
International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

27

Shared Web Service Architecture for Websites with

Related Mobile Applications

Waseem I. Bader
Al-Salt College for Human Sciences

Al-Balqa Applied University, Al-Salt, Jordan

ABSTRACT
Mobile application development is growing rapidly in the last

few years that it hasn't become solely for big named brands

and companies, Today more and more small and midsize

businesses and institutions are following the trend of

providing mobile based applications to support their work and

popularity. This process has had great benefits on the growth

of businesses and institutions, but in the same time has come

with some burdens to overcome for the developers and

programmers of such applications to ensure the consistency

between the original business website functionality and the

extended mobile applications that supports the websites. In

this paper, a proposed architecture for a business employee

services website and its supporting mobile application is

presented which uses a single web service to support both

applications, providing all the functionality needed to ensure

consistency between them while at the same time reducing the

time and effort needed for programmers and developers to

maintain both of them in the best possible way. The code

samples in this paper were implemented using the ASP.net

programming language for the web service and web site and

android programming for the mobile application, but the same

architecture can be implemented in any other development

language and environment.

Keywords

Web Development, Mobile Development, Web Services

1. INTRODUCTION
Application development has grown quickly in the last few

years, everyday new technologies and ideas are adopted to

fulfill the growing needs of businesses and institutions, and in

the same time to provide their users and clients with the best

possible experience. Developers today are very well familiar

with developing websites that support the different services of

a company or a business, but during the last few years mobile

development has become very important and required by most

companies and businesses because of the benefits it brings to

the growth and popularity of their work and widespread.

Although Mobile Development has grown fast and became

very popular among application developers, but in the same

time it cannot replace the ordinary web site that users use

every day. This has forced developers of a business to support

both websites and mobile applications for the business at the

same time and keep them both at sync in the best possible

way. [1]

In earlier web development, developers didn’t often need to

worry much about the consistency of their code in websites

because they simply provide the code within a website and

they can change it any time they need in case of new upgrades

or fixes. But with the introduction of Mobile Development

and with the increasing demand of providing Mobile based

applications for businesses, which is ever growing in

popularity as new statistics reveal that the internet usage

worldwide by mobile and tablet devices exceeded that of

desktop for the first time in October 2016 [2], developers

started to think more and more about the code they develop in

both web and mobile applications.

Nowadays the business trend is to allow users to access the

same services from their websites or their mobile applications,

and application developers have to guarantee, as much as

possible, to provide the best possible experience and the most

consistent information for business clients at any time and

from any application they use.

An Architecture of a shared business employee's web service

that supports both an employee services website and its

related mobile application is presented and discussed in

details to suggest the best techniques that can be implemented

to provide as much consistency, flexibility and effectivity as

possible for developers in such a development architectural

scenario, as shown in the figure:

Figure 1: Employee Web Service, Website and Mobile

Application Architecture

2. WEB SERVICE ARCHITECTURE
A web service is a piece of software that makes itself

available over the internet and uses a standardized XML

messaging system to provide a method of communication

between different applications that might use different

programming languages or development environments [3]. It

can be used to provide the programming logic base and

application specific information among websites and their

related mobile applications by providing the shared services

and coding between them.

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

28

A web service is basically a web application which is

generally a class containing a list of web methods that could

be used by other applications. The web service should be

deployed on a web server with a specific URL address in

order for other applications to be able to reach the web service

and consume its available web methods [4]. In case of a web

service built with ASP.net, it will have a URL similar to the

following:

http://www.myBusinessDomain.com/myBusinessWebService

s/EmployeeWebService.asmx

Each supported functionality that the web service should

provide will be presented as separate web method that any

external application can access by passing the appropriate

parameters to the web method and receiving the

corresponding return value from the web service to the

accessing application. The following figure shows the

structure of an Employee Web Service with a sample web

method called isValidLogin that receives two string

parameters corresponding to the employee Id and password,

and then the method would return a Boolean value

corresponding to a valid or invalid login:

namespace myBusinessWebServices

{
 [WebService(Namespace = " http://www.myBusinessDomain.com

")]

public class EmployeeWebServices:
System.Web.Services.WebService

 {

 [WebMethod]

 public Boolean isValidLogin (String empId, String pass)

 {
 Boolean valid = …

//the code to check the validation of the user login would be placed

here
 return valid;

 }

 }
}

Figure 2: Employee Web Service Structure

The returned value of a web method can vary depending on

the functionality of the service provided by that method, it can

be as simple as a single string, integer or even a Boolean

true/false value as shown in the previous example. But in

some case these simple return values are not enough, because

an application might need to receive complex data structures

from the web method to be displayed or to be further

manipulated by the application. There are mainly two

common techniques to pass or receive complex data structures

from the web service method:

 User-Defined Structures.

