
International Journal of Computer Applications (0975 – 8887)

Volume 175– No. 16, September 2020

48

A Dynamic Sliding Window based Balanced Parallel

Frequent Itemset Mining Algorithm in Data Stream

Zakria Mahrousa
 Dept. of Computer Engineering

 Faculty of Electrical and Electronic
Engineering

University of Aleppo

Dima Mufti Alchawafa
Dept. of Computer Engineering

Faculty of Electrical and Electronic
Engineering

University of Aleppo

Hasan Kazzaz
Dept. of Computer Engineering

Faculty of Electrical and Electronic
Engineering

University of Aleppo

ABSTRACT

Frequent itemset mining algorithms are one of the most

interesting research issues in recent years. They play an

important role in finding association rules from a continuous

massive data stream such as: customer behavior tracking,

retail sales, network monitoring, etc. In this paper, a novel

approach will be introduced to remove some drawbacks in

parallel FP-Growth and enable it to handle the data stream.

The proposed algorithm DSW-BPGFP (Dynamic Sliding

Window - Balanced Parallel Graph Frequent Pattern) will

improve space and time required based on a compact data

structure, called FP-Graph to maintain and store dynamic

sliding window transactions. The algorithm dynamically

reconstructs and compresses directed graph data structure to

control the amount of space usage, and the size of dynamic

window will be adjusted by the concept change detection.

Moreover, DSW-BPGFP will distribute loads between

Hadoop cluster nodes equally, by introducing load balancing

strategy. The experiments show that the proposed algorithm

can achieve a good speedup, a good degree of balance

between nodes and efficiently process large dynamic datasets.

In addition, it achieves improvement in memory consumption

to store frequent patterns and in time complexity.

General Terms

Algorithms, Artificial intelligence, Data Mining, Distributed

System

Keywords

Association Rule Mining (ARM), Data Stream, Directed

Graph, Dynamic sliding window, FP-Growth, Frequent

itemset, Hadoop, Load balance, MapReduce

1. INTRODUCTION
The process of finding frequent itemset for extraction of

association rules is an essential stage in the process of

continuous big data analysis (data stream), which is resulting

from the unprecedented increase in data volume, rapid

development of the internet and the steady increase in mobile

devices in the last two decades[1]. A data stream is defined as

a series of chronological data, which is arriving at high and

fast rate[1][2]. Several mining frequent itemsets (or patterns)

algorithms have been studied on static datasets. Static datasets

have many features such as: limited volume and fixed size

over time, unlike the dynamic datasets, which have other

features such as: Continuity: It means that the flow rate of the

data stream is high and fast, Expiration: the inability to read

the data stream multiple times, Infinity: the unstable and large

volume of the data stream[1][3][4]. The traditional association

rule mining algorithms applied on static data cannot be used

for data stream, because of the features of dynamic datasets

(or data stream) [2][3][4]. Some points have to be taken into

consideration, the lack of time and space needed for the

rescanning of the entire database one of disadvantages of the

data stream, usually only one scan of data stream is possible.

As well as the continuous change in the data stream, which is

known as concept change. The increasing and changing flow

rate (data distributions) requires the use of an incremental

process to deal with data stream. In addition to the huge size

of the data stream, which prevents storing all data in memory

[2][3]. There are three types of data extraction strategies from

data stream, Landmark Window Model, Damped Window

Model and Sliding Window Model. In Landmark Window

Model, the mining process over data stream is applied from a

specific data point called the landmark, to the current time

point. In Damped Window Model, each transaction is

associated with the weight values which decrease over time.

In Sliding Window Model, the mining process over data

stream is applied between the starting time point of the

window and the current time point[5][6]. Each previous

model has its own advantages and disadvantages[6]. Fixed-

size sliding window has been implemented in many

algorithms, due to its simplicity. Fixed-size sliding window

deletes the oldest panes or batches (number of transactions)

when a new batch arrives, to maintain a fixed size. Specifying

the size of the window requires a prior knowledge from user.

If the size of the window is too large, it may cause too much

useless patterns and affect mining accuracy. If the size of the

window is very small, it may cause concept drift and affect

mining accuracy Too[7][8]. Based on the previous discussion,

fixed-size sliding window is difficult to apply on the data

stream, and dynamic sliding window is the best solution to

deal with data stream in which the window size is adjusted

based on the change of data stream. In this paper, an improved

parallel FP-Growth DSW-BPGFP will be proposed using a

compact data structure called FP-Graph with one-scan of

dynamic sliding window transactions, adjusting window size

dynamically and load balancing strategy to distribute

computational loads between Hadoop frame nodes equally.

The improved algorithm is more adaptive to treat data stream.

Firstly, an inserting stage is performed on dynamic sliding

window transactions to build FP-Graph in each node (or

machine), and a local header table H-Table that contains

support count of each data stream items. Secondly, creating a

global H-Table in master node after receiving local H-Tables

from each node, grouping items with balance strategy and

checking concept change. Thirdly, reconstructing the graphs

for each node. Finally, generate frequent itemset. This paper

is organized as follows: section 2 presents a problem

statement of finding frequent items in data streams in detail.

