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ABSTRACT

The analysis of high-throughput single-cell genomics data
creates opportunities to uncover the temporal dynamics of cell
populations undergoing some complex biological processes such
as differentiation and cell division, where the development
of bulk-based time course experiments is challenging or
technically impossible. One popular approach is to learn a
lower-dimensional manifold or trajectory called pseudotime
through the data capturing major sources of variation. Most
of the current approaches of trajectory inference only provide
a point estimate of pseudotime, concealing the consequence
of inherent biological and technical noise in single-cell data.
Therefore, the intrinsic uncertainty in pseudotime and trajectory
inference is not propagated to the downstream and its effects
remain unknown. Here three commonly used pseudotime and
trajectory inference methods have been discussed along with
an important downstream analysis of trajectory inference, i.e.
identification of gene-specific branching locations. The alteration
of gene-specific branching locations in downstream is illustrated
for different pseudotime and trajectory inference methods used
in upstream. Finally, A set of recommendations is made that
the downstream results or hypotheses should be confirmed
using several pseudotime and trajectory inference methods.
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1. INTRODUCTION

In recent years, the field of functional genomics has advanced very
rapidly and the analysis of single-cell data is now playing a very
important role. The assaying of the single-cell transcriptome has
gained widespread popularity over the last few years. The first
single-cell RNA-sequencing (RNA-seq) study was introduced ten
years back by [1], where a single 4-cell mouse blastomere was
isolated manually. The RNA sequencing procedure was carried
out for each cell individually. The motivation of the study was
to produce embryonic samples capturing the richness of gene
expression profiles compared to microarray techniques. Since
this first study, there has been continuously growing interests in

assaying single-cells at higher resolution and on a larger scale.
Nowadays it is possible to assay tens of thousands of cells by
using droplet based techniques such as Drop-seq [2]] as well as the
massively parallel 10x platform [3].

This mass production of single-cell data has opened the doors to
examining complex biological systems more closely, ranging from
the microbial ecosystem to the genomics of human cancer [4]. In
single-cell technology, the transcriptome of each cell is measured
individually, in contrast to the bulk RNA-seq technology where the
measurement is performed by averaging gene expression across a
cell population. Averaging transcriptomes across a cell population
fails to capture transcriptomic variation across individual cells.
Recent studies have shown that many questions of biology can
be answered in a more refined way at the single-cell level see
e.g. [4,15]. For instance, during differentiation, each cell defines its
fate based on the signal received from other cells and other stimuli.
Moreover, the developmental rate is not the same in each cell
across a cell population, hence similar changes in transcriptomes
can be observed at varying time scales for different cells. Therefore,
averaging the expression profiles across a population of cells in a
bulk analysis fails to mimic the true picture of the developmental
and differential processes at the cellular level.

Examining the differences in gene expression at the single-cell
level can facilitate the identification of novel cell types which
is not possible by analysing bulk gene expression. Single-cell
data have been used to identify multiple distinct as well as
rare cell types [6, [7]. Single-cell sequencing has been used
extensively to study differentiating cells, tracking changes in gene
expression as cells progress. Early examples include identifying
switch-like changes in gene expression profiles by reconstructing
the trajectory of differentiating primary human myoblasts [8],
as well as the identification of bi-potent progenitor cells by
analysing the lineage structure of differentiating alveolar cells
from mouse [9]. Single-cell sequencing has been used to study
differentiating hematopoietic stem cells (HSCs) [10, 11, [12],
differentiating CD4" T cells [13} [14] and more recently [13]
provide a global view of mammalian organ development by using
single-cell data from mice.

