International Journal of Computer Applications (0975 — 8887)
Volume 175- No. 16, September 2020

A Dynamic Sliding Window based Balanced Parallel
Frequent Itemset Mining Algorithm in Data Stream

Zakria Mahrousa
Dept. of Computer Engineering

Dima Mufti Alchawafa
Dept. of Computer Engineering

Hasan Kazzaz
Dept. of Computer Engineering

Faculty of Electrical and Electronic Faculty of Electrical and Electronic ~ Faculty of Electrical and Electronic

Engineering Engineering Engineering
University of Aleppo University of Aleppo University of Aleppo
ABSTRACT consideration, the lack of time and space needed for the

Frequent itemset mining algorithms are one of the most
interesting research issues in recent years. They play an
important role in finding association rules from a continuous
massive data stream such as: customer behavior tracking,
retail sales, network monitoring, etc. In this paper, a novel
approach will be introduced to remove some drawbacks in
parallel FP-Growth and enable it to handle the data stream.
The proposed algorithm DSW-BPGFP (Dynamic Sliding
Window - Balanced Parallel Graph Frequent Pattern) will
improve space and time required based on a compact data
structure, called FP-Graph to maintain and store dynamic
sliding window transactions. The algorithm dynamically
reconstructs and compresses directed graph data structure to
control the amount of space usage, and the size of dynamic
window will be adjusted by the concept change detection.
Moreover, DSW-BPGFP will distribute loads between
Hadoop cluster nodes equally, by introducing load balancing
strategy. The experiments show that the proposed algorithm
can achieve a good speedup, a good degree of balance
between nodes and efficiently process large dynamic datasets.
In addition, it achieves improvement in memory consumption
to store frequent patterns and in time complexity.

General Terms
Algorithms, Artificial intelligence, Data Mining, Distributed
System

Keywords

Association Rule Mining (ARM), Data Stream, Directed
Graph, Dynamic sliding window, FP-Growth, Frequent
itemset, Hadoop, Load balance, MapReduce

1. INTRODUCTION

The process of finding frequent itemset for extraction of
association rules is an essential stage in the process of
continuous big data analysis (data stream), which is resulting
from the unprecedented increase in data volume, rapid
development of the internet and the steady increase in mobile
devices in the last two decades[1]. A data stream is defined as
a series of chronological data, which is arriving at high and
fast rate[1][2]. Several mining frequent itemsets (or patterns)
algorithms have been studied on static datasets. Static datasets
have many features such as: limited volume and fixed size
over time, unlike the dynamic datasets, which have other
features such as: Continuity: It means that the flow rate of the
data stream is high and fast, Expiration: the inability to read
the data stream multiple times, Infinity: the unstable and large
volume of the data stream[1][3][4]. The traditional association
rule mining algorithms applied on static data cannot be used
for data stream, because of the features of dynamic datasets
(or data stream) [2][3][4]. Some points have to be taken into

rescanning of the entire database one of disadvantages of the
data stream, usually only one scan of data stream is possible.
As well as the continuous change in the data stream, which is
known as concept change. The increasing and changing flow
rate (data distributions) requires the use of an incremental
process to deal with data stream. In addition to the huge size
of the data stream, which prevents storing all data in memory
[2][3]. There are three types of data extraction strategies from
data stream, Landmark Window Model, Damped Window
Model and Sliding Window Model. In Landmark Window
Model, the mining process over data stream is applied from a
specific data point called the landmark, to the current time
point. In Damped Window Model, each transaction is
associated with the weight values which decrease over time.
In Sliding Window Model, the mining process over data
stream is applied between the starting time point of the
window and the current time point[5][6]. Each previous
model has its own advantages and disadvantages[6]. Fixed-
size sliding window has been implemented in many
algorithms, due to its simplicity. Fixed-size sliding window
deletes the oldest panes or batches (number of transactions)
when a new batch arrives, to maintain a fixed size. Specifying
the size of the window requires a prior knowledge from user.
If the size of the window is too large, it may cause too much
useless patterns and affect mining accuracy. If the size of the
window is very small, it may cause concept drift and affect
mining accuracy Too[7][8]. Based on the previous discussion,
fixed-size sliding window is difficult to apply on the data
stream, and dynamic sliding window is the best solution to
deal with data stream in which the window size is adjusted
based on the change of data stream. In this paper, an improved
parallel FP-Growth DSW-BPGFP will be proposed using a
compact data structure called FP-Graph with one-scan of
dynamic sliding window transactions, adjusting window size
dynamically and load balancing strategy to distribute
computational loads between Hadoop frame nodes equally.
The improved algorithm is more adaptive to treat data stream.
Firstly, an inserting stage is performed on dynamic sliding
window transactions to build FP-Graph in each node (or
machine), and a local header table H-Table that contains
support count of each data stream items. Secondly, creating a
global H-Table in master node after receiving local H-Tables
from each node, grouping items with balance strategy and
checking concept change. Thirdly, reconstructing the graphs
for each node. Finally, generate frequent itemset. This paper
is organized as follows: section 2 presents a problem
statement of finding frequent items in data streams in detail.
Section 3 gives an overview of the related researches
literature on the parallel FP-Growth algorithm. Section 4
presents the proposed algorithm of DSW-BPGFP. The
performance evaluation of the proposed algorithm is

48

presented in section 5, and section 6 is the conclusion.