Section 3 gives an overview of the related researches

literature on the parallel FP-Growth algorithm. Section 4

presents the proposed algorithm of DSW-BPGFP. The

performance evaluation of the proposed algorithm is

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

49

presented in section 5, and section 6 is the conclusion.

2. PROBLEM STATEMENT
The task of finding frequent items in data streams to generate

association rules is stated as follows: let I= {I1,I2,I3…In} be a

set of items, where n: represent the total number of items. Let

SD={T1,T2,…,Tm,....}, Ti (iϵ[1..m..]) be a set of incoming

transactions in data stream, where m: represent the current

number of transactions. Each transaction Ti is a subset of I. A

subset is an itemset or pattern. If X is composed of K

items, then it is called that X is a k-itemsets[1][5][7].The

pattern X is frequent in sliding window W if the support count

of X in W (transactions that include X) SC(X) ≥ min-sup × |W|,

where min-sup equals to the minimum support threshold, |W|

is the size of the sliding window (number of transactions),

which contains most recent transactions of the data stream.

The association rules take the following form , where

 , , , , , and the rule

confidence is defined as
 . The main task of association rules mining is to find

all association rules that have support and confidence greater

than minimum support threshold min-sup and minimum

confidence threshold as well[1][7]. To facilitate the mining of

frequent itemsets over data stream, dynamic-size sliding

window model is presented. The window's size is going to be

changed according to concept change, which is described as

the change in the number of frequent and infrequent items in

H-Table. When concept change exceeds the user given

threshold, it means that concept change has occurred and

window will shrink. If the concept change becomes stable,

window will expand by inserting new panes[8][9].

3. RELATED WORK
There are several algorithms that are concerned with finding

frequent itemset. In this section, the basic algorithms for

frequent itemset mining on static datasets will be discussed,

then the algorithms for frequent itemset mining over data

streams.

3.1 Mining on Static Dataset
The Apriori algorithm was proposed as the first algorithm to

mine frequent patterns for static databases. It uses the

Generate and Test method, i.e. the generation of the candidate

items and then tests whether they represent frequent

items[10]. This algorithm is costly in terms of time and

storage space due to Breadth-First Search strategy (BFS) and

a multiple scanning of database to generate candidate frequent

itemsets. FP-Growth was then suggested to improve mining

performance of Apriori algorithm. It is considered faster than

the Apriori algorithm and other methods of mining frequent

itemsets. It works in a divide and conquer way and it only

needs to scan database twice. In the first database scan, the

algorithm computes items frequency in database to store them

(item and frequency) in a header table. In the second scan, the

algorithm builds FP-Tree to compress database by inserting

database ordered transactions (based on header table). Then,

FP-Growth generates the conditional pattern tree to mine

frequent itemsets without candidate generation, and to reduce

the search space[11]. The last algorithm is Equivalence Class

Transformation (Eclat), which depends on Depth-First Search

strategy (DFS) and Vertical Dataset Representation to

generate frequent itemsets[12]. The effectiveness of the

previous traditional algorithms decreases with the increase in

the database size because of its own characteristics and

limited computational ability of a single node. Thus, the

improvement of traditional algorithms using parallel and

distributed frame work (cloud computing), provides the best

solution of mining frequent itemsets from big data. In [13],

the authors proposed a Parallel FP-Growth algorithm (PFP)

using MapReduce Framework, it was shown that the PFP

algorithm could accomplish near linear speedup on thousands

of machines. However, PFP does not take into consideration

load balance, which is a very critical issue for large scale data

processing. To solve the load balance problem, a study

proposed a balanced partitioning strategy (BPFP) [14]. Nikam

et al. developed a hybrid algorithm, which is based on

modified Apriori and FP-Growth for frequent itemsets mining

and a thermal management method on data node, like load

balancing. This resulted in an improvement of scanning time

of 79% [15]. The disadvantage of all above algorithms is

repeatedly scanning to database to generate frequent itemsets.

3.2 Mining on Data Stream
Due to the increase of the data volume generated across many

different fields, many algorithms are interested in exploring

frequent itemsets over data stream. A sliding window-based

algorithm was presented by Leung et al. for mining frequent

sets from data stream depending on tree structure similar to

FP-Tree, called DSTree [16]. Single-pass algorithm based on

a tree data structure called CPS-tree and sliding window for

frequent itemsets mining on sliding window transaction was

proposed by Tanbeer et al. The algorithm dynamically

reconstructs the CPS-tree to reduce the amount of memory

usage for the tree structure and to enhance the mining time on

single node [17]. Koh et al. suggested a method to detect a

concept change (or concept shift) of frequent itemsets over

data stream according to the change of frequent itemsets

number in the old and new windows. The used method to

calculate concept change is not applicable in a distributed

environment[9]. Deypir et al. proposed a new algorithm

named VSW (Variable Size sliding Window frequent itemset

mining) based on concept change in [9] and Eclat algorithm.

