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ABSTRACT 

Frequent itemset mining algorithms are one of the most 

interesting research issues in recent years. They play an 

important role in finding association rules from a continuous 

massive data stream such as: customer behavior tracking, 

retail sales, network monitoring, etc. In this paper, a novel 

approach will be introduced to remove some drawbacks in 

parallel FP-Growth and enable it to handle the data stream. 

The proposed algorithm DSW-BPGFP (Dynamic Sliding 

Window - Balanced Parallel Graph Frequent Pattern) will 

improve space and time required based on a compact data 

structure, called FP-Graph to maintain and store dynamic 

sliding window transactions. The algorithm dynamically 

reconstructs and compresses directed graph data structure to 

control the amount of space usage, and the size of dynamic 

window will be adjusted by the concept change detection. 

Moreover, DSW-BPGFP will distribute loads between 

Hadoop cluster nodes equally, by introducing load balancing 

strategy. The experiments show that the proposed algorithm 

can achieve a good speedup, a good degree of balance 

between nodes and efficiently process large dynamic datasets. 

In addition, it achieves improvement in memory consumption 

to store frequent patterns and in time complexity. 
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1. INTRODUCTION 
The process of finding frequent itemset for extraction of 

association rules is an essential stage in the process of 

continuous big data analysis (data stream), which is resulting 

from the unprecedented increase in data volume, rapid 

development of the internet and the steady increase in mobile 

devices in the last two decades[1]. A data stream is defined as 

a series of chronological data, which is arriving at high and 

fast rate[1][2]. Several mining frequent itemsets (or patterns) 

algorithms have been studied on static datasets. Static datasets 

have many features such as: limited volume and fixed size 

over time, unlike the dynamic datasets, which have other 

features such as: Continuity: It means that the flow rate of the 

data stream is high and fast, Expiration: the inability to read 

the data stream multiple times, Infinity: the unstable and large 

volume of the data stream[1][3][4]. The traditional association 

rule mining algorithms applied on static data cannot be used 

for data stream, because of the features of dynamic datasets 

(or data stream) [2][3][4]. Some points have to be taken into 

consideration, the lack of time and space needed for the 

rescanning of the entire database one of disadvantages of the 

data stream, usually only one scan of data stream is possible. 

As well as the continuous change in the data stream, which is 

known as concept change. The increasing and changing flow 

rate (data distributions) requires the use of an incremental 

process to deal with data stream. In addition to the huge size 

of the data stream, which prevents storing all data in memory 

[2][3]. There are three types of data extraction strategies from 

data stream, Landmark Window Model, Damped Window 

Model and Sliding Window Model. In Landmark Window 

Model, the mining process over data stream is applied from a 

specific data point called the landmark, to the current time 

point. In Damped Window Model, each transaction is 

associated with the weight values which decrease over time. 

In Sliding Window Model, the mining process over data 

stream is applied between the starting time point of the 

window and the current time point[5][6]. Each previous 

model has its own advantages and disadvantages[6]. Fixed-

size sliding window has been implemented in many 

algorithms, due to its simplicity. Fixed-size sliding window 

deletes the oldest panes or batches (number of transactions) 

when a new batch arrives, to maintain a fixed size. Specifying 

the size of the window requires a prior knowledge from user. 

If the size of the window is too large, it may cause too much 

useless patterns and affect mining accuracy. If the size of the 

window is very small, it may cause concept drift and affect 

mining accuracy Too[7][8]. Based on the previous discussion, 

fixed-size sliding window is difficult to apply on the data 

stream, and dynamic sliding window is the best solution to 

deal with data stream in which the window size is adjusted 

based on the change of data stream. In this paper, an improved 

parallel FP-Growth DSW-BPGFP will be proposed using a 

compact data structure called FP-Graph with one-scan of 

dynamic sliding window transactions, adjusting window size 

dynamically and load balancing strategy to distribute 

computational loads between Hadoop frame nodes equally. 

The improved algorithm is more adaptive to treat data stream. 

Firstly, an inserting stage is performed on dynamic sliding 

window transactions to build FP-Graph in each node (or 

machine), and a local header table H-Table that contains 

support count of each data stream items. Secondly, creating a 

global H-Table in master node after receiving local H-Tables 

from each node, grouping items with balance strategy and 

checking concept change. Thirdly, reconstructing the graphs 

for each node. Finally, generate frequent itemset.  This paper 

is organized as follows: section 2 presents a problem 

statement of finding frequent items in data streams in detail. 

Section 3 gives an overview of the related researches 

literature on the parallel FP-Growth algorithm. Section 4 

presents the proposed algorithm of DSW-BPGFP. The 

performance evaluation of the proposed algorithm is 
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presented in section 5, and section 6 is the conclusion. 