2. PROBLEM STATEMENT

The task of finding frequent items in data streams to generate
association rules is stated as follows: let 1= {l,1,,15...1,} be a
set of items, where n: represent the total number of items. Let
SD={Ty,Ty,...., Tip,...}, Ti (ie[1..m..]) be a set of incoming
transactions in data stream, where m: represent the current
number of transactions. Each transaction T; is a subset of I. A
subset X <1 is an itemset or pattern. If X is composed of K
items, then it is called that X is a k-itemsets[1][5][7].The
pattern X is frequent in sliding window W if the support count
of X in W (transactions that include X) SC(X) > min-sup x |W|,
where min-sup equals to the minimum support threshold, |W|
is the size of the sliding window (number of transactions),
which contains most recent transactions of the data stream.
The association rules take the following form X = Y, where
Xcl ,Yvcl X+¢, Y#¢, XNY =¢, and the rule
confidence is defined as conf(X =Y) =sup(XuY)/
sup (X). The main task of association rules mining is to find
all association rules that have support and confidence greater
than minimum support threshold min-sup and minimum
confidence threshold as well[1][7]. To facilitate the mining of
frequent itemsets over data stream, dynamic-size sliding
window model is presented. The window's size is going to be
changed according to concept change, which is described as
the change in the number of frequent and infrequent items in
H-Table. When concept change exceeds the user given
threshold, it means that concept change has occurred and
window will shrink. If the concept change becomes stable,
window will expand by inserting new panes[8][9].

3. RELATED WORK

There are several algorithms that are concerned with finding
frequent itemset. In this section, the basic algorithms for
frequent itemset mining on static datasets will be discussed,
then the algorithms for frequent itemset mining over data
streams.

3.1 Mining on Static Dataset

The Apriori algorithm was proposed as the first algorithm to
mine frequent patterns for static databases. It uses the
Generate and Test method, i.e. the generation of the candidate
items and then tests whether they represent frequent
items[10]. This algorithm is costly in terms of time and
storage space due to Breadth-First Search strategy (BFS) and
a multiple scanning of database to generate candidate frequent
itemsets. FP-Growth was then suggested to improve mining
performance of Apriori algorithm. It is considered faster than
the Apriori algorithm and other methods of mining frequent
itemsets. It works in a divide and conquer way and it only
needs to scan database twice. In the first database scan, the
algorithm computes items frequency in database to store them
(item and frequency) in a header table. In the second scan, the
algorithm builds FP-Tree to compress database by inserting
database ordered transactions (based on header table). Then,
FP-Growth generates the conditional pattern tree to mine
frequent itemsets without candidate generation, and to reduce
the search space[11]. The last algorithm is Equivalence Class
Transformation (Eclat), which depends on Depth-First Search
strategy (DFS) and Vertical Dataset Representation to
generate frequent itemsets[12]. The effectiveness of the
previous traditional algorithms decreases with the increase in
the database size because of its own characteristics and
limited computational ability of a single node. Thus, the
improvement of traditional algorithms using parallel and
distributed frame work (cloud computing), provides the best

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

solution of mining frequent itemsets from big data. In [13],
the authors proposed a Parallel FP-Growth algorithm (PFP)
using MapReduce Framework, it was shown that the PFP
algorithm could accomplish near linear speedup on thousands
of machines. However, PFP does not take into consideration
load balance, which is a very critical issue for large scale data
processing. To solve the load balance problem, a study
proposed a balanced partitioning strategy (BPFP) [14]. Nikam
et al. developed a hybrid algorithm, which is based on
modified Apriori and FP-Growth for frequent itemsets mining
and a thermal management method on data node, like load
balancing. This resulted in an improvement of scanning time
of 79% [15]. The disadvantage of all above algorithms is
repeatedly scanning to database to generate frequent itemsets.

3.2 Mining on Data Stream

Due to the increase of the data volume generated across many
different fields, many algorithms are interested in exploring
frequent itemsets over data stream. A sliding window-based
algorithm was presented by Leung et al. for mining frequent
sets from data stream depending on tree structure similar to
FP-Tree, called DSTree [16]. Single-pass algorithm based on
a tree data structure called CPS-tree and sliding window for
frequent itemsets mining on sliding window transaction was
proposed by Tanbeer et al. The algorithm dynamically
reconstructs the CPS-tree to reduce the amount of memory
usage for the tree structure and to enhance the mining time on
single node [17]. Koh et al. suggested a method to detect a
concept change (or concept shift) of frequent itemsets over
data stream according to the change of frequent itemsets
number in the old and new windows. The used method to
calculate concept change is not applicable in a distributed
environment[9]. Deypir et al. proposed a new algorithm
named VSW (Variable Size sliding Window frequent itemset
mining) based on concept change in [9] and Eclat algorithm.
The window grows as the concept becomes stable and shrinks
when the concept change occurs[8]. VSW-SCPS was
suggested for avoiding multiple scans and generating frequent
itemsets efficiently on the basis of the concept change and
SCPS-tree, which inserts the data of a sliding window, and
adjusts its structure dynamically by the BSM strategy to
increase mining speed [7]. The above algorithms are
considered sequential mining algorithms for data stream, and
they have difficulty in dealing with increasing data stream due
to the limitation of capabilities of the single node. One of
these parallel algorithms was the CanTree-GTree parallel
algorithm using Hadoop frame work, which was suggested to
mine frequent itemsets from sliding window transactions [18].
The improvement of mining time was five times better than
the one in single node. Other researches used a systolic tree
data structure for frequent itemset mining [19]. This algorithm
uses Landmark and Sliding Window Models for handling data
stream. Message Passing Interface (MPI) was utilized for
building a parallel frequent pattern mining algorithm over
massive data stream[3][20]. In[3], the presented algorithm
uses a new balanced grouping strategy based on the depth of
each item on tree data structure. The previous algorithms use
multiple methods and structures to discover frequent itemsets
over data stream, hence there is a need to develop of an
algorithm, which meet all the advantages of the previous
algorithms and present better adaptation to the data stream
characteristics.

