.21 

Subject 4 58.29 3.48 50.29 3.53 58.17  4.00 68.50  1.80 

Subject 5 48.88 3.44 36.82  1.88 49.23 2.32 67.90 2.70 

Subject 6 63.17 3.44 44.11 2.58 63.64  3.34 86.56  2.25 

Subject 7 88.82 1.73 79.00  2.56 87.23 2.35 91.98 0.94 

Subject 8 82.35  3.09 72.29 3.91 81.88  2.28 85.26  0.26 

Subject 9 71.35 3.01 63.12  4.56 71.58 2.79 89.22 0.11 

Average 72.37  2.65 61.06  3.08 72.07  2.55 81.43 1.18 

 

We compared the FBCSP-DNN to the traditional methods 

(SVM, KNN, and LDA) to validate the FBCSP-DNN and 

examine its role for motor imagery classification. In  

Table 3, the average classification accuracy of FBCSP-DNN 

performs higher than that of traditional methods classifiers for 

all subjects using the same features input. This shows the 

representation power of FBCP-DNN over traditional methods 

classifiers which extract most hierarchical features from 

FBCSP features before classification. FBCSP-DNN 

outperforms traditional method classifiers for all subjects with 

an average classification accuracy of 81.43% while SVM, 

KNN, and LDA having 72.37%, 61.06%, and 72.07% 

respectively. The standard deviation of other methods is also 

higher than the proposed FBCSP-DNN. This demonstrates the 

robustness of the proposed method to the changes that occur 

between sessions of recording IM signals. 

3.2 Comparison of Traditional methods, 

DNN methods and proposed FBCSP-

DNN for within-subjects

Table 4: BCI competition IV dataset 2a within-subjects classification accuracy for traditional methods, DNN Methods, and 

FBCSP-DNN 

Subjects SVM KNN LDA 
Schirrmeiste

r[37] 

Sakhavi 

[22] 
Amin [7] 

FBCSP-DNN 

（Proposed 

method） 

Subject1 79.00 70.48 78.65 87.5 87.50 90.21 87.70 

Subject 2 58.30 50.18 39.93 65.28 65.28 63.4 68.2 

Subject 3 82.05 61.9 76.19 90.28 90.28 89.35 85.6 

Subject 4 60.09 52.63 36.4 65.61 66.67 71.16 66.7 

Subject 5 53.99 39.13 51.81 55.19 62.82 62.82 67.00 

Subject 6 56.14 44.19 53.02 48.47 45.49 47.66 67.40 

Subject 7 92.50 79.42 82.31 86.07 89.58 90.86 91.00 

Subject 8 78.23 62.73 51.66 78.41 83.33 89.72 83.80 

Subject 9 82.95 68.88 74.24 82.95 79.51 82.82 87.60 

Average 71.47 58.84 60.47 73.31 74.46 75.78 78.33 
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To compare our work with some related studies, we applied 

session to session (within-session) with the FBCSP-DNN and 

compare the results. As can be seen in Table 4, the accuracy 

of the FBCSP-DNN is higher than that of traditional methods 

and related studies for 7 subjects out of 9 subjects except 

subject 3 and subject 4. FBCSP-DNN outperforms other 

methods with an average classification accuracy of 78.22% 

while SVM, KNN, LDA, Schirrmeister[37], Sakhavi[22] and 

amin[7] having 71.47%, 58.83%, 60.47, 73.31%, 73.56 and  

75.78% respectively. The lower accuracy for other methods is 

due to the variation between session to session of subject 4, 

subject 5, and subject. Hence, our proposed FBCSP-DNN 

framework can capture the most discriminative features from 

one session and use it to classify another session.   

3.3 Comparison of Traditional methods and 

DNN methods for cross-subjects 

Table 5. Cross Subjects accuracy (%) for each subject for the BCI Competition dataset 2a. 

Subjects Schirrmeister [37] Amin [7] 
FBCSP-DNN （Proposed 

method） 

Subject 1 47.60 62.07 78.60 

Subject 2 31.22 42.44 62.50 

Subject 3 41.02 63.12 72.50 

Subject 4 33.19 52.09 53.90 

Subject 5 41.57 49.96 44.20 

Subject 6 34.71 37.16 49.30 

Subject 7 43.09 62.54 78.40 

Subject 8 46.01 59.32 67.90 

Subject 9 51.78 69.43 78.40 

Average 41.13 55.35 65.07 

 

We also perform cross-subject classification and compare it 

with two of the studies ([7] and [37]) where we trained the 

FBCSP-DNN on 8 subjects and tested it with the remaining 1 

subject, this procedure is repeated for all the 9 subjects. 