2. PROBLEM STATEMENT 
The task of finding frequent items in data streams to generate 

association rules is stated as follows: let I= {I1,I2,I3…In} be a 

set of items, where n: represent the total number of items. Let 

SD={T1,T2,…,Tm,....}, Ti (iϵ[1..m..]) be a set of incoming 

transactions in data stream, where m: represent the current 

number of transactions. Each transaction Ti is a subset of I. A 

subset       is an itemset or pattern. If X is composed of K 

items, then it is called that X is a k-itemsets[1][5][7].The 

pattern X is frequent in sliding window W if the support count 

of X in W (transactions that include X) SC(X) ≥ min-sup × |W|, 

where min-sup equals to the minimum support threshold, |W| 

is the size of the sliding window (number of transactions), 

which contains most recent transactions of the data stream. 

The association rules take the following form    , where 

    ,     ,    ,    ,      , and the rule 

confidence is defined as                    
       . The main task of association rules mining is to find 

all association rules that have support and confidence greater 

than minimum support threshold min-sup and minimum 

confidence threshold as well[1][7]. To facilitate the mining of  

frequent itemsets over data stream, dynamic-size sliding 

window model is presented. The window's size is going to be 

changed according to concept change, which is described as 

the change in the number of frequent and infrequent items in 

H-Table. When concept change exceeds the user given 

threshold, it means that concept change has occurred and 

window will shrink. If the concept change becomes stable, 

window will expand by inserting new panes[8][9]. 

3. RELATED WORK 
There are several algorithms that are concerned with finding 

frequent itemset. In this section, the basic algorithms for 

frequent itemset mining on static datasets will be discussed, 

then the algorithms for frequent itemset mining over data 

streams. 

3.1 Mining on Static Dataset  
The Apriori algorithm was proposed as the first algorithm to 

mine frequent patterns for static databases. It uses the 

Generate and Test method, i.e. the generation of the candidate 

items and then tests whether they represent frequent 

items[10]. This algorithm is costly in terms of time and 

storage space due to Breadth-First Search strategy (BFS) and 

a multiple scanning of database to generate candidate frequent 

itemsets. FP-Growth was then suggested to improve mining 

performance of Apriori algorithm. It is considered faster than 

the Apriori algorithm and other methods of mining frequent 

itemsets. It works in a divide and conquer way and it only 

needs to scan database twice. In the first database scan, the 

algorithm computes items frequency in database to store them 

(item and frequency) in a header table. In the second scan, the 

algorithm builds FP-Tree to compress database by inserting 

database ordered transactions (based on header table). Then, 

FP-Growth generates the conditional pattern tree to mine 

frequent itemsets without candidate generation, and to reduce 

the search space[11]. The last algorithm is Equivalence Class 

Transformation (Eclat), which depends on Depth-First Search 

strategy (DFS) and Vertical Dataset Representation to 

generate frequent itemsets[12]. The effectiveness of the 

previous traditional algorithms decreases with the increase in 

the database size because of its own characteristics and 

limited computational ability of a single node. Thus, the 

improvement of traditional algorithms using parallel and 

distributed frame work (cloud computing), provides the best 

solution of mining frequent itemsets from big data. In [13], 

the authors proposed a Parallel FP-Growth algorithm (PFP) 

using MapReduce Framework, it was shown that the PFP 

algorithm could accomplish near linear speedup on thousands 

of machines. However, PFP does not take into consideration 

load balance, which is a very critical issue for large scale data 

processing. To solve the load balance problem, a study 

proposed a balanced partitioning strategy (BPFP) [14]. Nikam 

et al. developed a hybrid algorithm, which is based on 

modified Apriori and FP-Growth for frequent itemsets mining 

and a thermal management method on data node, like load 

balancing. This resulted in an improvement of scanning time 

of 79% [15]. The disadvantage of all above algorithms is 

repeatedly scanning to database to generate frequent itemsets. 

3.2 Mining on Data Stream 
Due to the increase of the data volume generated across many 

different fields, many algorithms are interested in exploring 

frequent itemsets over data stream. A sliding window-based 

algorithm was presented by Leung et al. for mining frequent 

sets from data stream depending on tree structure similar to 

FP-Tree, called DSTree [16]. Single-pass algorithm based on 

a tree data structure called CPS-tree and sliding window for 

frequent itemsets mining on sliding window transaction was 

proposed by Tanbeer et al. The algorithm dynamically 

reconstructs the CPS-tree to reduce the amount of memory 

usage for the tree structure and to enhance the mining time on 

single node [17]. Koh et al. suggested a method to detect a 

concept change (or concept shift) of frequent itemsets over 

data stream according to the change of frequent itemsets 

number in the old and new windows. The used method to 

calculate concept change is not applicable in a distributed 

environment[9]. Deypir et al. proposed a new algorithm 

named VSW (Variable Size sliding Window frequent itemset 

mining) based on concept change in [9] and Eclat algorithm. 