 JSON

2.1 User-Defined Structure Return Value
In this technique there must be an agreed standard to be used

among the web service and all of the applications that will use

it, for example, if a set of records must be returned as

key/value pairs, a semi-comma separated string of the

key/value pairs must be returned and each calling application

must divide the pairs based on the agreed separation symbol

and use it as needed, as shown in the following example:

Key1=Value1;Key2=Value2;….; KeyN=ValueN

2.2 JSON
JSON (JavaScript Object Notation) is based on key-value data

exchanging format. It has a simple structure and lightweight

format, JSON is quite easy for humans to read and write, as

well as for applications to generate and parse, most

programming languages provide different libraries for using

JSON objects. [5]

A JSON object looks something like this:

{
 "empid": "24220",

 "empname": "Omar Ayouni",
 "job": "Programmer",

 "isManager" : true,

 "salary": 3250,
 …

 }

Figure 3: JSON Object Format

A JSON object can contain other nested JSON objects within

which resembles an Array, Vector or Hashtable in

programming languages.

A nested JSON object looks something like this:

{
 "24220" : {

 "empname": "Omar Ayouni",

 "job": "Programmer",
 "isManager" : true,

 "salary": 3250,

 …
 },

 "29795" : {

 "empname": "Ayat Hayati",
 "job": "Supervisor",

 "isManager" : false,

 "salary": 4375,
 …

 },

 …
 ,

 "empidN" : {

 "empname": "EmployeeN",
 "job": "JobN",

 "isManager" : N,

 "salary": SalN,
 …

 }
}

Figure 4: Nested JSON Object Format

Using the JSON format in the communication between the

web service and the applications that access it has more

advantages than using the User-Defined format technique,

because in the User-Defined format any changes in the format

of the data will force the developers to change the way they

consume it in every application that uses the web service, for

example if the separation symbol is changed in the returned

string format we need to change that in every single

application that uses this web method and this is very time

and effort consuming, besides that all the mobile application

clients should update their apps to reflect these new changes

which is also time, effort and expense consuming on behalf of

the clients as well. On the other hand using JSON is standard

for the web service and the different applications regardless of

the programming language they are built on, because there is

no need to hardcode any user-defined formats within it.

For example to prepare a web method in the web service that

would return the detailed information of a specific employee

ID, the following code can be used:

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

29

//User-Defined EmpInfo Class
private class EmpInfo

{

 String empid;
 String empname;

 String job;

 Boolean isManager;
 double salary;

}

 [WebMethod]

public String getEmployeeInfo (String empId)

{
EmpInfo emp = new EmpInfo ();

//Read Emplyee info from Database or external file and fill the

//UserInfo Object members

emp.empid = "24220";

emp.empname = "Omar Ayouni";
…

return new

System.Web.Script.Serialization.JavaScriptSerializer().Serialize(emp)
;

}

Figure 5: Employee Web Service getEmplyeeInfo Web

Method

In the previous code the ASP.net built-in

JavaScriptSerializer class Serialize method is used to

convert the EmpInfo object into a JSON string to be returned

from the web method in the following structure: [6]

{

 "empid": "24220"

 "empname": "Omar Ayouni",
 "job": "Programmer",

 "isManager" : true,

 "salary": 3250,
 }

Figure 6: EmpInfo JSON Object Format returned from

the getEmplyeeInfo Web Method

Any consuming application that uses the getEmplyeeInfo

web method should later deserialize the JSON object to use it

as it needs.