The window grows as the concept becomes stable and shrinks

when the concept change occurs[8]. VSW-SCPS was

suggested for avoiding multiple scans and generating frequent

itemsets efficiently on the basis of the concept change and

SCPS-tree, which inserts the data of a sliding window, and

adjusts its structure dynamically by the BSM strategy to

increase mining speed [7]. The above algorithms are

considered sequential mining algorithms for data stream, and

they have difficulty in dealing with increasing data stream due

to the limitation of capabilities of the single node. One of

these parallel algorithms was the CanTree-GTree parallel

algorithm using Hadoop frame work, which was suggested to

mine frequent itemsets from sliding window transactions [18].

The improvement of mining time was five times better than

the one in single node. Other researches used a systolic tree

data structure for frequent itemset mining [19]. This algorithm

uses Landmark and Sliding Window Models for handling data

stream. Message Passing Interface (MPI) was utilized for

building a parallel frequent pattern mining algorithm over

massive data stream[3][20]. In[3], the presented algorithm

uses a new balanced grouping strategy based on the depth of

each item on tree data structure. The previous algorithms use

multiple methods and structures to discover frequent itemsets

over data stream, hence there is a need to develop of an

algorithm, which meet all the advantages of the previous

algorithms and present better adaptation to the data stream

characteristics.

4. PROPOSED ALGORITHM
In section 4.1, this algorithm proposes a Frequent Pattern

Graph (FP-Graph) to maintain frequent itemsets from data

stream. Based on FP-Graph, the DSW-BPGFP algorithm in

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

50

Section 4.2 is designed, and the algorithm utilized load

balancing strategy to distribute loads between computational

nodes. The proposed algorithm performs a single-pass to

insert dynamic sliding window transactions.

4.1 The FP-Graph Structure
The FP-Graph is a highly compressed structure. It contains a

set of vertices, V={V1, V2,.......Vn} and a set of edges, E ={E1,

E2, …...Em}. The vertices number is equal to distinct items

number in data stream. Further, every edge Eij between

vertices Vi and Vj represents a transaction sub-path. Since

many transactions may have several sub-paths in common and

their path may overlap, each edge is provided with a TransId-

list in order to store the transactions ID, which contain this

edge. The proposed algorithm performs a single scan to treat

data stream, so the directed graph must be associated with the

frequent items table H-Table, which contains frequency count

of data stream items to complete the process of FP-Graph

reconstructing. H-Table also used to retrieve frequent itemsets

from FP-Graph. Each register in H-Table consists of three

fields, item identifier (itemId), frequency count and pointer to

FP-Graph node (ItemRetrievalPointer), whereas each node of

the FP-Graph consists of two fields, item identifier (itemId)

and the list of parent prefix node (ParentNodePointer). There

are three main operations of FP-Graph:

1. FP-Graph construction.

2. FP-Graph reconstruction.

3. Frequent itemsets mining on FP-Graph.

The following subsubsections describe the main FP-Graph

operations in details with example.

4.1.1 FP-Graph Construction
Unlike traditional frequent itemsets mining algorithms, which

start with finding all frequent and infrequent itemsets, then

build a FP-Tree, FP-Graph is constructed with only one-scan

of window transactions by inserting it one by one according to

a predefined order (e.g. lexicographical order). At the same

time H-Table is constructed, which contains frequency count

of items. After each transaction insertion, item frequency

count will be updated and sorted based on descending order of

frequency in H-Table. In FP-Graph, each node of H-Table

points to its own node of FP-Graph. Instead of storing

frequency count of the item nodes that appear on the sub-

paths, FP-Graph stores the frequency of the parent or prefix

sub-path using the TransId-list. Algorithm1 presents the

pseudo code of the construction of FP-Graph. The initial size

of window is set by the user, then the size of the window will

be automatically adjusted according to concept change rate

(step 1). The initial value for concept change point is the TID

of last transaction of the initialized window (step 2). The

concept change point is moved to the new point when concept

change is detected, after the insertion of one or more panes of

transactions to the window. This algorithm constructs all

nodes to form FP-Graph, and then it links them with its own

ItemRetrievalPointer of the H-Table through steps 3 to 4.4.5

of Algorithm 1. The steps 4.5 to 5 are used efficiently to store

each transaction in FP-Graph and create a sorted H-Table for

FP-Graph reconstruction operation.

4.1.2 FP-Graph Reconstruction
After sorting the items in a descending order according to

their new frequency values in the H-Table in the previous

operation, it is then very necessary to reconstruct the FP-

Graph. Reconstruction operation includes two main phases:

the first is deleting old transactions, if concept change occurs.

The calculation of concept change between two time points T1

and T2, where T2 ˃ T1 and FT1 and FT2 represent the frequent

items at time T1 and T2. Then FT1
+(T2)= FT2 - FT1 is the set of

new coming frequent items from T1 to T2 in H-Table, and

FT1
-(T2)= FT1 - FT2 is the set of infrequent items at T2 which

was frequent at T1 in H-Table. The frequent items concept

change ratio FChangeT1(T2) from T1 to T2 in the proposed

algorithm is defined as:

Where |FT1| is the number of items in set FT1, and

0<FChangeT1 (T2) < 1.

The second phase is rearranging all transactions in a

frequency descending order according to the sorted H-Table.