The window grows as the concept becomes stable and shrinks 

when the concept change occurs[8]. VSW-SCPS was 

suggested for avoiding multiple scans and generating frequent 

itemsets efficiently on the basis of the concept change and 

SCPS-tree, which inserts the data of a sliding window, and 

adjusts its structure dynamically by the BSM strategy to 

increase mining speed [7]. The above algorithms are 

considered sequential mining algorithms for data stream, and 

they have difficulty in dealing with increasing data stream due 

to the limitation of capabilities of the single node. One of 

these parallel algorithms was the CanTree-GTree parallel 

algorithm using Hadoop frame work, which was suggested to 

mine frequent itemsets from sliding window transactions [18]. 

The improvement of mining time was five times better than 

the one in single node. Other researches used a systolic tree 

data structure for frequent itemset mining [19]. This algorithm 

uses Landmark and Sliding Window Models for handling data 

stream. Message Passing Interface (MPI) was utilized for 

building a parallel frequent pattern mining algorithm over 

massive data stream[3][20]. In[3], the presented algorithm 

uses a new balanced grouping strategy based on the depth of 

each item on tree data structure. The previous algorithms use 

multiple methods and structures to discover frequent itemsets 

over data stream, hence there is a need to develop of an 

algorithm, which meet all the advantages of the previous 

algorithms and  present  better adaptation to the data stream 

characteristics. 

4. PROPOSED ALGORITHM 
In section 4.1, this algorithm proposes a Frequent Pattern 

Graph (FP-Graph) to maintain frequent itemsets from data 

stream. Based on FP-Graph, the DSW-BPGFP algorithm in 



International Journal of Computer Applications (0975 – 8887)  

Volume *– No.*, September 2020 

50 

Section 4.2 is designed, and the algorithm utilized load 

balancing strategy to distribute loads between computational 

nodes. The proposed algorithm performs a single-pass to 

insert dynamic sliding window transactions. 

4.1 The FP-Graph Structure  
The FP-Graph is a highly compressed structure. It contains a 

set of vertices, V={V1, V2,.......Vn} and a set of edges, E ={E1, 

E2, …...Em}. The vertices number is equal to distinct items 

number in data stream. Further, every edge Eij between 

vertices Vi and Vj represents a transaction sub-path. Since 

many transactions may have several sub-paths in common and 

their path may overlap, each edge is provided with a TransId-

list in order to store the transactions ID, which contain this 

edge. The proposed algorithm performs a single scan to treat 

data stream, so the directed graph must be associated with the 

frequent items table H-Table, which contains frequency count 

of data stream items to complete the process of FP-Graph 

reconstructing. H-Table also used to retrieve frequent itemsets 

from FP-Graph. Each register in H-Table consists of three 

fields, item identifier (itemId), frequency count and pointer to 

FP-Graph node (ItemRetrievalPointer), whereas each node of 

the FP-Graph consists of two fields, item identifier (itemId) 

and the list of parent prefix node (ParentNodePointer). There 

are three main operations of FP-Graph: 

1. FP-Graph construction. 

2. FP-Graph reconstruction. 

3. Frequent itemsets mining on FP-Graph.   

The following subsubsections describe the main FP-Graph 

operations in details with example.  

4.1.1 FP-Graph Construction 
Unlike traditional frequent itemsets mining algorithms, which 

start with finding all frequent and infrequent itemsets, then 

build a FP-Tree, FP-Graph is constructed with only one-scan 

of window transactions by inserting it one by one according to 

a predefined order (e.g. lexicographical order). At the same 

time H-Table is constructed, which contains frequency count  

of items. After each transaction insertion, item frequency 

count will be updated and sorted based on descending order of 

frequency in H-Table. In FP-Graph, each node of H-Table 

points to its own node of FP-Graph. Instead of storing 

frequency count of the item nodes that appear on the sub-

paths, FP-Graph stores the frequency of the parent or prefix 

sub-path using the TransId-list. Algorithm1 presents the 

pseudo code of the construction of FP-Graph. The initial size 

of window is set by the user, then the size of the window will 

be automatically adjusted according to concept change rate 

(step 1). The initial value for concept change point is the TID 

of last transaction of the initialized window (step 2). The 

concept change point is moved to the new point when concept 

change is detected, after the insertion of one or more panes of 

transactions to the window. This algorithm constructs all 

nodes to form FP-Graph, and then it links them with its own 

ItemRetrievalPointer of the H-Table through steps 3 to 4.4.5 

of Algorithm 1. The steps 4.5 to 5 are used efficiently to store 

each transaction in FP-Graph and create a sorted H-Table for 

FP-Graph reconstruction operation.  

4.1.2 FP-Graph Reconstruction 
After sorting the items in a descending order according to 

their new frequency values in the H-Table in the previous 

operation, it is then very necessary to reconstruct the FP-

Graph. Reconstruction operation includes two main phases: 

the first is deleting old transactions, if concept change occurs. 