2.3 Consuming the Web Service from the

Website
In order to use the web service from an ASP.net website, a

reference to the Web Service must be added in Visual Studio

by using the URL address of the desired web service [7]. By

right clicking the project in the solution explorer and choosing

"Add Service Reference" option from the context menu as

shown in the following figure:

Figure 7: Adding a reference to a web service in Visual

Studio

In the Advanced section of the Add Service Reference

Window, the Add Web Reference button should be used and

the web service URL address and reference name in the

website should be set before adding the web service reference

as shown in the following figure:

Figure 8: Adding a reference to a web service in Visual

Studio

After adding the web service reference in the ASP.net website

project, the reference name set in the previous window will be

used to access the web service methods in the required web

pages of the web site as shown in the following example:

EmployeeWebService empws = new EmployeeWebService ();

String jsonResponse = empws.getEmployeeInfo ("24220"); //empId

Hashtable jsonHT = new
System.Web.Script.Serialization.JavaScriptSerializer().Deserialize<H

ashtable>(jsonResponse);

String empname = jsonHT["empname"].ToString();
String job = jsonHT["job"].ToString();

String salary = jsonHT["salary "].ToString();

…

Figure 9: Consuming getEmplyeeInfo from the website

The Hashtable class used in the previous sample code is a

built-in C# class that consist of a tabled structure with every

entry consisting of a key/value pair. The Hashtable structure

can be used to convert the JSON string returned from the web

method into an ASP.net object in order to access its values or

even iterate in the returned key/value pairs, as shown in the

following figure:

Figure 10: HashTable Structure

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

30

A HashTable object also allows the storage of complex

structures in its key/value entries which corresponds to the

nested objects in JSON. [8]

Other Structures can also be used to deserialize JSON strings

such as Dictionaries, Hashmaps, Lists and others.

2.4 Consuming the Web Service from the

Mobile Application
To use the web service from an Android mobile application,

any Soap supporting build-in or third-party libraries can be

used [9]. For Example, KSoap2 is a lightweight open source

library that can be used to interoperate with most popular

SOAP engines and hence can be used to access the employee

web service in hand. [10]

In order to access a web method in the web service a

SoapObject instance must be created with the web service

URL address, method name and its corresponding parameter

names and values, in addition to the use of an HttpTransport

and SoapSerializationEnvelope objects as showing in the

following code sample:

SoapObject soapRequest = new

SoapObject("http://www.myBusinessDomain.com/", "getEmployeeInfo");

//Adding the corresponding parameters to the Soap request

PropertyInfo pi = new PropertyInfo();

pi.setName("empId");

pi.setValue("24220"); //empId

pi.setType(String.class);

soapRequest.addProperty(pi);

SoapSerializationEnvelope envelope = new SoapSerializationEnvelope(

SoapEnvelope.VER11);

envelope.dotNet = true;

envelope.setOutputSoapObject(soapRequest);

HttpTransportSE httpTransport = new

HttpTransportSE("http://www.myBusinessDomain.com/myBusinessWebServic

es/EmployeeWebService.asmx");

Object jsonResponse = null;

try {

 httpTransport.call("http://www.myBusinessDomain.com/getEmployeeInfo",

envelope);

 jsonResponse = envelope.getResponse(); //JSON Response is Received

Here

} catch (Exception exception) {

// Deal with any Exceptions here

 }

…

Figure 10: Accessing a web service method from an

Android Application

After receiving the JSON string response from the web

service method, it should be converted back into objects that

Android can deal with. There is also many structures and

libraries that can be used to manipulate the JSON String, in

this sample code another open source JSON Library is used to

deal with the received JSON String as shown:
JSONObject jsonObj =new JSONObject(jsonResponse.toString());

String empname = jsonObj.getString("empname");

String job = jsonObj.getString("job");

String salary = jsonObj.getString("salary");

…

Figure 11: Dealing with JSON String in an Android

Application

2.5 Web Service Form Validation &

Manipulation
One of the most common services that need to be available in

either a website or a mobile application, besides retrieving

information from the server and displaying it to the user as

seen in the previous examples, is that ability to submit form

data from the client to the server. In this operation,

information sent by the client must be validated and

manipulated by the server whether the data is sent from the

business website or mobile application.