4. PROPOSED ALGORITHM

In section 4.1, this algorithm proposes a Frequent Pattern
Graph (FP-Graph) to maintain frequent itemsets from data
stream. Based on FP-Graph, the DSW-BPGFP algorithm in

49

Section 4.2 is designed, and the algorithm utilized load
balancing strategy to distribute loads between computational
nodes. The proposed algorithm performs a single-pass to
insert dynamic sliding window transactions.

4.1 The FP-Graph Structure

The FP-Graph is a highly compressed structure. It contains a
set of vertices, V={Vy, V,,....... V,} and a set of edges, E ={E;,
Ey .. En.}. The vertices number is equal to distinct items
number in data stream. Further, every edge Ej between
vertices V; and V; represents a transaction sub-path. Since
many transactions may have several sub-paths in common and
their path may overlap, each edge is provided with a Transld-
list in order to store the transactions ID, which contain this
edge. The proposed algorithm performs a single scan to treat
data stream, so the directed graph must be associated with the
frequent items table H-Table, which contains frequency count
of data stream items to complete the process of FP-Graph
reconstructing. H-Table also used to retrieve frequent itemsets
from FP-Graph. Each register in H-Table consists of three
fields, item identifier (itemld), frequency count and pointer to
FP-Graph node (ItemRetrievalPointer), whereas each node of
the FP-Graph consists of two fields, item identifier (itemid)
and the list of parent prefix node (ParentNodePointer). There
are three main operations of FP-Graph:

1. FP-Graph construction.
2. FP-Graph reconstruction.
3. Frequent itemsets mining on FP-Graph.

The following subsubsections describe the main FP-Graph
operations in details with example.

4.1.1 FP-Graph Construction

Unlike traditional frequent itemsets mining algorithms, which
start with finding all frequent and infrequent itemsets, then
build a FP-Tree, FP-Graph is constructed with only one-scan
of window transactions by inserting it one by one according to
a predefined order (e.g. lexicographical order). At the same
time H-Table is constructed, which contains frequency count
of items. After each transaction insertion, item frequency
count will be updated and sorted based on descending order of
frequency in H-Table. In FP-Graph, each node of H-Table
points to its own node of FP-Graph. Instead of storing
frequency count of the item nodes that appear on the sub-
paths, FP-Graph stores the frequency of the parent or prefix
sub-path using the Transld-list. Algorithml presents the
pseudo code of the construction of FP-Graph. The initial size
of window is set by the user, then the size of the window will
be automatically adjusted according to concept change rate
(step 1). The initial value for concept change point is the TID
of last transaction of the initialized window (step 2). The
concept change point is moved to the new point when concept
change is detected, after the insertion of one or more panes of
transactions to the window. This algorithm constructs all
nodes to form FP-Graph, and then it links them with its own
ItemRetrievalPointer of the H-Table through steps 3 to 4.4.5
of Algorithm 1. The steps 4.5 to 5 are used efficiently to store
each transaction in FP-Graph and create a sorted H-Table for
FP-Graph reconstruction operation.

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

Algorithm1: Construction of FP-Graph.

Input; transactions window W, window initial size WIS,
concept change point CCP and initial frequent item header
table H-Table.

Output: FP-Graph, sorted H-Table.

1. W=WIS. // Initialize a window.
2. CCP= number of the last transaction (TID) in window. //
Initialize a concept change point.
3. Transld =0. // Initialize a Transld.
4. For each transaction in window t € W do.
4.1 ParentNodePointer = null. // Initialize a Pointer.

4.2 Transld++.

4.3 Sort transactions according to a predefined order.

4.4 For each item i € t do.

4.4.1 Update H-Table.// increase the item's support count
by one.

4.4.2 If ItemRetrievalPointer!= null then //Get the graph
pointer from scanning H-Table.

4.4.3 return ltemRetrievalPointer

Else

4.4.4 Construct new FP-Graph node.

4.4.5 Insert the ItemRetrievalPointer address into H-Table.
//If the ItemRetrievalPointer != null, the next step is
modifying ParentNodePointer and Transld for tagging
pattern path with Transld.

4.5 If Parent-list I= null then // Item node has parent.

4.5.1 ParentNodePointer=Add Prefix Item Parent Node.

Else

4.5.2 Construct new Parent-list and then Add Prefix Item
Parent Node in it.

4.6 Add this Transld to Transld-list.
5. Sort H-Table in frequency-descending order.
6. Return FP-Graph, sorted H-Table .