The calculation of concept change between two time points T1 

and T2, where T2 ˃ T1 and FT1 and FT2 represent the frequent 

items at time T1 and T2. Then FT1
+(T2)= FT2 - FT1  is the set of 

new coming frequent items from T1 to T2 in H-Table, and   

FT1
-(T2)= FT1 - FT2  is the set of infrequent items at T2 which 

was frequent at T1 in H-Table. The frequent items concept 

change ratio FChangeT1(T2) from T1 to T2 in the proposed 

algorithm is defined as:  

       
  

      
    

           
      

          
      

             

Where |FT1| is the number of items in set FT1, and 

0<FChangeT1 (T2) < 1. 

The second phase is rearranging all transactions in a 

frequency descending order according to the sorted H-Table. 

The main purpose of the second phase is to set the edges of 

the FP-Graph in the right form (finding the common edges 

between transactions to mine frequent itemsets) and compress 

them as much as possible. The steps 1 to 2.2 of Algorithm 2 

are used to calculate concept change ratio (step1) after 

inserting each transaction of the new pane in previous 

operation. If concept change ratio exceeds the Minimum 

Change Threshold (MCT) (step2), a concept change is 

detected. As a result, all transactions before Concept Change 

Point (CCP) are deleted (step2.1), the CCP moves to the last 

Algorithm1: Construction of FP-Graph. 

Input: transactions window W, window initial size WIS, 

concept change point CCP and initial frequent item header 

table H-Table. 

Output: FP-Graph, sorted H-Table. 

1.  W= WIS. // Initialize a  window. 

2.  CCP= number of the last transaction (TID) in window. // 

Initialize a concept change point. 

3.  TransId = 0.  // Initialize a  TransId.  

4. For each transaction in window t ∈ W do. 

4.1 ParentNodePointer = null. // Initialize a  Pointer.  

 4.2 TransId++. 

 4.3 Sort transactions according to a  predefined order. 

 4.4 For each item i ∈ t do. 

  4.4.1 Update H-Table.// increase the item's support count 

by one.  

  4.4.2 If ItemRetrievalPointer!= null then //Get the graph 

pointer from scanning H-Table. 

  4.4.3  return ItemRetrievalPointer 

           Else  
 4.4.4 Construct new FP-Graph node.  

 4.4.5 Insert the ItemRetrievalPointer address into H-Table.  

 //If the ItemRetrievalPointer != null, the next step is  

modifying ParentNodePointer and TransId for tagging 

pattern path with TransId. 

 4.5 If Parent-list != null  then  // Item node has parent. 

  4.5.1 ParentNodePointer=Add Prefix Item Parent Node. 

       Else    

  4.5.2 Construct new Parent-list and then Add Prefix Item 

Parent Node in it. 

 4.6 Add this TransId to TransId-list. 

5. Sort H-Table in frequency-descending order. 

6. Return FP-Graph, sorted H-Table . 



International Journal of Computer Applications (0975 – 8887)  

Volume *– No.*, September 2020 

51 

inserted transaction (step2.2) and H-Table is updated and 

sorted again to remove the effect of removing deleted 

transactions items (step2.3).  If concept change ratio does not 

exceed the MCT, the procedure of extracting each path (a 

series of edges returns to the same transaction) based on 

TransId, sorting this path and inserting it into FP-Graph again 

is performed by steps 2.3 to 2.6 of Algorithm 2. 

4.1.3 Frequent Itemsets Mining 
After reconstructing the graph in the way described 

previously, the final operation is frequent itemsets mining, 

which is described in the Algorithm3 later on. Frequent 

itemsets are generated without creating conditional FP-Tree 

(as in FP-Growth) which increases the speed of the algorithm. 

The bottom-up search algorithm is used in the H-Table for all 

items, that achieve the minimum support threshold (min-sup) 

to traverse all FP-Graph paths. The frequent itemsets for an 

item are found by starting from the node that represents this 

item in H-Table, then going to the parent of this node until 

reaching the node with null ParentNodePointer. In order to 

find conditional pattern, the proposed algorithm uses the 

TransId-list of ParentNodePointer. In Algorithm3, 

ParentNodePointer is accessed from the Parent list for each 

graph nodes (step1 to step1.3.1). TransId values are then 

retrieved from the TransId-list for each ParentNodePointer to 

generate Conditional Patterns (CP) (step1.3 to step1.3.3). 

After the CP are generated, the support value is calculated to 

delete the CP, which does not meet the min-sup (step1.3.4). 

Then the final frequent pattern combinations will be 

recognized (step1.3.5 to step1.3.6). 

Algorithm3: Frequent itemsets mining on FP-Graph. 

Input: Restructured FP-Graph, minimum support threshold 

min-sup and sorted header table H-Table. 

Output: Frequent patterns FP. 

1. For each item from bottom H-Table which have support 

greater than min-sup do  

 1.1 Access the FP-Graph node of that Item-id.  

 1.2 FP = {∅}. // Initialize a  FP set. 

 1.3 For each ParentNodePointer do 

   1.3.1 Skip and get next ParentNodePointer, If TransId-list is 

empty. 