While studying single-cell data promises to facilitate the
investigation of novel and unknown states of complex biological
processes such as cell development and differentiation, it is
challenging due to inherent biological and technical noise. Most
of the cases, it is found useful to reduce the higher-dimensional
single-cell genomics data into a lower-dimensional latent space
that can capture major sources of variation in the data. Principal



and Independent Component Analysis (P/ICA) are the prevailing
techniques of dimension reduction and has been used extensively
in single-cell data analysis [8, [16, [17]. Multi-dimensional scaling
(MDS) is another popular method of dimension reduction that tries
to project the data into a lower dimension so that the distance
between the original sample data is preserved as much as possible.
One specific single-cell application of MDS can be found in [18]
where the primary MDS axis represented the temporal order of
cell progression and the secondary axis of MDS corresponded to
the early responses of the cells. Gaussian Process Latent Variable
Model (GPLVM) [19] is a non-linear probabilistic dimension
reduction method and has been used to project single-cell data into
lower dimensional space capturing non-linearity as well as inherent
biological and technical noise [20, 21}, 22} 23]. In some cases,
the high dimensional data is reduced to a single dimension called
pseudotime which represents the trajectory of cells going through
some dynamic processes such as differentiation, cell division, etc.
Based on the underlying biological process, the trajectory can be
linear, branching, or even cyclic.

1.1 Pseudotime and trajectory inference

The developmental process starts from a single cell even in
the most complex organisms. In biological systems, more potent
cells are continuously developed and differentiated into more
functionally restricted terminal cells. For example, stem cells
are differentiated into neurons or skin cells [24]] and a single
hematopoietic stem cell (HSC) can reproduce the entire blood
system [25| |26]. During development and differentiation, cells
receive signals from other cells and stimuli and do not progress at
the same rate defining a continuous relationship between maturing
cell subsets. But this temporal information is lost during the cell
capturing process. Therefore, to understand the individual cells’
dynamic molecular mechanisms or to investigate the changes in
gene expression levels over time it is needed to restore the ordering
of cells across cell progression. One useful approach is to assign
each cell a pseudotime which is a numeric value in arbitrary
units [8]. Pseudotime points do not represent the actual cell capture
times rather describes individual cells’ progress through some
dynamic processes such as development and differentiation. Gene
expression dynamics then can be analysed based on the information
where each cell resides in some pseudotemporal ordering which
promises not only to help understand normal cell activities but also
to identify and treat potential perturbation of cell developmental
which may be the reason of various physical disorders [22].

In literature, a pseudotime trajectory has been represented using
different formalisms. There are graph-based approaches such
as Monocle [8], Wanderlust [27] and TSCAN [17]] as well as
curve-fitting approaches such as Embeddr [28] and Slingshot [29].
Depending on the underlying biological process the pseudotime
trajectory can be linear, branching, or even cyclic. While the
early methods of pseudotime estimation were limited to inferring
linear trajectory only, recently developed methods such as Monocle
2 301, Slingshot [31]] and Wishbone [32] offer more flexibility and
are able to identify trajectories with multiple bifurcations, where
smooth or cyclic functions can be used to represent individual
lineages. However, expression profiles are inherently noisy at the
single-cell level. Therefore, the assignment of pseudotime points
to individual cells possesses a significant amount of uncertainty
which can be examined by re-estimating the pseudotime trajectory
multiple times using different parameter settings and samples of the
original expression data. For example, Campbell and Yau [22] have
applied the Monocle algorithm on random subsets of the data. They
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have shown that the pseudotime assigned by the Monocle algorithm
for the same cell differs significantly across different subsets of the
data used.

Since most of the pseudotime and trajectory inference methods
developed to date only provide a single point estimate of
pseudotime ignoring the associated uncertainty, therefore this
uncertainty is not propagated and its effects in the downstream
are not well known. The downstream of trajectory inference is
to identify genes that are differentially expressed across different
lineages in the trajectory. It is also important to identify the
gene-specific branching or bifurcation points. Branching points
are the locations in pseudotime where the expression profiles of
individual genes start to diverge for the first time. Genes can be
ranked based on the branching points information which promises
to help to identify early and late branching genes and to understand
each gene’s role during cellular progression. Here, the downstream
effects of pseudotime and trajectory inference uncertainty in
identifying gene-specific branching points have been investigated.
Three well known and popular trajectory inference algorithms
Wishbone, Monocle 2, and Slingshot are compared, which finds
substantial differences in gene order based on branching points for
different upstream methods.