4.1.2 FP-Graph Reconstruction

After sorting the items in a descending order according to
their new frequency values in the H-Table in the previous
operation, it is then very necessary to reconstruct the FP-
Graph. Reconstruction operation includes two main phases:
the first is deleting old transactions, if concept change occurs.
The calculation of concept change between two time points T,
and T,, where T, > T; and Fy; and F, represent the frequent
items at time T, and T,. Then Fr,"(T,)= Fr,. Fry is the set of
new coming frequent items from T, to T, in H-Table, and
Fr'(To)= Fpi . Fro is the set of infrequent items at T, which
was frequent at T, in H-Table. The frequent items concept
change ratio FChanger(T,) from T, to T, in the proposed
algorithm is defined as:

|F71(T2)| + |F71(T2)|
|Fr1| + |F71(T2)|

Where |Fy| is the number of items in set Fy;, and
0<FChanger; (T,) < 1.

FChange, (T,) = 1

The second phase is rearranging all transactions in a
frequency descending order according to the sorted H-Table.
The main purpose of the second phase is to set the edges of
the FP-Graph in the right form (finding the common edges
between transactions to mine frequent itemsets) and compress
them as much as possible. The steps 1 to 2.2 of Algorithm 2
are used to calculate concept change ratio (stepl) after
inserting each transaction of the new pane in previous
operation. If concept change ratio exceeds the Minimum
Change Threshold (MCT) (step2), a concept change is
detected. As a result, all transactions before Concept Change
Point (CCP) are deleted (step2.1), the CCP moves to the last

50

inserted transaction (step2.2) and H-Table is updated and
sorted again to remove the effect of removing deleted
transactions items (step2.3). If concept change ratio does not
exceed the MCT, the procedure of extracting each path (a
series of edges returns to the same transaction) based on
Transld, sorting this path and inserting it into FP-Graph again
is performed by steps 2.3 to 2.6 of Algorithm 2.

Algorithm2: Reconstruction of FP-Graph.

Input: FP-Graph, minimum support threshold min-sup,
minimum change threshold MCT and sorted H-Table.
Output: Restructured FP-Graph.

1. Calculate concept change.
2. if concept change > MCT then

2.1 Delete all expired transactions before concept change
point CCP.

2.2 Move CCP to the last inserted transaction.//changing
CCP.
2.3 Update H-Table.// eliminating the effect of deleting
items before concept change point CCP.

Else

2.3 For each path P; in FP-Graph do

2.4 If P is not sorted then

2.5 Extract and sort P; according to sorted H-Table.

2.6 Reinsert pi into FP-Graph.
3. Return Restructured FP-Graph.

4.1.3 Frequent Itemsets Mining

After reconstructing the graph in the way described
previously, the final operation is frequent itemsets mining,
which is described in the Algorithm3 later on. Frequent
itemsets are generated without creating conditional FP-Tree
(as in FP-Growth) which increases the speed of the algorithm.
The bottom-up search algorithm is used in the H-Table for all
items, that achieve the minimum support threshold (min-sup)
to traverse all FP-Graph paths. The frequent itemsets for an
item are found by starting from the node that represents this
item in H-Table, then going to the parent of this node until
reaching the node with null ParentNodePointer. In order to
find conditional pattern, the proposed algorithm uses the
Transld-list of ParentNodePointer. In Algorithm3,
ParentNodePointer is accessed from the Parent list for each
graph nodes (stepl to stepl.3.1). Transld values are then
retrieved from the Transld-list for each ParentNodePointer to
generate Conditional Patterns (CP) (stepl.3 to stepl.3.3).
After the CP are generated, the support value is calculated to
delete the CP, which does not meet the min-sup (stepl.3.4).
Then the final frequent pattern combinations will be
recognized (stepl.3.5 to stepl.3.6).

Algorithm3: Frequent itemsets mining on FP-Graph.

Input: Restructured FP-Graph, minimum support threshold
min-sup and sorted header table H-Table.

Output: Frequent patterns FP.

1. For each item from bottom H-Table which have support
greater than min-sup do
1.1 Access the FP-Graph node of that Item-id.

1.2 FP = {@}. // Initialize a FP set.
1.3 For each ParentNodePointer do

1.3.1 Skip and get next ParentNodePointer, If Transld-list is
empty.

1.3.2 For each Transld in Transld-list do

1.3.3 Find conditional patterns CP.

1.3.4 Delete CP based on min-sup.

1.3.5FP=CP UFP.

1.3.6 Find all combinations of FP.

Time line

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

The following example illustrates how the previous operations
work. Table 1 illustrates a continuous data stream SD, where
the sliding window size is 2 panes of data, each of them
contains 3 transactions. The frequent items in each transaction
are listed in alphabetically order, and assuming that the
support threshold is min-sup = 4, the minimum change
threshold MCT = 0.8. Figure 1 illustrates FP-Graph
construction to insert window transactions. The data stream in
Table 1 contains 4 items, so the graph contains four nodes as
shown in Figure 1. The first transaction is (a, ¢, d) with
identifier or number T, is initially sorted according to
lexicographical order and stored within the graph, where node
(d) refers to the parent or prefix node (c) and the edge
between them is tagged with 1 (TID T,), where TID T;-1i, and
i={1,2,...12}, node (c) refers to parent node (a) and the edge
between them is tagged with 1, whereas ParentNodePointer of
node (a) equals null.