   1.3.2 For each TransId in TransId-list do 

   1.3.3 Find conditional patterns CP. 

   1.3.4 Delete CP based on min-sup. 

   1.3.5 FP = CP   FP. 

   1.3.6 Find all combinations of FP. 

 

The following example illustrates how the previous operations 

work. Table 1 illustrates a continuous data stream SD, where 

the sliding window size is 2 panes of data, each of them 

contains 3 transactions. The frequent items in each transaction 

are listed in alphabetically order, and assuming that the 

support threshold is min-sup = 4, the minimum change 

threshold MCT = 0.8. Figure 1 illustrates FP-Graph 

construction to insert window transactions. The data stream in 

Table 1 contains 4 items, so the graph contains four nodes as 

shown in Figure 1. The first transaction is (a, c, d) with 

identifier or number T1 is initially sorted according to 

lexicographical order and stored within the graph, where node 

(d) refers to the parent or prefix node (c) and the edge 

between them is tagged with 1 (TID T1), where TID Ti = i, and 

i={1,2,...12}, node (c) refers to parent node (a) and the edge 

between them is tagged with 1, whereas ParentNodePointer of 

node (a) equals null. 

Table 1.  Data stream transactions 

Pane TID Transactions 

1 

T1 a, c, d 

T2 b, d 

T3 a, b, c, d 

2 

T4 a, b, c 

T5 a 

T6 a, c 

3 

T7 a, b, d 

T8 a, b, c, d 

T9 a, c 

4 

T10 b, d 

T11 c 

T12 b, c 

The second transaction (b, d) with the number T2, is stored 

within the graph, where the last node (d) refers to the parent 

node (b) and the edge between them is tagged with 2. The 

node (b) ParentNodePointer contains null. The third 

transaction (a, b, c, d) with the number T3, where the last node 

(d) refers to the parent node (c) and the edge between them is 

tagged with 3. Node (c) refers to parent node (b) and the edge 

between them is tagged with 3, whereas node (b) refers to 

parent node (a). The node (a) ParentNodePointer contains 

null, and so on. To store all the occurrences of sub-path for 

any two items, (ba) for example, the node (b) has 

ParentNodePointer to the node (a). Multiple occurrences of 

sub-path (ba) are stored in the TransId-list associated with the 

node (b). Figure 1 illustrates FP-Graph after inserting pane1, 

pane2 and initial H-Table. 

 

Fig 1: Construction a FP-Graph after inserting pane1, 2 

Algorithm2: Reconstruction of  FP-Graph. 

Input: FP-Graph, minimum support threshold min-sup, 

minimum change threshold MCT and sorted H-Table. 

Output:  Restructured FP-Graph. 

1. Calculate concept change. 

2. if concept change ˃ MCT then 

 2.1 Delete all expired transactions before concept change 

point CCP. 

 2.2 Move CCP to the last inserted transaction.//changing 

CCP. 

2.3  Update H-Table.// eliminating the effect of deleting 

items  before concept change point CCP.  

    Else     
  2.3 For each path Pi in FP-Graph do 

  2.4 If Pi is not sorted then 

  2.5 Extract and sort Pi according to sorted H-Table. 

  2.6 Reinsert pi into FP-Graph. 

3. Return Restructured FP-Graph. 

T
im

e 
li

n
e 
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After FP-Graph construction operation finished, the next 

operation is FP-Graph reconstruction. Figure 2 shows 

reconstructed FP-Graph. From the item at the bottom of the 

H-Table, paths are found. Node (d) in Figure 1 has two 

ParentNodePointer pointers that refer to nodes (c) and (b), 

with TransId-list value [1,3], [2] respectively. The first 

transaction path is (a, c, d) and according to the sorted H-

Table shown in Figure 2, the path remains at the same order. 

The third transaction path is (a, b, c, d) and according to the 

sorted H-Table, the path is rearranged and becomes (a, c, b, d) 

and it is then inserted again into the graph and so on.  

    

Fig 2: Reconstruction a FP-Graph after inserting pane1, 2 

It can be seen that the restructuring operation could decrease 

the number of edges or pointers in FP-Graph from 6 to 5. 

Thus, the larger size data stream gets, the more edges the FP-

Graph  save. Reconstructed FP-Graph is used to mine frequent 

itemsets. The bottom items of the sorted H-Table, which 

achieves min-sup = 4, is used to access FP-Graph node. As 

can be seen from the Figure 2, the first item achieves min-sup 

is (c), item's node has one ParentNodePointer with TransId-

list value [1, 3, 4, 6]. For transactions T1, T3, T4, T6 the 

complete parent path or conditional patterns for node (c) is 

{a},{a},{a} and {a} respectively. Similarly, for the node (a) 

the conditional patterns are {a}. The final frequent itemsets 

for each node are generated by finding combinations of this 

node with conditional frequent itemsets. Table 2 illustrates 

final frequent itemsets or patterns based on min-sup = 4. 