The main purpose of the second phase is to set the edges of

the FP-Graph in the right form (finding the common edges

between transactions to mine frequent itemsets) and compress

them as much as possible. The steps 1 to 2.2 of Algorithm 2

are used to calculate concept change ratio (step1) after

inserting each transaction of the new pane in previous

operation. If concept change ratio exceeds the Minimum

Change Threshold (MCT) (step2), a concept change is

detected. As a result, all transactions before Concept Change

Point (CCP) are deleted (step2.1), the CCP moves to the last

Algorithm1: Construction of FP-Graph.

Input: transactions window W, window initial size WIS,

concept change point CCP and initial frequent item header

table H-Table.

Output: FP-Graph, sorted H-Table.

1. W= WIS. // Initialize a window.

2. CCP= number of the last transaction (TID) in window. //

Initialize a concept change point.

3. TransId = 0. // Initialize a TransId.

4. For each transaction in window t ∈ W do.

4.1 ParentNodePointer = null. // Initialize a Pointer.

 4.2 TransId++.

 4.3 Sort transactions according to a predefined order.

 4.4 For each item i ∈ t do.

 4.4.1 Update H-Table.// increase the item's support count

by one.

 4.4.2 If ItemRetrievalPointer!= null then //Get the graph

pointer from scanning H-Table.

 4.4.3 return ItemRetrievalPointer

 Else
 4.4.4 Construct new FP-Graph node.

 4.4.5 Insert the ItemRetrievalPointer address into H-Table.

 //If the ItemRetrievalPointer != null, the next step is

modifying ParentNodePointer and TransId for tagging

pattern path with TransId.

 4.5 If Parent-list != null then // Item node has parent.

 4.5.1 ParentNodePointer=Add Prefix Item Parent Node.

 Else

 4.5.2 Construct new Parent-list and then Add Prefix Item

Parent Node in it.

 4.6 Add this TransId to TransId-list.

5. Sort H-Table in frequency-descending order.

6. Return FP-Graph, sorted H-Table .

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

51

inserted transaction (step2.2) and H-Table is updated and

sorted again to remove the effect of removing deleted

transactions items (step2.3). If concept change ratio does not

exceed the MCT, the procedure of extracting each path (a

series of edges returns to the same transaction) based on

TransId, sorting this path and inserting it into FP-Graph again

is performed by steps 2.3 to 2.6 of Algorithm 2.

4.1.3 Frequent Itemsets Mining
After reconstructing the graph in the way described

previously, the final operation is frequent itemsets mining,

which is described in the Algorithm3 later on. Frequent

itemsets are generated without creating conditional FP-Tree

(as in FP-Growth) which increases the speed of the algorithm.

The bottom-up search algorithm is used in the H-Table for all

items, that achieve the minimum support threshold (min-sup)

to traverse all FP-Graph paths. The frequent itemsets for an

item are found by starting from the node that represents this

item in H-Table, then going to the parent of this node until

reaching the node with null ParentNodePointer. In order to

find conditional pattern, the proposed algorithm uses the

TransId-list of ParentNodePointer. In Algorithm3,

ParentNodePointer is accessed from the Parent list for each

graph nodes (step1 to step1.3.1). TransId values are then

retrieved from the TransId-list for each ParentNodePointer to

generate Conditional Patterns (CP) (step1.3 to step1.3.3).

After the CP are generated, the support value is calculated to

delete the CP, which does not meet the min-sup (step1.3.4).

Then the final frequent pattern combinations will be

recognized (step1.3.5 to step1.3.6).

Algorithm3: Frequent itemsets mining on FP-Graph.

Input: Restructured FP-Graph, minimum support threshold

min-sup and sorted header table H-Table.

Output: Frequent patterns FP.

1. For each item from bottom H-Table which have support

greater than min-sup do

 1.1 Access the FP-Graph node of that Item-id.

 1.2 FP = {∅}. // Initialize a FP set.

 1.3 For each ParentNodePointer do

 1.3.1 Skip and get next ParentNodePointer, If TransId-list is

empty.

 1.3.2 For each TransId in TransId-list do

 1.3.3 Find conditional patterns CP.

 1.3.4 Delete CP based on min-sup.

 1.3.5 FP = CP FP.

 1.3.6 Find all combinations of FP.

The following example illustrates how the previous operations

work. Table 1 illustrates a continuous data stream SD, where

the sliding window size is 2 panes of data, each of them

contains 3 transactions. The frequent items in each transaction

are listed in alphabetically order, and assuming that the

support threshold is min-sup = 4, the minimum change

threshold MCT = 0.8. Figure 1 illustrates FP-Graph

construction to insert window transactions. The data stream in

Table 1 contains 4 items, so the graph contains four nodes as

shown in Figure 1. The first transaction is (a, c, d) with

identifier or number T1 is initially sorted according to

lexicographical order and stored within the graph, where node

(d) refers to the parent or prefix node (c) and the edge

between them is tagged with 1 (TID T1), where TID Ti = i, and

i={1,2,...12}, node (c) refers to parent node (a) and the edge

between them is tagged with 1, whereas ParentNodePointer of

node (a) equals null.