2. METHODS

Gene expression data are intrinsically noisy at the single-cell
level which leads to the uncertainty in pseudotime and trajectory
inference. Therefore, different pseudotime and trajectory inference
methods can provide different results in downstream analysis.
To investigate this, three widely used methods of trajectory
inference Wishbone, Monocle 2, and Slingshot are compared.
These methods have been applied on a publicly available single-cell
RNA-seq dataset from mouse [10] to generate pseudotime and
lineage-specific assignments of individual cells. The information
gained by using three trajectory inference methods has been used
in downstream to identify gene-specific branching locations.

2.1 Pseudotime and trajectory inference methods

Wishbone is a graph-based algorithm and can identify cellular
bifurcation. It assumes that the trajectory has only one cellular
branching point. Wishbone uses cell progression information to
estimate a pseudotime for each cell as well as to identify the cellular
branching point. At first, a K Nearest Neighbours (KNN) graph of
cells is constructed and a shortest path algorithm is used to find
an initial cell ordering. The cell ordering is iteratively re-estimated
using a set of randomly selected points through the pseudotime
trajectory termed waypoints. The inconsistencies among the
waypoints indicate the presence of a cellular bifurcation or
branching points. Finally, Wishbone uses t-Distributed Stochastic
Neighbour Embedding (tSNE) to project the inferred trajectory in
a lower-dimensional space where each cell is assigned to either
pre-branching state or post-branching state based on their position
in pseudotime trajectory.

Monocle 2 is an unsupervised algorithm and does not need to
know beforehand the marker genes or the number of lineages or
branches describing the biological process. It uses reversed graph
embedding (RGE) and identifies a global topology with multiple
lineages by learning a principal graph [33]. At first, genes that
are differentially expressed among cell clusters are selected where
the cell clusters are generated using the density peak clustering
algorithm. After the genes are selected, the algorithm finds a
lower-dimensional representation using the DDRTree algorithm.



Monocle 2 then selects a set of centroids of the data and constructs
a spanning tree by joining them. The algorithm iteratively refines
the tree by adjusting each node’s position as well as reconstructing
the spanning trees. Finally, when the tree is learned, the user needs
to select a root. Each cell is assigned a pseudotime value based on
its distance from the root and a branch label or state based on its
position on the principal graph.

Slingshot is a Euclidean distance-based curve-fitting approach of
trajectory estimation. It does not need the number of branches
or lineages to be pre-specified although it allows optional
incorporation of prior information about the terminal states of
lineages. Incorporating terminal cell clusters information does not
restrict the number of lineages rather it imposes a local constraint
on the minimum spanning tree algorithm and helps the algorithm
to identify a more biologically meaningful global structure. The
algorithm works in two steps. At first, a global lineage topology
is constructed. Cells are grouped into clusters and a minimum
spanning tree is constructed connecting these clusters. Cell clusters
are then ordered based on a pre-defined root cluster. Thus, a global
lineage structure of clusters is generated where each lineage has a
unique terminal cluster but shares a common initial cluster. Finally,
Slingshot uses simultaneous principal curves to smooth all lineages
and refines each cell’s assignment to individual lineages. Each
cell is assigned a lineage-specific pseudotime value as well as
lineage-specific weights representing cells belonging to different
branches or lineages.

2.2 Identification of gene-specific branching location

To identify gene-specific branching locations the DEtime
model [34] is used. DEtime is a Gaussian Process (GP) [35]] based
approach developed to identify the first point where two time
course profiles start to diverge from one another. The idea is to
design a joint covariance or kernel function k for two latent GP
funcitons g(t) ~ GP(0,k) and h(t) ~ GP(0, k) constrained to
intersect at the branching point ¢;.

