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ABSTRACT
We propose a novel medical image fusion framework, based on
adaptive selectivity reconstruction and pulse coupled-neural net-
work. The proposed method takes advantage of the multiscale anal-
ysis and multiselectivity analysis, which enables it to capture the
different structures information of different modality medical im-
ages. A subjective assessment comparing our method and other
medical image fusion methodes is performed. Experiments showed
that our method is more robust than the others, in both visual effect
and objective evaluation criteria.
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1. INTRODUCTION
Over the past few decades, the development of medical technology,
computer technology, and biomedical engineering has given a vari-
ety of medical images for clinical diagnosis. These medical images
with different modalities focus on different categories of organ / tis-
sue information. For example, computed tomography (CT) imaging
scan accurately detects dense structures such as bones. While mag-
netic resonance imaging (MR) provides high-resolution anatomi-
cal information for soft tissues, it is less sensitive for diagnosing
dense structures than computed tomography. In addition to these
anatomical imaging techniques, PET, SPECT, and functional mag-
netic resonance imaging (fMRI) provide functional information,
such as an organism’s metabolism, but often the spatial resolution
of these functional images is very low [1, 2].
Reliance on a single medical image does not provide a compre-
hensive and accurate clinical diagnosis. Therefore, various medi-
cal images are combined to provide much more useful information
through the image fusion of medical images, which aims to create a
composite image to combine various information of different med-
ical images. Many approaches have been designed for addressing
this task in recent years, these approaches can be classified in two
different ways: medical image fusion in spatial domain [3, 4, 5] and
medical image fusion in the multi-scale transform (MST) Domain
[6, 7].
In general, medical image fusion schemes based on multi-scale
transforms comprise three steps. First, the source images are con-

verted into an MST domain. Then, the multi-scale representations
of the source images are fused a using pulse couple neuron network
(PCNN). Finally, the fused image is acquired from the merged co-
efficients by performing the inverse transform.
MST approaches hat are commonly used in image fusion, in-
clude discrete wavelet transform [8], Laplacian pyramid (LP) [9],
contourlet transform [10], nonsubsampled contourlet transform
(NSCT) and nonsubsampled shearlet transform (NSST) [11, 12].
NSCT and NSST inherit the perfect properties of contourlet and
LP, such as the characteristics of timefrequency localization, mul-
tidirection, and anisotropy, and meanwhile possesses the shift-
invariance which contourlet transform lacks of, leading to better
frequency selectivity and regularity than contourlet transform and
get rid of pseudo-Gibbs phenomena along the edges to some extent
[1, 13].
Medical image are not simple images characterized by their types
of edges and contours oriented ones, like straight edges, to more
isotropic objects, like corners and spots. Between these two ex-
treme behaviors, we find, for instance, curves and texture points.
Each of these objects is well represented by wavelets with differ-
ent angular selectivity. However, since in LP, NSCT and NSST the
wavelets share the same angular selectivity, isotropic, directional
and less-oriented features are processed under the same framework
with the same angular selectivity. In order to overcome this limita-
tion of representation of geometric structure in thise medical image
fusion methods, we have developed a new shift-invariant adaptive
selectivity representation which can represent the different struc-
tures of the medical image.
The paper is organized as follows. In section 2, we recall the frame
formalism of the 2-D continuous wavelet transform. In section 3,
we propose a shift-invariant multiscale frame. In section 4 we pro-
pose a new representation of image and we will how this represen-
tation can provide a new degree of freedom to describe adaptively
the different structures of the image geometry. We recall The pulse-
coupled neural network in section 5. Our algorithm for medical im-
age fusion is described in the section 6. We report the results of our
experiments in section 7 and conclude the paper in section 8.