Table 2.  Final frequent itemsets 

Conditional 

patterns  

Conditional 

patterns based 

on min-sup 

Frequent 

pattern 

c: {a}|{a}|{a}|{a} c:{a} {c}, {c, a} 

a:{a} a:{ } {a} 

To insert pane 3 and pane 4 (i.e. to slide window) all previous 

operations are executed again, and the sorted H-Table from 

pane 1, 2 inserting stage becomes initial H-Table for pane 3, 4 

inserting stage. Figure 3 shows FP-Graph after inserting pane 

3,4.   

 

Fig 3: FP-Graph after inserting pane3, 4 

After using FP-Graph construction operation to insert each 

transactions pane, FP-Graph reconstruction operation is used 

for finding concept change, and re-arranging the transactions 

according to sorted H-Table. When the concept change 

occurs, the transactions before CCP will be deleted. The 

frequent items at time T1 (Figure 1, after inserting pane 1, 2) is  

FT1 = {a, c} and the set of frequent items at time T2 (Figure 3, 

after inserting pane 3, 4)  is FT2 = {a, c, b, d}. FChangeT1(T2) 

from T1 to T2 according to equation(1): FT1
+(T2)={b, d},      

FT1
-(T2)={∅ , FChangeT1(T2)= 

   

   
     < MCT, based on 

this result the window will expand and no transactions will be 

deleted. The FP-Graph in Figure 3 does not need to rearrange 

its transactions, because H-Table is in descending order. The 

Mining of a frequent itemsets is performed in the same way 

previously described. 

4.2 DSW-BPGFP Algorithm 
This section describes the whole framework of DSW-BPGFP 

algorithm, the proposed algorithm processes data stream using 

Divide & Conquer method in map and reduce functions[21]. 

MapReduce can be widely used in processing and storage  of 

large-scale data in a distributed computing environment. 

DSW-BPGFP algorithm uses two MapReduce phases to 

parallelize DSW-BPGFP algorithm. Figure 4 shows the three 

steps of DSW-BPGFP. 

 

Fig 4: DSW-BPGFP algorithm framework 

- Step1: FP-Graph construction: after dividing window 

transactions into successive parts to distribute and to store 

these parts on N different nodes (or machines). All nodes 

construct their FP-Graph and sorted local H-Table according 

to algorithm 1 (Subsection 4.1.1). Each mapper processes all 

transactions in the <key, value=Ti> format and sends it to the 

reducer. The reducer constructs FP-Graph and sorted local H-

Table according to frequency descending order. 

- Step2: FP-Graph reconstruction and grouping items with 

balance strategy: after each node has constructed their own 

local sorted H-Table, all H-Table are aggregated to have a 

sorted global H-Table. Global H-Table is used to calculate 

Concept Change rate and to apply Load balancing strategy. 

The main purpose of Load balancing strategy is to divide 

frequent items of sorted global H-Table into Q groups, this 

groups are called Group list (G-list) and each group has a 

unique group-id (gid). Load balancing strategy increases the 

effectiveness of mining frequent itemsets and distributes loads 

between computational nodes evenly[3][14]. Load balancing 

strategy can be divided into two phases. The first phase is the 
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loads computing of each frequent item, which is the amount 

of work of mining on conditional pattern base of each 

frequent item. The load required to mine any frequent item is 

determined by the recursive operations performed during the 

mining process. The support count of each items in sorted 

global H-Table determines the size of conditional pattern 

base. Therefore, the load of item x, can be computed by its 

support count in sorted global H-Table as follows: 

                                  

The second phase is fairly dividing all items based on its loads 

into several groups. Each frequent item from the top to the 

bottom H-Table is added into the group list (G-list) to ensure 

that each group have fairly equal work load. The following 

two steps are repeated until all frequent items in H-Table are 

grouped: 

1. Adding the next non-grouped frequent item in H-Table into 

the group with the minimum load. 

2. Increasing the load of that group by the load of the added 

item. 

This step is done by single node within few seconds, and at 

the end of this step global H-Table, Concept Change rate,  and 

group-id will be sent to other nodes. Each node's FP-Graph is 

reconstructed according to global H-Table and Concept 

Change rate(Subsection 4.1.2). 

- Step3: Parallel FP-Graph mining: this step takes one 

MapReduce phase. After using load balancing strategy to 

distribute frequent items into different groups in a balanced 

way, as shown in step2, each node extracts the part that 

contains the frequent items for all transactions from own FP-

Graph. 

Map phase: In this step, the input for each  mapper is in form 

of <key, value=Ti>. For each transaction's items Xj ϵ Ti the 

mapper substitutes Xj by corresponding gid to produce the 

output <key'=gid, value={T1, T2,......Tm}>, where each gid 

with its corresponding value represent group-dependent 

transaction. 