Table 1. Data stream transactions

Pane TID Transactions

1

T1 a, c, d

T2 b, d

T3 a, b, c, d

2

T4 a, b, c

T5 a

T6 a, c

3

T7 a, b, d

T8 a, b, c, d

T9 a, c

4

T10 b, d

T11 c

T12 b, c

The second transaction (b, d) with the number T2, is stored

within the graph, where the last node (d) refers to the parent

node (b) and the edge between them is tagged with 2. The

node (b) ParentNodePointer contains null. The third

transaction (a, b, c, d) with the number T3, where the last node

(d) refers to the parent node (c) and the edge between them is

tagged with 3. Node (c) refers to parent node (b) and the edge

between them is tagged with 3, whereas node (b) refers to

parent node (a). The node (a) ParentNodePointer contains

null, and so on. To store all the occurrences of sub-path for

any two items, (ba) for example, the node (b) has

ParentNodePointer to the node (a). Multiple occurrences of

sub-path (ba) are stored in the TransId-list associated with the

node (b). Figure 1 illustrates FP-Graph after inserting pane1,

pane2 and initial H-Table.

Fig 1: Construction a FP-Graph after inserting pane1, 2

Algorithm2: Reconstruction of FP-Graph.

Input: FP-Graph, minimum support threshold min-sup,

minimum change threshold MCT and sorted H-Table.

Output: Restructured FP-Graph.

1. Calculate concept change.

2. if concept change ˃ MCT then

 2.1 Delete all expired transactions before concept change

point CCP.

 2.2 Move CCP to the last inserted transaction.//changing

CCP.

2.3 Update H-Table.// eliminating the effect of deleting

items before concept change point CCP.

 Else
 2.3 For each path Pi in FP-Graph do

 2.4 If Pi is not sorted then

 2.5 Extract and sort Pi according to sorted H-Table.

 2.6 Reinsert pi into FP-Graph.

3. Return Restructured FP-Graph.

T
im

e
li

n
e

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

52

After FP-Graph construction operation finished, the next

operation is FP-Graph reconstruction. Figure 2 shows

reconstructed FP-Graph. From the item at the bottom of the

H-Table, paths are found. Node (d) in Figure 1 has two

ParentNodePointer pointers that refer to nodes (c) and (b),

with TransId-list value [1,3], [2] respectively. The first

transaction path is (a, c, d) and according to the sorted H-

Table shown in Figure 2, the path remains at the same order.

The third transaction path is (a, b, c, d) and according to the

sorted H-Table, the path is rearranged and becomes (a, c, b, d)

and it is then inserted again into the graph and so on.

Fig 2: Reconstruction a FP-Graph after inserting pane1, 2

It can be seen that the restructuring operation could decrease

the number of edges or pointers in FP-Graph from 6 to 5.

Thus, the larger size data stream gets, the more edges the FP-

Graph save. Reconstructed FP-Graph is used to mine frequent

itemsets. The bottom items of the sorted H-Table, which

achieves min-sup = 4, is used to access FP-Graph node. As

can be seen from the Figure 2, the first item achieves min-sup

is (c), item's node has one ParentNodePointer with TransId-

list value [1, 3, 4, 6]. For transactions T1, T3, T4, T6 the

complete parent path or conditional patterns for node (c) is

{a},{a},{a} and {a} respectively. Similarly, for the node (a)

the conditional patterns are {a}. The final frequent itemsets

for each node are generated by finding combinations of this

node with conditional frequent itemsets. Table 2 illustrates

final frequent itemsets or patterns based on min-sup = 4.

Table 2. Final frequent itemsets

Conditional

patterns

Conditional

patterns based

on min-sup

Frequent

pattern

c: {a}|{a}|{a}|{a} c:{a} {c}, {c, a}

a:{a} a:{ } {a}

To insert pane 3 and pane 4 (i.e. to slide window) all previous

operations are executed again, and the sorted H-Table from

pane 1, 2 inserting stage becomes initial H-Table for pane 3, 4

inserting stage. Figure 3 shows FP-Graph after inserting pane

3,4.

Fig 3: FP-Graph after inserting pane3, 4

After using FP-Graph construction operation to insert each

transactions pane, FP-Graph reconstruction operation is used

for finding concept change, and re-arranging the transactions

according to sorted H-Table. When the concept change

occurs, the transactions before CCP will be deleted. The

frequent items at time T1 (Figure 1, after inserting pane 1, 2) is

FT1 = {a, c} and the set of frequent items at time T2 (Figure 3,

after inserting pane 3, 4) is FT2 = {a, c, b, d}. FChangeT1(T2)

from T1 to T2 according to equation(1): FT1
+(T2)={b, d},

FT1
-(T2)={∅ , FChangeT1(T2)=

 < MCT, based on

this result the window will expand and no transactions will be

deleted. The FP-Graph in Figure 3 does not need to rearrange

its transactions, because H-Table is in descending order. The

Mining of a frequent itemsets is performed in the same way

previously described.

4.2 DSW-BPGFP Algorithm
This section describes the whole framework of DSW-BPGFP

algorithm, the proposed algorithm processes data stream using

Divide & Conquer method in map and reduce functions[21].

MapReduce can be widely used in processing and storage of

large-scale data in a distributed computing environment.