For Example, if we have a service that allows business

employees to submit their absences from work online, an

employee should be able to do so from the company website

or mobile application as shown in the following figures:

Figure 12: Employee Vacation Website Screen

Figure 12: Employee Vacation Mobile Screen

In order to provide as much consistency for such client forms,

a web service method will be provided in the Employee Web

Service which will be responsible of validating the client

input information and manipulating the data. After processing

the client input, a suggested response structure, based on

Hashtables, is returned to the calling application as shown in

the following code samples:

 [WebMethod]

public String submitVacation (String empId , String VacationStartDate, String

VacationEndDate, String VacationType)

{

Boolean valid = true;

Hashtable responseTable = new Hashtable();

if (VacationStartDate.Equals(""))

{

 valid = false;

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

31

 responseTable.Add("error_VacStartDate", "Empty Vacation Start Date");

}

if (VacationEndDate.Equals(""))

{

 valid = false;

 responseTable.Add("error_VacationEndDate ", "Empty Vacation End

Date");

}

if (valid)

{

 Boolean dataInserted = false;

 //Perform Insert Data into a Database or External Storage or File

 …

 if (dataInserted)

 {

 responseTable.Add("success", "Vacation Submitted Successfully.");

 }

 else

 {

 responseTable.Add("error_InsertData", "Error Inserting Data");

 }

}

return new

System.Web.Script.Serialization.JavaScriptSerializer().Serialize(responseTable)

;

}

Figure 13: Employee Web Service submitVacation Web

Method

The submitVacation web service method prepares an empty

Hashtable before performing the data validation and

manipulation, in case of any invalid data or error, a new entry

in the generated Hashtable is added with a key starting with

the prefix error_ and then a descriptive name of the

invalidation or error is followed. In case of valid inputs and

successful manipulation of the data, a record is added in the

Hashtable with a success key and a descriptive value to be

displayed later to the client. The Hashtable is then returned

back to the calling application whether it was a website or a

mobile application as a serialized JSON string.

The Following code samples shows how to deal with the

submitVacation web method returned JSON string in the

calling ASP.net website and Android Mobile Application:

EmployeeWebService empws = new EmployeeWebService ();

String jsonResponse = empws.submitVacation ("24220","01-01-

2021","02-01-2021","Annual");
//The previous sample data would be entered by the client

Hashtable jsonHT = new
System.Web.Script.Serialization.JavaScriptSerializer().Deserialize<H

ashtable>(jsonResponse);

String status = "";

if (jsonHT.ContainsKey("success"))

{
 status = jsonHT["success"].ToString();

}

else
{

 foreach (String key in jsonHT.Keys)

 {
 String errorText = jsonHT[key].ToString();

 status += errorText+"
";

 }
}

//status is then displayed to the client

…

Figure 14: Consuming submitVacation from the website

//Connecting to the Employee WebService submitVacation method code

JSONObject jsonObj =new JSONObject(jsonResponse.toString());

String status = "";
if (jsonObj.has("success"))

{

 status = jsonObj.getString("success");

}

else

{

 for (int i = 0 ; i < jsonObj.names().length(); i++)

 {

 String errorkey = jsonObj.names().getString(i);

 String errorText = jsonObj.getString(errorkey);

 status += errorText +"\n";

 }

}

//status is then displayed to the client
…

Figure 15: Dealing with JSON String in an Android

Application

Note that each application should display the status to the

client and in case of an unsuccessful operation, the client

should fix the errors displayed as shown in the following

figure:

Figure 16: Sample Errors from submitVacation Web

Method

Although performing the validation process separately in each

application instead of having the validation performed in the

web service method might have an advantage of saving some

time on behalf of the client instead of sending and receiving

the data to the web service to perform the validation until a

successful input is provided, but there is also a huge

advantage of performing such validation in the web service,

because in this way we can easily add any further validation

on the client input data, such as checking that the vacation end

date is greater than or equal to the vacation start date, just

once in the web method instead of having to do so in every

accessing application, and in the case of mobile applications

the client must also update their application so that the new

effects could take place.

3. DYNAMIC FORM BUILDING
In the previous sections, data validation and manipulation

have been separated from the application and have been

handled by the web service, but the structure of each user

form in the web page and mobile activity is hard-coded in the

application, this means that if any other piece of information

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

32

need to be provided by the client such as an employee contact

information during his vacation, a separate field must be

added to the website form, which is an easy step to do, but the

same field must be added to the mobile application and every

client must update his application to have this new input field

available.

To overcome such an obstacle, dynamic form building is a

technique that can be used to provide maximum flexibility to

an application user form, in the sense that the form used in the

application to collect any information from the client is not

hard-coded in the application itself, instead the form is

dynamically generated upon the load of the website page or

mobile activity.