Reduce phase: After each mapper completes the previous job, 

for each group-dependent transaction, the reducer builds the 

local FP-Graph to find conditional patterns based on min-sup 

according to algorithm 3 (Subsection 4.1.3). 

5. EXPERIMENTS 
This section shows the experimental evaluation of the DSW-

BPGFP algorithm. The DSW-BPGFP algorithm was 

implemented using Java (JDK1.8.0_181) and Hadoop 

framework (Hadoop-2.8.0). The experiment environment was 

done on cluster of 8 machines, one of these machines works 

as master, and seven machines work as slaves. Each machine 

has Intel®Core™i3 2.30GHz processor, 6GB of RAM and 

Ubuntu 16.4 LTS-64Bit operating system. The dataset used 

for testing was downloaded from FIMI'04 repository[22]. 

Table 3 provides the characteristics of the datasets with the 

number of transactions, average transaction length, the 

number of items and type of  each dataset. 

Table 3. Characteristics of datasets  

Dataset Trans 
Avg. 

Length 
Items Type 

Connect 67557 43 129 Dense 

T40I10D100K 100000 40 942 Sparse 

Kosarak 990002 8 41270 Sparse 

The experiments are divided into four groups. The first group 

of experiments checks reacting the proposed algorithm to a 

concept change in data stream and the behavior of DSW under 

different change thresholds. The second group of experiments 

shows memory and time cost. The third group verifies the 

speed up of the proposed algorithm. The last group of  

experiments examines the load balancing of distributed 

algorithm.  

5.1 Behavior of DSW 
In this experiment, T40I10D100K dataset is used to show how 

DSW responses to a concept change detection. T40I10D100K  

is a sparse, synthetic dataset and contains 100K transactions 

with average transaction size 40 as shown in Table 3. The 

researchers tried to create artificial change point using 

T40I10D100K dataset, to build a new dataset by exchange 

50% of frequent items and infrequent items based on 

minimum support threshold min-sup=2%. T40I10D100K was 

divided into two equal parts, and then combined the previous 

dataset by placing it between the two parts to form the final 

dataset with name T40I10D200K-AB. T40I10D200K-AB has  

at least two concepts (after 50Kth and 150Kth), where the 

min-sup=2%. The initial window size, pane size, support 

threshold and minimum change threshold were set to 20K 

transactions, 10K transactions, 2% and 50%, respectively. 

These values were similar to the parameters used in a previous 

study [8], except for the change threshold, because the 

proposed algorithm depends on frequent and infrequent items 

instead of frequent and infrequent itemsets in calculating it. 

 
Fig 4: Behavior of DSW according to concept change rate 

As shown in Figure 4 in 60Kth, 110Kth and 160Kth, the 

concept change is detected by exceeding change threshold. 

The window size (number beside each dot in Figure 4) in 

these points decreases, because of deleting the expired 

transactions. Therefore, at 60Kth, 110Kth and 160Kth the 

window is resized to 40K, 50K and 50K respectively. The 

new window size is the difference between the current point 

and the concept change point. The size of the new window at 

60Kth according to first concept change point 20K is 40K. 

and the concept change point is moved to the point where the 

concept change is detected (i.e. 60Kth transaction). It is clear 

from Figure 4 that the DSW is adaptively resized according to 

concept change in data stream. 

5.2 Memory and Time Cost 
This set of experiments compares the memory and time cost 

of the proposed algorithm under different minimum supports. 

Since no similar algorithms were found based on Hadoop, 

directed graph and using variable size sliding window model 

to find all frequent itemsets in the window, the proposed 

algorithm runs on one machine to compare it with VSW-

SCPS [7], DSTree [16] and CPS-Tree [17] on different 

datasets. The support threshold values in the compared 

algorithms have no influence on the required memory, 

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
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because these algorithms process the window content in full 

(i.e. without depending on support threshold). The next Figure 

shows memory cost of the compared algorithms (in MB) on 

Connect (dense dataset), T40I10D100K (sparse dataset) and 

Kosarak (sparse dataset). 

The size of the window used in the experiment was kept fixed 

at 20K (pane=10K, w=2 for Connect and T40I10D100K 

dataset), 100K (pane=50K, w=2 for Kosarak dataset), and 

these sizes considered as initial size of window in the 

proposed algorithm and VSW-SCPS algorithm. Figure 5 

shows that the proposed algorithm consumes less memory 

than VSW-SCPS, CPS-Tree and DSTree. The main reason is 

that the total number of nodes required for FP-Graph was 

lower than SCPS-tree, CPS-Tree and DSTree. In dense 

datasets like Connect, the compactness of the FP-Graph is 

more important due to the high degree of correlation between 

patterns in these datasets, as also shown in Figure 5. 

Moreover, deleting expired transactions from FP-Graph also 

plays an important role in reducing memory cost.  