Table 1. Data stream transactions

Pane TID Transactions

T acd

1 T, b, d
Ts a, b,cd
Ty a,b,c

2 Ts a
Te ac
T7 a,b,d

¥y 3 Tg a,b,cd

Ty a,c
Tio b, d

4 Ty c
T b, c

The second transaction (b, d) with the number T,, is stored
within the graph, where the last node (d) refers to the parent
node (b) and the edge between them is tagged with 2. The
node (b) ParentNodePointer contains null. The third
transaction (a, b, ¢, d) with the number Ts, where the last node
(d) refers to the parent node (c) and the edge between them is
tagged with 3. Node (c) refers to parent node (b) and the edge
between them is tagged with 3, whereas node (b) refers to
parent node (a). The node (a) ParentNodePointer contains
null, and so on. To store all the occurrences of sub-path for
any two items, (ba) for example, the node (b) has
ParentNodePointer to the node (a). Multiple occurrences of
sub-path (ba) are stored in the Transld-list associated with the
node (b). Figure 1 illustrates FP-Graph after inserting panel,
pane2 and initial H-Table.

Initial H-table

Item | Support | ItemRetrieval
count Pointer
a 5 T
b 3 T
c 4 -
d 3 L

Fig 1: Construction a FP-Graph after inserting panel, 2

51

After FP-Graph construction operation finished, the next
operation is FP-Graph reconstruction. Figure 2 shows
reconstructed FP-Graph. From the item at the bottom of the
H-Table, paths are found. Node (d) in Figure 1 has two
ParentNodePointer pointers that refer to nodes (c) and (b),
with Transld-list value [1,3], [2] respectively. The first
transaction path is (a, ¢, d) and according to the sorted H-
Table shown in Figure 2, the path remains at the same order.
The third transaction path is (a, b, ¢, d) and according to the
sorted H-Table, the path is rearranged and becomes (a, ¢, b, d)
and it is then inserted again into the graph and so on.

Sorted H-table

Item | Support | ItemRetrieval
count Pointer
a 5 T
c 4 T
b 3 -o3
d 3 ---

Fig 2: Reconstruction a FP-Graph after inserting panel, 2

It can be seen that the restructuring operation could decrease
the number of edges or pointers in FP-Graph from 6 to 5.
Thus, the larger size data stream gets, the more edges the FP-
Graph save. Reconstructed FP-Graph is used to mine frequent
itemsets. The bottom items of the sorted H-Table, which
achieves min-sup = 4, is used to access FP-Graph node. As
can be seen from the Figure 2, the first item achieves min-sup
is (c), item's node has one ParentNodePointer with Transld-
list value [1, 3, 4, 6]. For transactions Ty, T3, T, T the
complete parent path or conditional patterns for node (c) is
{a},{a}.{a} and {a} respectively. Similarly, for the node (a)
the conditional patterns are {a}. The final frequent itemsets
for each node are generated by finding combinations of this
node with conditional frequent itemsets. Table 2 illustrates
final frequent itemsets or patterns based on min-sup = 4.

Table 2. Final frequent itemsets

Conditional Conditional Frequent
patterns patterns based pattern
on min-sup
c: {a}{a}[{a}l{a} c{a} {c} {c.a}
a:{a} a{} {a}

To insert pane 3 and pane 4 (i.e. to slide window) all previous
operations are executed again, and the sorted H-Table from
pane 1, 2 inserting stage becomes initial H-Table for pane 3, 4
inserting stage. Figure 3 shows FP-Graph after inserting pane
3,4.

Initial H-table
Item | Support | ItemRetrieval
count Pointer
a 8 T
c 8 T
b 7 -
d 6 ==

Fig 3: FP-Graph after inserting pane3, 4

After using FP-Graph construction operation to insert each
transactions pane, FP-Graph reconstruction operation is used
for finding concept change, and re-arranging the transactions
according to sorted H-Table. When the concept change
occurs, the transactions before CCP will be deleted. The
frequent items at time T, (Figure 1, after inserting pane 1, 2) is
Fr1 = {a, c} and the set of frequent items at time T, (Figure 3,

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

after inserting pane 3, 4) is Fr, = {a, ¢, b, d}. FChangen(T,)
from T, to T, according to equation(1): Fr*(T,)={b, d},
240

Fr (To)={@}, FChangen(T,)= = = 0.5 < MCT, based on

242
this result the window will expand and no transactions will be

deleted. The FP-Graph in Figure 3 does not need to rearrange
its transactions, because H-Table is in descending order. The
Mining of a frequent itemsets is performed in the same way
previously described.

4.2 DSW-BPGFP Algorithm

This section describes the whole framework of DSW-BPGFP
algorithm, the proposed algorithm processes data stream using
Divide & Conquer method in map and reduce functions[21].
MapReduce can be widely used in processing and storage of
large-scale data in a distributed computing environment.
DSW-BPGFP algorithm uses two MapReduce phases to
parallelize DSW-BPGFP algorithm. Figure 4 shows the three
steps of DSW-BPGFP.

r]
| Data Stream |

1. FP-Graph
construction
C—e—
i Sorted Iot;a[H-table :
P
Grouping local H-tables & Computing 2.FP-Graph
concept change rate reconstruction
1 and Grouping
i Global H-table & Group-id & Concept Change | items with
| balance
/ \\A\-\‘ strategy

3. Parallel FP-
Graph mining

[1
i Frequent itemsets i -

Fig 4: DSW-BPGFP algorithm framework

- Stepl: FP-Graph construction: after dividing window
transactions into successive parts to distribute and to store
these parts on N different nodes (or machines). All nodes
construct their FP-Graph and sorted local H-Table according
to algorithm 1 (Subsection 4.1.1). Each mapper processes all
transactions in the <key, value=Ti> format and sends it to the
reducer. The reducer constructs FP-Graph and sorted local H-
Table according to frequency descending order.