A separate web service method should be prepared to generate

the client form, and a standard syntax of coding should be

used among the web service and every accessing application

in order to generate the desired client form. A sample coding

syntax is shown in the following figure with their equivalent

ASP.net and Android controls:

Figure 17: Sample Code Syntax for Dynamic Form

Elements

This dynamic form controls code syntax will be used to

generate a response from the form generator web service

method to specify each form element type and its

corresponding parameter name that will be sent later to the

web method responsible of client input validation and

manipulation as shown in the following figure:

private struct ElementDataType

{

 public static String STRING = "STRING";

 public static String NUMBER = "NUMBER";

 public static String BOOLEAN = "BOOLEAN";

 public static String DATE = "DATE";

 public static String TIME = "TIME";

 … //Other Element Data Types are added here

}

private struct ElementControlType

{

 public static String LBL = "LBL";

 public static String TB = "TB";

 public static String CB = "CB";

 public static String LIST = "LIST";

 … //Other Element Control Types are added here

}

private class DynamicFormElement

{

 public String elementDatatype;

 public String elementControlType;

 public String elementParamater;

 public String elementData;

 … //Other Element information are added here

}

[WebMethod]

public String generateVacationForm ()

{

 String res = null;

 System.Collections.Hashtable formInfo = new System.Collections.Hashtable(

);

 //VacationStartDate Element

 DynamicFormElement elem1 = new DynamicFormElement();

 elem1.elementDatatype = ElementDataType.DATE;

 elem1.elementControlType = ElementControlType.TB;

 elem1.elementParamater = "VacationStartDate";

 elem1.elementData = DateTime.Now.ToShortDateString();

 formInfo.Add("elem1", elem1);

 //likewise for the VacationEndDate Element

 //VacationType Element

 DynamicFormElement elem3 = new DynamicFormElement();

 elem3.elementDatatype = ElementDataType.STRING;

 elem3.elementControlType = ElementControlType.LIST;

 elem3.elementParamater = "VacationType";

 elem3.elementData = "Annual;Sickness;Other";

 formInfo.Add("elem3", elem3);

 return new

 System.Web.Script.Serialization.JavaScriptSerializer(

).Serialize(formInfo);

}

Figure 18: generateVacationForm Web Service Method

The generateVacationForm web method once requested will

return a JSON string containing the desired form elements

with all of their properties returned as a nested JSON value

specified by the complex user-defined object

DynamicFormElement that every consuming application

should use to build the appropriate client form in its own

language and environment specific format as shown in the

following figure:

Figure 19: generateVacationForm Web Method Response

3.1 Consuming the generateVacationForm

Web Method from the Website
In an ASP.net webpage, a request to the

generateVacationForm web service method should be made in

the Page_Load method in order to build the form before the

page is displayed to the client. An ASP.net Panel control must

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

33

be prepared in the page to use it as a container to add the form

elements to it dynamically at runtime.

Once the previous JSON string response in returned to the

webpage, some manipulation on the response must be

performed to check the type of every element, the initial

element data, equivalent parameter name and any further

information needed to build the appropriate form as shown in

the following figure:

protected void Page_Load(object sender, EventArgs e)

{

//Connect to the appropriate web service method here

Hashtable jsonHT = jss.Deserialize<Hashtable>(jsonResponse);

foreach (String key in jsonHT.Keys)

{

 String elem = key;

 Dictionary<String,Object> elemInfo =

 (Dictionary<String,Object>) jsonHT [key];

 String elementDatatype = elemInfo["elementDatatype"].ToString();

 String elementControlType = elemInfo["elementControlType"].ToString();

 String elementParamater = elemInfo["elementParamater"].ToString();

 String elementData = elemInfo["elementData"].ToString();

 if (elementControlType.Equals("TB"))

 {

 TextBox tb = new TextBox();

 tb.ID = elementParamater;

 tb.Text = elementData;

 formPanel.Controls.Add(tb);

 }

 else if (elementControlType.Equals("LIST"))

 {

 DropDownList list = new DropDownList();

 list.ID = elementParamater;

 String[] items = elementData.Split(new char[] { ';' });

 foreach (String item in items)

 {

 list.Items.Add(item);

 }

 formPanel.Controls.Add(list);

 }

 else …

//continue with every element type that might be returned from the web service

 }

}

Figure 20: Consuming generateVacationForm Web

Method from an ASP.net web page

3.2 Consuming the generateVacationForm

Web Method from the Mobile Application
In the same way, a request to the generateVacationForm web

service method must be done in the onViewCreated method

of an Android mobile application in order to build the client

form before the mobile activity is shown to the client and the

JSON response must be manipulated in the same way but with

the corresponding Android controls and using An Android

TableLayout instead on an ASP.net Panel to add the form

controls dynamically to the activity as shown in the following

figure:

//Connecting to the Employee WebService generateVacationForm method code

JSONObject jsonObj =new JSONObject(jsonResponse.toString());

for (int i = 0 ; i < jsonObj.names().length(); i++)

{

 String elem = jsonObj.names().getString(i);

 JSONObject elemInfo = jsonObj.getJSONObject (elem);

 String elementDatatype = elemInfo.getString("elementDatatype");

 String elementControlType = elemInfo.getString("elementControlType");

 String elementParamater = elemInfo.getString("elementParamater");

 String elementData = elemInfo.getString("elementData");

 if (elementControlType.equals("TB"))

 {

 EditText tb = new EditText(getContext());

 tb.setId(View.generateViewId());

 tb.setTag(elementParamater);

 tb.setText(elementData);

 TableRow tr = new TableRow(getContext());

 tr.addView(tb);

 formTable.addView(tb);

 }

 else if (elementControlType.equals("LIST"))

 {

 List<String> list = new ArrayList<String>();

 StringTokenizer st = new StringTokenizer(elementData,";");

 while (st.hasMoreTokens())

 {

 list.add(st.nextToken());

 }

 ArrayAdapter<String> dataAdapter = new

 ArrayAdapter<String>(getContext(),R.layout. spinner_style, list);

 Spinner spinner = new Spinner(getContext());

 spinner.setId(View.generateViewId());

 spinner.setTag(elementParamater);

 spinner.setAdapter(dataAdapter);

 TableRow tr = new TableRow(getContext());

 tr.addView(spinner);

 salTable.addView(tr);

 }

//continue with every element type that might be returned from the web service

}

Figure 21: Consuming generateVacationForm Web

Method from an Android Mobile Application

Note that in order to submit the form data either from the

website or mobile application, all the form element parameter

names must be iterated and the corresponding form controls

must be accessed to retrieve the input provided by the client

and the element control type must be considered in order to

pass the correct parameters to the previously prepared

submitVacation web method as shown in the following

figures:

Control control = Form.FindControl(elementParamater);

Figure 22: Reaching a specific control in ASP.net

View control = getView().findViewWithTag(elementParamater);

Figure 23: Reaching a specific control in Android

3.3 Upgrading the Dynamic Form Building

Technique
An upgrade can also be made in the Dynamic Form Building

Technique as to provide a single web service for generating

all the needed client forms in the application, and the desired

form is passed as a parameter to this general form builder

method as shown in the following figure:

[WebMethod]

public String generalFormBuilder (String form)

{

 String res = null;

 System.Collections.Hashtable formInfo = new System.Collections.Hashtable(

);

if (form.Equals("Vacation"))

{

 //VacationStartDate Element

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

34

 DynamicFormElement elem1 = new DynamicFormElement();

 elem1.elementDatatype = ElementDataType.DATE;

 elem1.elementControlType = ElementControlType.TB;

 elem1.elementParamater = "VacationStartDate";

 elem1.elementData = DateTime.Now.ToShortDateString();

 formInfo.Add("elem1", elem1);

 ….

}

else if (form.Equals("Contact"))

{

 …

}

else …. // All other needed forms

 return new

 System.Web.Script.Serialization.JavaScriptSerializer(

).Serialize(formInfo);

}

Figure 24: generalFormBuilder Web Service Method

Another upgrade can be made as well in the applications

accessing the web service, is to provide a single website page

or android activity for all the client forms needed in the

application instead of creating a separate page or activity for

each client form in the project as shown in the following

figure:

EmployeeWebService empws = new EmployeeWebService ();

String formName;

if (// Vacation Form should be displayed)

 formName = "Vacation";

else if (// Contact Form should be displayed)

 formName = "Contact";

else //any other needed forms

…
String jsonResponse = empws.generalFormBuilder (formName);

…

Figure 25: General Form Builder Web Page

SoapObject soapRequest = new

SoapObject("http://www.myBusinessDomain.com/", "generalFormBuilder");

String formName;

if (// Vacation Form should be displayed)

 formName = "Vacation";

else if (// Contact Form should be displayed)

 formName = "Contact";

else //any other needed forms

//Adding the corresponding parameters to the Soap request

PropertyInfo pi = new PropertyInfo();

pi.setName("form");

pi.setValue(formName);

pi.setType(String.class);

soapRequest.addProperty(pi);

…

jsonResponse = envelope.getResponse();

…

Figure 26: General Form Builder Android Activity

Although these upgrades might seem harder to develop and

prepare than ordinary web or mobile forms but in the long run

this extra effort will enable you to greatly reduce the size of

the application and to allow you full control on the form itself

and how the client information is viewed, validated and

manipulated.