DSW-BPGFP algorithm uses two MapReduce phases to

parallelize DSW-BPGFP algorithm. Figure 4 shows the three

steps of DSW-BPGFP.

Fig 4: DSW-BPGFP algorithm framework

- Step1: FP-Graph construction: after dividing window

transactions into successive parts to distribute and to store

these parts on N different nodes (or machines). All nodes

construct their FP-Graph and sorted local H-Table according

to algorithm 1 (Subsection 4.1.1). Each mapper processes all

transactions in the <key, value=Ti> format and sends it to the

reducer. The reducer constructs FP-Graph and sorted local H-

Table according to frequency descending order.

- Step2: FP-Graph reconstruction and grouping items with

balance strategy: after each node has constructed their own

local sorted H-Table, all H-Table are aggregated to have a

sorted global H-Table. Global H-Table is used to calculate

Concept Change rate and to apply Load balancing strategy.

The main purpose of Load balancing strategy is to divide

frequent items of sorted global H-Table into Q groups, this

groups are called Group list (G-list) and each group has a

unique group-id (gid). Load balancing strategy increases the

effectiveness of mining frequent itemsets and distributes loads

between computational nodes evenly[3][14]. Load balancing

strategy can be divided into two phases. The first phase is the

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

53

loads computing of each frequent item, which is the amount

of work of mining on conditional pattern base of each

frequent item. The load required to mine any frequent item is

determined by the recursive operations performed during the

mining process. The support count of each items in sorted

global H-Table determines the size of conditional pattern

base. Therefore, the load of item x, can be computed by its

support count in sorted global H-Table as follows:

The second phase is fairly dividing all items based on its loads

into several groups. Each frequent item from the top to the

bottom H-Table is added into the group list (G-list) to ensure

that each group have fairly equal work load. The following

two steps are repeated until all frequent items in H-Table are

grouped:

1. Adding the next non-grouped frequent item in H-Table into

the group with the minimum load.

2. Increasing the load of that group by the load of the added

item.

This step is done by single node within few seconds, and at

the end of this step global H-Table, Concept Change rate, and

group-id will be sent to other nodes. Each node's FP-Graph is

reconstructed according to global H-Table and Concept

Change rate(Subsection 4.1.2).

- Step3: Parallel FP-Graph mining: this step takes one

MapReduce phase. After using load balancing strategy to

distribute frequent items into different groups in a balanced

way, as shown in step2, each node extracts the part that

contains the frequent items for all transactions from own FP-

Graph.

Map phase: In this step, the input for each mapper is in form

of <key, value=Ti>. For each transaction's items Xj ϵ Ti the

mapper substitutes Xj by corresponding gid to produce the

output <key'=gid, value={T1, T2,......Tm}>, where each gid

with its corresponding value represent group-dependent

transaction.

Reduce phase: After each mapper completes the previous job,

for each group-dependent transaction, the reducer builds the

local FP-Graph to find conditional patterns based on min-sup

according to algorithm 3 (Subsection 4.1.3).

5. EXPERIMENTS
This section shows the experimental evaluation of the DSW-

BPGFP algorithm. The DSW-BPGFP algorithm was

implemented using Java (JDK1.8.0_181) and Hadoop

framework (Hadoop-2.8.0). The experiment environment was

done on cluster of 8 machines, one of these machines works

as master, and seven machines work as slaves. Each machine

has Intel®Core™i3 2.30GHz processor, 6GB of RAM and

Ubuntu 16.4 LTS-64Bit operating system. The dataset used

for testing was downloaded from FIMI'04 repository[22].

Table 3 provides the characteristics of the datasets with the

number of transactions, average transaction length, the

number of items and type of each dataset.

Table 3. Characteristics of datasets

Dataset Trans
Avg.

Length
Items Type

Connect 67557 43 129 Dense

T40I10D100K 100000 40 942 Sparse

Kosarak 990002 8 41270 Sparse

The experiments are divided into four groups. The first group

of experiments checks reacting the proposed algorithm to a

concept change in data stream and the behavior of DSW under

different change thresholds. The second group of experiments

shows memory and time cost. The third group verifies the

speed up of the proposed algorithm. The last group of

experiments examines the load balancing of distributed

algorithm.

5.1 Behavior of DSW
In this experiment, T40I10D100K dataset is used to show how

DSW responses to a concept change detection. T40I10D100K

is a sparse, synthetic dataset and contains 100K transactions

with average transaction size 40 as shown in Table 3. The

researchers tried to create artificial change point using

T40I10D100K dataset, to build a new dataset by exchange

50% of frequent items and infrequent items based on

minimum support threshold min-sup=2%. T40I10D100K was

divided into two equal parts, and then combined the previous

dataset by placing it between the two parts to form the final

dataset with name T40I10D200K-AB. T40I10D200K-AB has

at least two concepts (after 50Kth and 150Kth), where the

min-sup=2%. The initial window size, pane size, support

threshold and minimum change threshold were set to 20K

transactions, 10K transactions, 2% and 50%, respectively.

These values were similar to the parameters used in a previous

study [8], except for the change threshold, because the

proposed algorithm depends on frequent and infrequent items

instead of frequent and infrequent itemsets in calculating it.