- Step2: FP-Graph reconstruction and grouping items with
balance strategy: after each node has constructed their own
local sorted H-Table, all H-Table are aggregated to have a
sorted global H-Table. Global H-Table is used to calculate
Concept Change rate and to apply Load balancing strategy.
The main purpose of Load balancing strategy is to divide
frequent items of sorted global H-Table into Q groups, this
groups are called Group list (G-list) and each group has a
unique group-id (gid). Load balancing strategy increases the
effectiveness of mining frequent itemsets and distributes loads
between computational nodes evenly[3][14]. Load balancing
strategy can be divided into two phases. The first phase is the

52

loads computing of each frequent item, which is the amount
of work of mining on conditional pattern base of each
frequent item. The load required to mine any frequent item is
determined by the recursive operations performed during the
mining process. The support count of each items in sorted
global H-Table determines the size of conditional pattern
base. Therefore, the load of item X, can be computed by its
support count in sorted global H-Table as follows:

L(x) = Support_count(x) (2)

The second phase is fairly dividing all items based on its loads
into several groups. Each frequent item from the top to the
bottom H-Table is added into the group list (G-list) to ensure
that each group have fairly equal work load. The following
two steps are repeated until all frequent items in H-Table are
grouped:

1. Adding the next non-grouped frequent item in H-Table into
the group with the minimum load.

2. Increasing the load of that group by the load of the added
item.

This step is done by single node within few seconds, and at
the end of this step global H-Table, Concept Change rate, and
group-id will be sent to other nodes. Each node's FP-Graph is
reconstructed according to global H-Table and Concept
Change rate(Subsection 4.1.2).

- Step3: Parallel FP-Graph mining: this step takes one
MapReduce phase. After using load balancing strategy to
distribute frequent items into different groups in a balanced
way, as shown in step2, each node extracts the part that
contains the frequent items for all transactions from own FP-
Graph.

Map phase: In this step, the input for each mapper is in form
of <key, value=Ti>. For each transaction’s items X; ¢ T; the
mapper substitutes X; by corresponding gid to produce the
output <key'=gid, value={T;, T,,.....T,}>, where each gid
with its corresponding value represent group-dependent
transaction.

Reduce phase: After each mapper completes the previous job,
for each group-dependent transaction, the reducer builds the
local FP-Graph to find conditional patterns based on min-sup
according to algorithm 3 (Subsection 4.1.3).

5. EXPERIMENTS

This section shows the experimental evaluation of the DSW-
BPGFP algorithm. The DSW-BPGFP algorithm was
implemented using Java (JDK1.8.0_181) and Hadoop
framework (Hadoop-2.8.0). The experiment environment was
done on cluster of 8 machines, one of these machines works
as master, and seven machines work as slaves. Each machine
has Intel®Core™i3 2.30GHz processor, 6GB of RAM and
Ubuntu 16.4 LTS-64Bit operating system. The dataset used
for testing was downloaded from FIMI'04 repository[22].
Table 3 provides the characteristics of the datasets with the
number of transactions, average transaction length, the
number of items and type of each dataset.

Table 3. Characteristics of datasets

Dataset Trans Lﬁr\llggfh Items Type
Connect 67557 43 129 Dense
T40110D100K | 100000 40 942 Sparse
Kosarak 990002 8 41270 | Sparse

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

The experiments are divided into four groups. The first group
of experiments checks reacting the proposed algorithm to a
concept change in data stream and the behavior of DSW under
different change thresholds. The second group of experiments
shows memory and time cost. The third group verifies the
speed up of the proposed algorithm. The last group of
experiments examines the load balancing of distributed
algorithm.

5.1 Behavior of DSW
In this experiment, T40110D100K dataset is used to show how
DSW responses to a concept change detection. T40110D100K
is a sparse, synthetic dataset and contains 100K transactions
with average transaction size 40 as shown in Table 3. The
researchers tried to create artificial change point using
T40110D100K dataset, to build a new dataset by exchange
50% of frequent items and infrequent items based on
minimum support threshold min-sup=2%. T40110D100K was
divided into two equal parts, and then combined the previous
dataset by placing it between the two parts to form the final
dataset with name T40110D200K-AB. T40110D200K-AB has
at least two concepts (after 50Kth and 150Kth), where the
min-sup=2%. The initial window size, pane size, support
threshold and minimum change threshold were set to 20K
transactions, 10K transactions, 2% and 50%, respectively.
These values were similar to the parameters used in a previous
study [8], except for the change threshold, because the
proposed algorithm depends on frequent and infrequent items
instead of frequent and infrequent itemsets in calculating it.
70 -

]

S 60 | 0K

Q

g

£ 50 -

=

o

w 40

o

]

c 30 - 50K 80K 80K

o

o

20 : : : : : :

20 50 80 110 140 170 200

Transactions Number
Fig 4: Behavior of DSW according to concept change rate

As shown in Figure 4 in 60Kth, 110Kth and 160Kth, the
concept change is detected by exceeding change threshold.
The window size (number beside each dot in Figure 4) in
these points decreases, because of deleting the expired
transactions. Therefore, at 60Kth, 110Kth and 160Kth the
window is resized to 40K, 50K and 50K respectively. The
new window size is the difference between the current point
and the concept change point. The size of the new window at
60Kth according to first concept change point 20K is 40K.
and the concept change point is moved to the point where the
concept change is detected (i.e. 60Kth transaction). It is clear
from Figure 4 that the DSW is adaptively resized according to
concept change in data stream.