Let 4*(T) and y°(T) are the noisy measurements of data from two
lineages representing the trunk (baseline) and the diverging branch
respectively. Before the branching time #;, both y*(T) and y®(T)
are considered as the noisy versions of the same underlying mean
function g(t),

Y(tn) = g(tn) + e (1
Y(tn) = g(tn) +€ fort, <t )

where € ~ N (0,02,,..) is the i.i.d. Gaussian noise with variance
02 ;.- After the branching point ¢,, the mean function of the trunk
y* remains the same and follows g(¢) while the mean function of

the diverging branch 4® changes to follow h(t),

y'(ta) = g(ta) +e, 3)
yP(t,) = h(t,) +e fort, >t,. )

The branching time ¢, becomes a hyperparameter of the joint
covariance function of this model along with the hyperparameters
of the GP functions, i.e. lengthscale [ and process variance o2 (see
[35] for details about kernel hyperparameters of GP functions). The
lengthscale and process variance hyperparameters can be estimated
prior to inferring the branching time. These hyperparameters are
shared across the data from both lineages and can be estimated
reasonably by fitting two separate GP regression models to the data
from both lineages. To do so, the likelihood has been maximised
for the case where branching time ¢, approaches to —oo, which
corresponds to two independent GP regression models for the data
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from both lineages [34],

0= argmax ( lim pe(yt(T)7yb(T)|tb,9)) , ®))

tp——00

where 6 = {l,0%}. This reduces the problem to estimate a single
parameter branching time ¢, only, which can be done easily by
using a simple histogram approach [34]. As in [34], a simple
discretisation t, € [tmin, tmin + 9, tmin + 20, . . . , tmax| is used and
the posterior distribution over the branching location is estimated
using the normalised likelihood evaluated at each grid point,

p(y"(T), y*(T)|ts)
e p(yt(T), v (T)|t)

t=tmin

p(tely* (T),y"(T)) =

- (6

As the posterior distribution of the branching time ¢, is represented
using a simple histogram approach, the point estimate of the
branching time can easily be calculated by using mean, median,
or mode (MAP) [34].

3. RESULTS

Three trajectory inference algorithms Wishbone, Monocle 2, and
Slingshot have been applied on the single-cell RNA-seq of
haematopoietic stem cells (HSCs) from mouse [10] to infer
pseudotemporal ordering of cells as well as cell assignment to
individual branches or lineages. This dataset contains cells that
have been differentiated into two precursor cell types namely
myeloid and erythroid. Paul et al. [10] have tracked gene
expression changes for myeloid progenitors and produced a
reference compendium of marker genes related to the progression
of myeloid progenitors into erythrocytes and some other types
of leukocytes. As this dataset has two major lineages, the cells
that do not belong to either of the major branches have not
been considered in our analysis. Therefore, outcomes of applying
trajectory inference algorithms on the data are the pseudotemporal
ordering of cells as well as the assignment of cells to either of the
lineages.