FBCSP-DNN outperforms these competing methods for all 

subjects except subject 5. The FBCSP-DNN has an average 

classification accuracy of  65.07% while on the other hand[7] 

and [37] have 55.35% and 41.13% respectively. This 

improvement in cross subjects’ classification accuracy is 

important for FBCSP-DNN as it shows that it increases the 

performance by 9.72% in average classification accuracy 

compared to other studies, the result is shown in Table 5 

4 DISCUSSION 
We used the network as shown in Figure 1: It was described 

in section 2.4, it has only two layers and an output layer, the 

first layer has hidden nodes of 288 and second layer has 

hidden nodes of 100. This configuration was adopted after 

several experiments have been carried out that give good 

results in terms of minimum time and accuracy. Thus it had 

been used. This configuration found to be consistent in giving 

the highest classification accuracy through the subjects. 

Though in one of our experiments that has 10 nodes in the 

first layer and 5 nodes in the second layer can give the same 

result in some subjects, it was not consistent across all 

subjects and can lead to poor performance hence it has not 

adopted. 

The FBCSP features are selected based on the first and last m 

column of CSP projected data.  m=2 has been used for seven 

subjects except subject 3, subject 6, and subject 8, which used 

m=3, m=4, and m=4, respectively. These features dimension 

yielded the best result for the subjects when evaluating DNN 

parameter, so has been adopted. Therefore, the dimension of 

the proposed FBCSP-DNN is m * N1*N2*4, where m is the 

FBCSP feature, N1 is the number of nodes in the first layer, 

N2 is the number of nodes in the second layer, and 4 is the 

number of motor imagery classes. For each subject, FBCSP 

took about 9.62 seconds; the training session took about 12.13 

seconds; testing took about 0.3 seconds. In total it took 21.75 

seconds for training the FBCSP-DNN. When performing 

transfer learning, we just combined FBCSP features from 

other subjects for training and used the FBCSP features of the 

target subject for testing.  

The effect of epoch size on the DNN performance is shown in 

Figure 6 together with the average training time for one 

training set with 288 trials. As you can see in the figure, the 

performance is higher for maximum epochs as 200 than 

greater than that, and the training time increases as epoch size 

increases. Thus, the Number of epochs were selected as 200 in 

each layer in this study. The size of hidden nodes is also 

crucial to the performance of classification accuracy. A 

comparison between performances of different hidden node 

sizes was investigated, and the DNN with hidden nodes the 

same as number testing set had the best classification 

accuracy. This means that the features are presented better by 

using these hidden nodes.  

Traditional classifiers and other studies were also compared to 

the proposed FBCSP-DNN to investigate the role of the 

proposed FBCSP-DNN. It was found out that the proposed 

method was able to capture the similar features across 

sessions and subjects better than other methods. Notice that in 

Table 3 and Table  there is an improvement in classification 

accuracy for some subjects that has low performance in other 

competing methods. Our analysis shows that low accuracies 

can also be due to the ability of some subjects to perform 

some of the motor imagery tasks correctly in some trials.  

Overall, the proposed DNN and FBCSP feature combined 

performed better than other inputs both in terms of 

classification accuracy and minimum training time.  In this 
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way, the FBCSP-DNN method limits the number of EEG 

samples and DNN parameters that result in long DNN training 

time. 

 

Figure 6: a graph showing the effect of epoch size on accuracy and time. 

5 CONCLUSION 
The proposed FBCSP-DNN was selected on the basis of 

several experiments conducted on numerous different 

frameworks with different parameter settings. Not only was 

the FBCSP able to reduce the high EEG dimension, but it also 

extracted significant features that contributed to the ideal 

DNN model. The proposed combination of FBCSP and DNN 

(FBCSP-DNN) was found to be more reliable as it achieves 

higher classification accuracy and computational efficiency 

than other state-of-the-art DNN methods. The FBCSCP-DNN 

method can, therefore, be used reliably to develop a high-BCI-

motor imagery application in a minimum of time and with 

good accuracy. 

5.1 Data availability 
The motor imagery dataset used to evaluate this study is a 

public benchmark dataset provided by the Institute of 

knowledge discovery. It can be accessed via a link 

http://www.bbci.de/competition/iv/ upon application through 

the mentioned link. 
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