5.2 Memory and Time Cost

This set of experiments compares the memory and time cost
of the proposed algorithm under different minimum supports.
Since no similar algorithms were found based on Hadoop,
directed graph and using variable size sliding window model
to find all frequent itemsets in the window, the proposed
algorithm runs on one machine to compare it with VSW-
SCPS [7], DSTree [16] and CPS-Tree [17] on different
datasets. The support threshold values in the compared
algorithms have no influence on the required memory,

53

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat

because these algorithms process the window content in full
(i.e. without depending on support threshold). The next Figure
shows memory cost of the compared algorithms (in MB) on
Connect (dense dataset), T40110D100K (sparse dataset) and
Kosarak (sparse dataset).

The size of the window used in the experiment was kept fixed
at 20K (pane=10K, w=2 for Connect and T40l110D100K
dataset), 100K (pane=50K, w=2 for Kosarak dataset), and
these sizes considered as initial size of window in the
proposed algorithm and VSW-SCPS algorithm. Figure 5
shows that the proposed algorithm consumes less memory
than VSW-SCPS, CPS-Tree and DSTree. The main reason is
that the total number of nodes required for FP-Graph was
lower than SCPS-tree, CPS-Tree and DSTree. In dense
datasets like Connect, the compactness of the FP-Graph is
more important due to the high degree of correlation between
patterns in these datasets, as also shown in Figure 5.
Moreover, deleting expired transactions from FP-Graph also
plays an important role in reducing memory cost.

100

Connect T40110D100K Kosarak
B DSTree M CPS-Tree VSW-SCPS FP-Graph

Fig 5: Memory cost comparison

Memory (MB)
=
o

Moreover, Figure 5 demonstrates that the memory cost of the
FP-Graph was lower than that in VSW-SCPS, CPS-Tree and
DSTree for T40110D100K (sparse dataset) and Kosarak
(sparse dataset).

In the next experiments, the proposed algorithm will be
compared with BPFP-Growth[14] and CanTree-GTree
algorithm [18] to estimate time cost (i.e. the overall runtime)
on eight machines.

200 | +#@+ BPFP-Growth
®-..., o =8 =CanTree-GTree

T 150 ‘ T 3 —o—DSW-BPGFP
] [S
g ‘ = - - ‘-._._.'.
» 100 %< @oerinnrng
v T~ C=
£ 5o \gg
[

20% 30% 40% 50% 60% 70%
Min-Sup(%) on Connect Dataset
Fig 6: Time cost comparison (Connect Dataset)

Figure 6 and 7 shows the time of these algorithms running on
Connect and T1014D100K dataset under min-sup threshold
varies from 20% to 70%, the initial window size equals 20K
(pane=10K, w=2) and minimum change threshold equals
50%. The results presented in Figure 6 and 7 clearly
demonstrate that DSW-BPGFP outperforms BPFP-Growth
and CanTree-GTree algorithm in the experiments with
Connect and T1014D100K datasets. It can be noticed that, the

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

proposed algorithm needs less time to mine frequent itemsets,
with increasing min-sup threshold. Using dynamic sliding
window to delete expired transactions, and mining frequent
itemsets without generating conditional pattern tree plays an
important role in reducing the overall execution time of the
DSW-BPGFP algorithm. The researchers did not mention the
results for Kosarak, because the results were close to those
obtained for T1014D100K due to similar dataset
characteristics.

250 |
o... + @ +-BPFP-Growth
200 ."-._‘.. =8 CanTree-GTree
5 **t:e.,, =~o-DSW-BPGFP
c .
o
[S)
@
2R
o
£
-

20% 30% 40% 50% 60% 70%

Min-Sup(%) on T40110D100K Dataset
Fig 7: Time cost comparison (T40110D100K Dataset)

5.3 Speedup

The speedup parameter evaluates the performance of the
parallel algorithm compared to the corresponding sequential
algorithm, when keeping the data size constant and increasing
the number of machines constantly. It can be defined as:

T
Speedup = S(n) = T_l 3)
n

Where T, is the sequential execution time on a signal machine
and T, is the parallel execution time for the same dataset on
the n machines. For the speedup calculation of DSW-BPGFP,
the researchers perform experiments on cluster of nodes
ranging from 1 to 8 and using Connect, T40110D100K and
Kosarak datasets. The results are shown in Figure 8. As can
be seen from Figure 8 that the speed of DSW-BPGFP
increases fairly linearly with the growth of the number of
nodes, and the pace increases gradually with dataset. The
speed up value of the Kosarak dataset reaches 6.671, when the
number of machines is 8. This value represents 83,38%
(6.671/8=0.8338) of the linear (or ideal) speedup. Mostly,
linear speedup is very difficult to reach due to the cost of
communication between machines (or nodes) [13].

8

—o—linear

7 —=—Kosarak

6 ——T1014D100K
g’ 5 Connect
o
o
24
w)

3

2

1

1 2 3 4 5 6 7 8
MNumber Of Nodes
Fig 8: Speedup of DSW-BPGFP

5.4 Load Balancing

The researchers finally tested the impact of the load balancing
strategy on the overall runtime of the proposed algorithm. In
Figure 9, the proposed algorithm with load balancing strategy
is marked as DSW-BPGFP and the proposed algorithm
without load balancing strategy is marked as DSW-PGFP(the
same proposed algorithm with grouping strategy is adopted

54

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat

by PFP[13]). The dataset used to perform these experiments is
Kosarak with different min-sup threshold from 2% to 10%.
The initial window size, pane size and minimum change
threshold were set to 200K transactions, 50K transactions and
50%, respectively. As can be seen clearly from Figure 9, that
load balancing strategy make the proposed algorithm more
effective. The load balancing strategy has a large effect on
constructing the balanced FP-Graph with the same size on
each node based on item's support count, and reducing the
overall runtime of the proposed algorithm by more than 15%
compared to grouping strategy adopted by PFP.