4. SHARED WEB SERVICE

ARCHITECTURE ANALYSIS
The proposed shared web service architectural techniques

provide developers and programmers with great flexibility to

manage multiple business applications in the best possible

way. These techniques have offered a lot of benefits but at the

same time have had some limitations.

4.1 Advantages of using a Shared Web

Service Architecture
Some of the advantages of using a shared web service

architecture are:

 After preparing the shared web service architecture for

the first time, any new fixes and upgrades are made

quite easily and with minimum time required.

 Mobile application will always be up-to-date with the

minimum need for clients to update the application for

new fixes or upgrades.

 The application will always be consistent either from

the web site or the mobile app with no need to worry

about forgetting to fix any bugs or make any changes

in any one of them.

 Urgent new form input data are made available at the

desired time without the need to worry about mobile

clients not updating their applications.

 If dynamic form building techniques are implemented

in a good manner, the mobile application size will be

reduced greatly and would save a lot of storage space

on the clients' mobile devices.

 Any new applications with different programming

languages or development environments can be easily

added to the business with minimum effort and time

because all the functionally is already prepared by the

web service.

4.2 Disadvantages of using a Shared Web

Service Architecture
Here are some of the disadvantages of using a shared web

service architecture:

 It is harder to be prepared by application developers

and it needs more time initially to set up the needed

architecture.

 More time and internet usage is needed on behalf of

the client to access and retrieve the appropriate data

from the web service.

5. CONCLUSION
Mobile Applications are increasingly demanded and requested

by businesses and companies because of the benefits it brings

to the work popularity and widespread. The developers of

business applications need to support mobile applications in

addition to the original business websites and services. In this

paper, a shared web service architectural design is represented

and discussed in details to suggest the best possible

techniques of such a business architecture to provide the

consistency and flexibility among the different business

applications and reduce as much obstacles that come with

maintaining such an architecture. New and improved ideas

and techniques need to be researched and invented to provide

better architectural designs to try to minimize the few

disadvantages that still exist and to fulfill the growing changes

and demands in the world of business application

developments and programming technologies.

6. REFERENCES
[1] Md. Rashedul Islam, Md. Rofiqul Islam, Tohidul Arafhin

Mazumder, "Mobile Application and Its Global Impact",

International Journal of Engineering & Technology,

2010.

[2] "Mobile and tablet internet usage exceeds desktop for

International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

35

first time worldwide", StatCounter Global Stats.

Retrieved 27 July 2020.

[3] Newcomer E., Understanding Web Services –XML

WSDL SOAP, 1st ed. Addison Wesley Professional.

Boston, United Stated of America. (2002).

[4] Wang Hongbing, Huang Joshua, Qu Yuzhong, Xie

Junyuan, Web services: Problems and Future Directions

2004, Journal of Web Semantics, NSFC, JSNSF.

[5] PENG Dunlu, CAO Lidong, XU Wenji, Using JSON for

Data Exchanging in Web Service Applications, 2011,

Journal of Computational Information Systems 7,

JOFCIS.

[6] Evjen B., Hanselman S., Rader D., Professional

ASP.NET 4 in C# and VB, 1st ed. Wiley Publishing, Inc.

Indiana, United Stated of America. (2010).

[7] Ugurlu T., Pro ASP.NET Web API: HTTP Web Services

in ASP.NET (Expert's Voice in .NET), 1st ed. Apress.

New York, United Stated of America. (2013).

[8] Nagel C., Professional C# 7 and .NET Core 2.0, 1st ed.

Wiley Publishing, Inc. Indiana, United Stated of

America. (2018).

[9] Meier R., Professional Android Application

Development, 1st ed. Wiley Publishing, Inc. Indiana,

United Stated of America. (2009).

[10] "kSOAP2" Kilobyte Objects, [Online]. Available:

http://kobjects.org/. [Accessed 03 July 2020].

IJCATM : www.ijcaonline.org