Fig 4: Behavior of DSW according to concept change rate

As shown in Figure 4 in 60Kth, 110Kth and 160Kth, the

concept change is detected by exceeding change threshold.

The window size (number beside each dot in Figure 4) in

these points decreases, because of deleting the expired

transactions. Therefore, at 60Kth, 110Kth and 160Kth the

window is resized to 40K, 50K and 50K respectively. The

new window size is the difference between the current point

and the concept change point. The size of the new window at

60Kth according to first concept change point 20K is 40K.

and the concept change point is moved to the point where the

concept change is detected (i.e. 60Kth transaction). It is clear

from Figure 4 that the DSW is adaptively resized according to

concept change in data stream.

5.2 Memory and Time Cost
This set of experiments compares the memory and time cost

of the proposed algorithm under different minimum supports.

Since no similar algorithms were found based on Hadoop,

directed graph and using variable size sliding window model

to find all frequent itemsets in the window, the proposed

algorithm runs on one machine to compare it with VSW-

SCPS [7], DSTree [16] and CPS-Tree [17] on different

datasets. The support threshold values in the compared

algorithms have no influence on the required memory,

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

54

because these algorithms process the window content in full

(i.e. without depending on support threshold). The next Figure

shows memory cost of the compared algorithms (in MB) on

Connect (dense dataset), T40I10D100K (sparse dataset) and

Kosarak (sparse dataset).

The size of the window used in the experiment was kept fixed

at 20K (pane=10K, w=2 for Connect and T40I10D100K

dataset), 100K (pane=50K, w=2 for Kosarak dataset), and

these sizes considered as initial size of window in the

proposed algorithm and VSW-SCPS algorithm. Figure 5

shows that the proposed algorithm consumes less memory

than VSW-SCPS, CPS-Tree and DSTree. The main reason is

that the total number of nodes required for FP-Graph was

lower than SCPS-tree, CPS-Tree and DSTree. In dense

datasets like Connect, the compactness of the FP-Graph is

more important due to the high degree of correlation between

patterns in these datasets, as also shown in Figure 5.

Moreover, deleting expired transactions from FP-Graph also

plays an important role in reducing memory cost.

Fig 5: Memory cost comparison

Moreover, Figure 5 demonstrates that the memory cost of the

FP-Graph was lower than that in VSW-SCPS, CPS-Tree and

DSTree for T40I10D100K (sparse dataset) and Kosarak

(sparse dataset).

In the next experiments, the proposed algorithm will be

compared with BPFP-Growth[14] and CanTree-GTree

algorithm [18] to estimate time cost (i.e. the overall runtime)

on eight machines.

Fig 6: Time cost comparison (Connect Dataset)

Figure 6 and 7 shows the time of these algorithms running on

Connect and T10I4D100K dataset under min-sup threshold

varies from 20% to 70%, the initial window size equals 20K

(pane=10K, w=2) and minimum change threshold equals

50%. The results presented in Figure 6 and 7 clearly

demonstrate that DSW-BPGFP outperforms BPFP-Growth

and CanTree-GTree algorithm in the experiments with

Connect and T10I4D100K datasets. It can be noticed that, the

proposed algorithm needs less time to mine frequent itemsets,

with increasing min-sup threshold. Using dynamic sliding

window to delete expired transactions, and mining frequent

itemsets without generating conditional pattern tree plays an

important role in reducing the overall execution time of the

DSW-BPGFP algorithm. The researchers did not mention the

results for Kosarak, because the results were close to those

obtained for T10I4D100K due to similar dataset

characteristics.

Fig 7: Time cost comparison (T40I10D100K Dataset)

5.3 Speedup
The speedup parameter evaluates the performance of the

parallel algorithm compared to the corresponding sequential

algorithm, when keeping the data size constant and increasing

the number of machines constantly. It can be defined as:

Where T1 is the sequential execution time on a signal machine

and Tn is the parallel execution time for the same dataset on

the n machines. For the speedup calculation of DSW-BPGFP,

the researchers perform experiments on cluster of nodes

ranging from 1 to 8 and using Connect, T40I10D100K and

Kosarak datasets. The results are shown in Figure 8. As can

be seen from Figure 8 that the speed of DSW-BPGFP

increases fairly linearly with the growth of the number of

nodes, and the pace increases gradually with dataset. The

speed up value of the Kosarak dataset reaches 6.671, when the

number of machines is 8. This value represents 83,38%

(6.671/8=0.8338) of the linear (or ideal) speedup. Mostly,

linear speedup is very difficult to reach due to the cost of

communication between machines (or nodes) [13].

Fig 8: Speedup of DSW-BPGFP

5.4 Load Balancing
The researchers finally tested the impact of the load balancing

strategy on the overall runtime of the proposed algorithm. In

Figure 9, the proposed algorithm with load balancing strategy

is marked as DSW-BPGFP and the proposed algorithm

without load balancing strategy is marked as DSW-PGFP(the

same proposed algorithm with grouping strategy is adopted

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat

International Journal of Computer Applications (0975 – 8887)

Volume *– No.*, September 2020

55

by PFP[13]). The dataset used to perform these experiments is

Kosarak with different min-sup threshold from 2% to 10%.