 
Fig 5: Memory cost comparison 

 

Moreover, Figure 5  demonstrates that the memory cost of the 

FP-Graph was lower than that in VSW-SCPS, CPS-Tree and 

DSTree for T40I10D100K (sparse dataset) and Kosarak 

(sparse dataset). 

In the next experiments, the proposed algorithm will be 

compared with BPFP-Growth[14] and CanTree-GTree 

algorithm [18] to estimate time cost (i.e. the overall runtime) 

on eight machines. 

 

 
Fig 6: Time cost comparison (Connect Dataset) 

 

Figure 6 and 7 shows the time of these algorithms running on 

Connect and T10I4D100K dataset under min-sup threshold 

varies from 20% to 70%, the initial window size equals 20K 

(pane=10K, w=2) and minimum change threshold equals 

50%. The results presented in Figure 6 and 7 clearly 

demonstrate that DSW-BPGFP outperforms BPFP-Growth 

and CanTree-GTree algorithm in the experiments with 

Connect and T10I4D100K datasets. It can be noticed that, the 

proposed algorithm needs less time to mine frequent itemsets, 

with increasing min-sup threshold. Using dynamic sliding 

window to delete expired transactions, and mining frequent 

itemsets without generating conditional pattern tree plays an 

important role in reducing the overall execution time of the 

DSW-BPGFP algorithm. The researchers did not mention the 

results for Kosarak, because the results were close to those 

obtained for T10I4D100K due to similar dataset 

characteristics. 

    
Fig 7: Time cost comparison (T40I10D100K Dataset) 

5.3 Speedup 
The speedup parameter evaluates the performance of the 

parallel algorithm compared to the corresponding sequential 

algorithm, when keeping the data size constant and increasing 

the number of machines constantly. It can be defined as: 

             
  

  
                          

Where T1 is the sequential execution time on a signal machine 

and Tn is the parallel execution time for the same dataset on 

the n machines. For the speedup calculation of DSW-BPGFP, 

the researchers perform experiments on cluster of nodes 

ranging from 1 to 8 and using Connect, T40I10D100K and 

Kosarak datasets. The results are shown in Figure 8. As can 

be seen from Figure 8 that the speed of DSW-BPGFP 

increases fairly linearly with the growth of the number of 

nodes, and the pace increases gradually with dataset. The  

speed up value of the Kosarak dataset reaches 6.671, when the 

number of machines is 8. This value represents 83,38% 

(6.671/8=0.8338) of the linear (or ideal) speedup. Mostly, 

linear speedup is very difficult to reach due to the cost of 

communication between machines (or nodes) [13]. 

 
Fig 8: Speedup of DSW-BPGFP 

5.4 Load Balancing 
The researchers finally tested the impact of the load balancing 

strategy on the overall runtime of the proposed algorithm. In 

Figure 9, the proposed algorithm with load balancing strategy 

is marked as DSW-BPGFP and the proposed algorithm 

without load balancing strategy is marked as DSW-PGFP(the 

same proposed algorithm with  grouping strategy is adopted 

http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
http://fimi.uantwerpen.be/data/T40I10D100K.dat
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by PFP[13]). The dataset used to perform these experiments is 

Kosarak with different min-sup threshold from 2% to 10%. 

The initial window size, pane size and minimum change 

threshold were set to 200K transactions, 50K transactions and 

50%, respectively. As can be seen clearly from Figure 9, that 

load balancing strategy make the proposed algorithm more 

effective. The load balancing strategy has a large effect on 

constructing the balanced FP-Graph with the same size on 

each node based on item's support count, and reducing the 

overall runtime of the proposed algorithm by more than 15% 

compared to grouping strategy adopted by PFP. 

 
Fig 9: The load balancing strategy impact 

 

6. CONCLUSION 
In this paper, an efficient balanced parallel algorithm for 

mining frequent itemsets over data stream, called DSW-

BPGFP was proposed. For this purpose, a dynamic sliding 

window based on the amount of change in the number of 

frequent items and infrequent items was developed to 

facilitate the handling of the data stream and reduce the 

amount of memory and time required to deal with it. The 

window size changes according to amount of concept change 

in data stream. A novel graph structure, FP-Graph, also was 

created and a number of operations for the graph to maintain 

all window transactions in an efficient way and to improve the 

parallel mining of frequent itemsets. To handle the load 

imbalance problem between nodes, load balancing strategy 

was introduced to distribute loads between Hadoop cluster 

nodes equally. Experimental results showed that the dynamic 

sliding window can deal with data stream in an adaptive way 

by deleting expired transactions when concept change occurs. 

Compared with previous algorithms, the proposed algorithm 

reduces memory and time cost required to mining the frequent 

itemsets from a data stream. The DSW-BPGFP has a good 

speedup with a different number of nodes, and load balancing 

strategy distributes the load between each node, dynamically 

and evenly. 
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