500
400 o« _
_ ""-c}....._____o_
=300 S —
8 .O.-"‘-.
7] ad N
200 *
£
Ejo0 —*-DSW-PGFP
-o- DSW-BPGFP
0
2% 4% 6% 8% 10%

Min-Sup(%) on Kosarak Dataset
Fig 9: The load balancing strategy impact

6. CONCLUSION

In this paper, an efficient balanced parallel algorithm for
mining frequent itemsets over data stream, called DSW-
BPGFP was proposed. For this purpose, a dynamic sliding
window based on the amount of change in the number of
frequent items and infrequent items was developed to
facilitate the handling of the data stream and reduce the
amount of memory and time required to deal with it. The
window size changes according to amount of concept change
in data stream. A novel graph structure, FP-Graph, also was
created and a number of operations for the graph to maintain
all window transactions in an efficient way and to improve the
parallel mining of frequent itemsets. To handle the load
imbalance problem between nodes, load balancing strategy
was introduced to distribute loads between Hadoop cluster
nodes equally. Experimental results showed that the dynamic
sliding window can deal with data stream in an adaptive way
by deleting expired transactions when concept change occurs.
Compared with previous algorithms, the proposed algorithm
reduces memory and time cost required to mining the frequent
itemsets from a data stream. The DSW-BPGFP has a good
speedup with a different number of nodes, and load balancing
strategy distributes the load between each node, dynamically
and evenly.

7. REFERENCES

[1] Bustio-Martinez, L. , Mufioz-Brisefio, A. , Cumplido, R.,
Herndndez-Ledn, R. and Feregrino-Uribe, C. 2019. A
Novel Multi-Core Algorithm for Frequent Itemsets
Mining in Data Streams.

[2] Srinivas, A.V. 2016. An Overview of Algorithms Used
for Mining Frequent Patterns in Data Streams.

[3] Fu, X., Shi, L., Li, J. 2017. Balanced Parallel Frequent
Pattern Mining Over Massive Data Stream

[JCA™ : www.ijcaonline.org

International Journal of Computer Applications (0975 — 8887)
Volume *— No.*, September 2020

[4] McArdle, C. and Wang, X. 2013. Frequent Itemset
Mining Over Stream Data: Overview.

[5] Peddireddy, B., Ch, A. and Patnala, S. R. C. M. 2018. A
Survey on Mining Frequent Item Sets from Data Stream.

[6] Chandra, B. and Bhaskar, S. 2013. A Novel Approach
for Finding Frequent Itemsets in Data Stream.

[71 Li, H. and Wang L. 2017. A Variable Size Sliding
Window Based Frequent Itemsets Mining Algorithm in
Data Stream.

[8] Deypir, M., Sadreddini H. M. and Hashemi, S. 2012.
Towards A Variable Size Sliding Window Model for
Frequent Itemset Mining Over Data Streams.

[9] Koh, J. L. and Lin, C.Y. 2009. Concept Shift Detection
for Frequent Itemsets From Sliding Window Over Data
Streams.

[10] Agrawal, R. and Srikant, R. 1994. Fast Algorithms for
Mining Association Rules.

[11] Han, J., Pei, J. and Yin, Y. 2000. Mining Frequent
Patterns Without Candidate Generation.

[12] Zaki, M.J. 2000. Scalable Algorithms for Association
Mining.

[13] Li, H., Wang, Y., Zhang D., Zhang M., and Chang., E.
Y. 2008. PFP: Parallel FP-Growth for Query
Recommendation.

[14] Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J.Z., and
Feng, S. 2010. Balanced Parallel FP-Growth with
MapReduce.

[15] Nikam, P. V. and Deshpande, D.S. 2018. New Approach
in Big Data Mining for Frequent Itemset Using
Mapreduce in HDFS.

[16] Leung, C.K.-S. and Khan, Q.l. 2006, DSTree: a tree
structure for the mining of frequent sets from data
streams.

[17] Tanbeer, S. K., Ahmed, C. F., Jeong, B. and Lee, Y.
2009. Sliding Window-Based Frequent Pattern Mining
Over Data Streams.

[18] Kusumakumari, V., Sherigar, D., Chandran, R. and Patil,
N. 2017. Frequent Pattern Mining on Stream Data Using
Hadoop Cantree-Gtree .

[19] Bustio-Marti'nez, L., Cumplido, R., Hernandez-Leo'n,
R., Bande-Serrano, J. M. and Feregrino-Uribe, C.2017.
On the Design of Hardware-Software Architectures for
Frequent Itemsets Mining on Data Streams.

[20] HE, Y. and YUE, M. 2014. Parallel Frequent Itemset
Mining on Streaming Data.

[21] Dean, J. and Ghemawat, S. 2008 MapReduce: simplified
data processing on large clusters.

[22] FIMI 2004 Repository [online], http://fimi.ua.ac.be/data/.

55

http://fimi.ua.ac.be/data/