To investigate the trajectory inference uncertainty, top 30
differentially expressed genes that show the highest level of
branching evidence, have been selected [36]. The expression
profiles of each gene along with the inferred pseudotime and
lineage-specific cell assignment (using Wishbone, Monocle 2,
and Slingshot) have been fed to the DEtime model to identify
gene-specific branching locations for these 30 genes. Mode (MAP),
median, and mean of the posterior distribution of branching point
are used to calculate a point estimate of the branching time
t,. Finally, genes are ranked based on the point estimate of
the branching time for all cases. Fig. [T} shows the comparison
of gene rankings for each pair of trajectory inference methods,
where different branching point based gene rankings for different
trajectory inference methods used in upstream are very evident. For
instance, consider the bio-marker C'ar1, it has been identified as an
early branching gene (rank 1) by Slingshot where both Wishbone
and Monocle 2 have identified C'ar1 as a late branching gene (rank
21). Similar comparisons can be made for other genes. Overall, a
better similarity of gene rankings between Wishbone and Monocle
2 (Fig.[I] (a)) is found than between one of them with Slingshot
(Fig.[T](b) and (c)). The reason may be the case that both Wishbone
and Monocle 2 are graph-based algorithms whereas Slingshot is a
curve-fitting based approach. It is very evident from Fig. [I|that the
intrinsic stochasticity of single-cell RNA-seq data and uncertainty
in the pseudotemporal ordering of cells through different lineages
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Fig. 1. Impacts of pseudotime and trajectory inference uncertainty in the downstream analysis of the single-cell RNA-seq of haematopoietic stem cells
(HSCs) from mouse [10]. Three popular and commonly used pseudotime and trajectory inference methods Wishbone, Monocle 2, and Slingshot have been
used to generate pseudotime as well as lineage-specific cell assignments to be used in downstream for identifying gene-specific branching locations for top 30
differentially expressed genes selected based on their branching evidence. Genes are ranked according to their branching points for all three trajectory inference
methods. The gene rankings, i.e. gene-specific branching locations are altered in downstream for different pseudotime and trajectory inference methods used
in upstream. The inconsistency in gene rankings for each pair of trajectory inference methods illustrates the effects of pseudotime uncertainty in downstream
analysis. (a) Wishbone vs. Monocle 2, (b) Monocle 2 vs. Slingshot, (c) Wishbone vs. Slingshot.

have altered the ranking of differentially expressed genes, hence
affected the downstream analysis.

4. CONCLUSION

Gene expression profiles can be extremely noisy at the single-cell
level imposing a number of challenges on the pseudotime and
trajectory inference algorithms. Both biological and technical
variability introduces a significant amount of uncertainty, therefore
point estimate based trajectory inference algorithms may fail to
mimic the true picture of the underlying biological process in
downstream analysis. Here an investigation has been carried out
on how the choice of a particular trajectory inference method may
affect the downstream analysis. One of the important downstream
analyses of trajectory inference is to identify genes that are
differentially expressed across different lineages or branches of
the global topology. It is also necessary to infer the gene-specific
branching locations where the expression profiles of genes start to
diverge for the first time. Further genes can be ranked based on the
gene-specific branching location indicative of the role of individual
genes during development and differentiation processes.

The impacts of three widely used pseudotime and trajectory
inference algorithms Wishbone, Monocle 2, and Slingshot in
downstream analysis are investigated. These methods are applied
on the single-cell RNA-seq of haematopoietic stem cells (HSCs)
from mouse to generate lineage-specific cell assignment as well as
pseudotemporal ordering of cells to be examined in downstream.
Gene-specific branching locations have been identified for top 30
differentially expressed genes that show the highest level branching
evidence. These genes have been ranked based on their branching
points for all three methods. Different gene-rankings are found for
different trajectory inference methods used in upstream indicative
of the effects of pseudotime and trajectory inference uncertainty in
downstream analysis.

Single-cell data are continuously growing and are becoming
available in larger volumes, opening new opportunities to
examine the complex dynamics of biological processes where the
production of time-course experiments is technically impossible or
at least challenging. While a flurry of methods has been developed
to model dynamic processes, the effects of trajectory inference
uncertainty in the downstream analysis are not well studied. The
performance of a pseudotime and trajectory inference method
heavily depends on the type of trajectory under consideration
and the choice of a particular method is primarily motivated
by the anticipated trajectory structure in the data. But in most
of the cases, the users know very little about the underlying
trajectory structure that properly describes the data. Therefore,
it is suggested that inferred trajectory, as well as downstream
results for the data, should be confirmed by multiple pseudotime
and trajectory inference methods. An interesting future extension
of the current work is to apply other pseudotime and trajectory
inference algorithms on a number of datasets having a different
topological structure such as disconnected trajectories, cycles, etc.,
hence developing a comprehensive framework that will facilitate
the researchers to examine and confirm their hypotheses about
the underlying biological processes using several pseudotime and
trajectory inference algorithms.
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