The initial window size, pane size and minimum change

threshold were set to 200K transactions, 50K transactions and

50%, respectively. As can be seen clearly from Figure 9, that

load balancing strategy make the proposed algorithm more

effective. The load balancing strategy has a large effect on

constructing the balanced FP-Graph with the same size on

each node based on item's support count, and reducing the

overall runtime of the proposed algorithm by more than 15%

compared to grouping strategy adopted by PFP.

Fig 9: The load balancing strategy impact

6. CONCLUSION
In this paper, an efficient balanced parallel algorithm for

mining frequent itemsets over data stream, called DSW-

BPGFP was proposed. For this purpose, a dynamic sliding

window based on the amount of change in the number of

frequent items and infrequent items was developed to

facilitate the handling of the data stream and reduce the

amount of memory and time required to deal with it. The

window size changes according to amount of concept change

in data stream. A novel graph structure, FP-Graph, also was

created and a number of operations for the graph to maintain

all window transactions in an efficient way and to improve the

parallel mining of frequent itemsets. To handle the load

imbalance problem between nodes, load balancing strategy

was introduced to distribute loads between Hadoop cluster

nodes equally. Experimental results showed that the dynamic

sliding window can deal with data stream in an adaptive way

by deleting expired transactions when concept change occurs.

Compared with previous algorithms, the proposed algorithm

reduces memory and time cost required to mining the frequent

itemsets from a data stream. The DSW-BPGFP has a good

speedup with a different number of nodes, and load balancing

strategy distributes the load between each node, dynamically

and evenly.

7. REFERENCES
[1] Bustio-Martínez, L. , Muñoz-Briseño, A. , Cumplido, R.,

Hernández-León, R. and Feregrino-Uribe, C. 2019. A

Novel Multi-Core Algorithm for Frequent Itemsets

Mining in Data Streams.

[2] Srinivas, A.V. 2016. An Overview of Algorithms Used

for Mining Frequent Patterns in Data Streams.

[3] Fu, X. , Shi, L., Li, J. 2017. Balanced Parallel Frequent

Pattern Mining Over Massive Data Stream

[4] McArdle, C. and Wang, X. 2013. Frequent Itemset

Mining Over Stream Data: Overview.

[5] Peddireddy, B., Ch, A. and Patnala, S. R. C. M. 2018. A

Survey on Mining Frequent Item Sets from Data Stream.

[6] Chandra, B. and Bhaskar, S. 2013. A Novel Approach

for Finding Frequent Itemsets in Data Stream.

[7] Li, H. and Wang L. 2017. A Variable Size Sliding

Window Based Frequent Itemsets Mining Algorithm in

Data Stream.

[8] Deypir, M., Sadreddini H. M. and Hashemi, S. 2012.

Towards A Variable Size Sliding Window Model for

Frequent Itemset Mining Over Data Streams.

[9] Koh, J. L. and Lin, C.Y. 2009. Concept Shift Detection

for Frequent Itemsets From Sliding Window Over Data

Streams.

[10] Agrawal, R. and Srikant, R. 1994. Fast Algorithms for

Mining Association Rules.

[11] Han, J., Pei, J. and Yin, Y. 2000. Mining Frequent

Patterns Without Candidate Generation.

[12] Zaki, M.J. 2000. Scalable Algorithms for Association

Mining.

[13] Li, H., Wang, Y., Zhang D., Zhang M., and Chang., E.

Y. 2008. PFP: Parallel FP-Growth for Query

Recommendation.

[14] Zhou, L., Zhong, Z., Chang, J., Li, J., Huang, J.Z., and

Feng, S. 2010. Balanced Parallel FP-Growth with

MapReduce.

[15] Nikam, P. V. and Deshpande, D.S. 2018. New Approach

in Big Data Mining for Frequent Itemset Using

Mapreduce in HDFS.

[16] Leung, C.K.-S. and Khan, Q.I. 2006, DSTree: a tree

structure for the mining of frequent sets from data

streams.

[17] Tanbeer, S. K., Ahmed, C. F., Jeong, B. and Lee, Y.

2009. Sliding Window-Based Frequent Pattern Mining

Over Data Streams.

[18] Kusumakumari, V., Sherigar, D., Chandran, R. and Patil,

N. 2017. Frequent Pattern Mining on Stream Data Using

Hadoop Cantree-Gtree .

[19] Bustio-Martı'nez, L., Cumplido, R., Hernandez-Leo'n,

R., Bande-Serrano, J. M. and Feregrino-Uribe, C.2017.

On the Design of Hardware-Software Architectures for

Frequent Itemsets Mining on Data Streams.

[20] HE, Y. and YUE, M. 2014. Parallel Frequent Itemset

Mining on Streaming Data.

[21] Dean, J. and Ghemawat, S. 2008 MapReduce: simplified

data processing on large clusters.

[22] FIMI 2004 Repository [online], http://fimi.ua.ac.be/data/.

IJCATM : www.ijcaonline.org

http://fimi.ua.ac.be/data/