2. 2-D CONTINUOUS WAVELET TRANSFORM
In order to fix the notations, we first recall the basic formulas. Let
f ∈ L2(R2) be an image of finite energy. Given an admissible
wavelet ψ ∈ L1(R2) ∩ L2(R2), the continuous wavelet transform
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of f is the function[14, 15]

w~b,s,θ = 〈ψ~b,s,θ|f〉 (1)

= s−2
∫
R2

ψ∗
(
r−1θ

~x−~b
s

)
f(~x) d2~x (2)

=
1

(2π)2

∫
R2

ψ̂∗(sr−1θ
~k) f̂(~k) ei

~k·~b d2~k. (3)

where ψ~b,s,θ is copy of ψ, translated by~b ∈ R2, dilated by s ∈ R∗+
and rotated by θ ∈ S1 ' [0, 2π).

r−1θ

(
cosθ sinθ
−sinθ cosθ

)
(4)

and the hat denotes the standard Fourier transform on L2(R2).
When the aim is to detect oriented features in an image (for in-
stance, in the classical problem of edge detection or in directional
filtering), one has to use a directional wavelets. That is, a wavelet
ψ ∈ L2(R2) whose Fourier transform ψ̂ ∈ L2(R2) has its nu-
merical support contained in a convex cone with apex at the origin
in Fourier space. A directional wavelet is characterized by its an-
gular selectivity (or Angular Resolving Power), that is, its ability
to distinguish features with close orientations. This quantity is by
definition inversely proportional to the aperture of the support cone
[14, 15, 16, 17].
The half-continuous frame theory addresses the issue of recon-
structing an signal f from sample coefficients of a particular trans-
form. For 2-D continuous wavelet transform, the discretization of
parameters s and θ while preserving a perfect reconstruction for-
mula. Let Γ = {(~b, sj , θn) : ~b ∈ R; j ∈ Z;n = 0, 1, ...,N − 1} be
a half-continuous grid, where sj = 2j and θn = n 2π

N
. If

∑
j∈Z

N−1∑
n=0

|ψ̂(sjr
−1
θn
~k)|2 = 1, ∀~k ∈ R2 − {~0}, (5)

then the family {ψ~b,sj ,θn : (~b, sj , θn) ∈ Γ} is a tight half-
continuous frame of L2(R2), and the following reconstruction for-
mula holds strongly in L2(R2),[14, 18]

f(~x) =
∑
j∈Z

N−1∑
n=0

∫
R2

〈ψ~b,sj ,θn |f〉ψ~b,sj ,θn(~x) d2~b (6)

3. SHIFT-INVARIANT MULTISCALE FRAME
Let h be a pair of finite impulse response filter in 1-D. Suppose
that h is a low-pass filter whose transfer function satisfies ĥ(0) =√

2. In 2-D, we construct a pair of filters (H,G) whose transfer
functions are

Ĥ(~k) = ĥ(k1)ĥ(k2) (7)

and

Ĝ(~k) = ei
~k

√
| Ĥ(~0) |2 − | Ĥ(~k) |2, (8)

where ~k = (kx, ky). As ĥ is a 1-D low-pass finite impulse response
filter, the equations (7) and (8) imply the filter H is 2D low-pass
finite impulse response filter, and the filter G is 2D bas-pass finite
impulse response filter. We consider the infinite products

+∞∏
p=1

Ĥ(2−p~k)

2
=

+∞∏
p=1

ĥ(2−pkx)√
2

+∞∏
p=1

ĥ(2−pky)√
2

(9)

As h a low-pass filter, the condition ĥ(0) =
√

2 implies

|ĥ(kx)| ≤ |ĥ(0)| =
√

2 ≤
√

2e|kx | (10)

hence

+∞∏
p=1

ĥ(2−pkx)√
2

≤
+∞∏
p=1

e2
−p |kx | ≤ e

∑+∞
p=1(2

−p |kx |) ≤ e|kx| (11)

Therefore the infinite product
+∞∏
p=1

Ĥ(2−p~k)

2
converge pointwise. In

2-D, we construct two functions φ and φ whose Fourier transforms
are

φ̂(~k) =

+∞∏
p=1

Ĥ(2−p~k)

2
=

1

2
Ĥ(

~k

2
)φ̂(

~k

2
) (12)

and

ψ̂(~k) =
1

2
Ĝ(
~k

2
)φ̂(

~k

2
), (13)

As H and G are finite impulse response filters, the equations (12)
and (13) imply that φ̂ and ψ̂ are finite energy functions [19] so that
(φ,ψ) ∈ L2(R2)× L2(R2).
Since the filter H is 2D low-pass finite impulse response filter and
the filter G is 2D bas-pass finite impulse response filter, the the
function φ is a scaling function which captures low frequencies,
against ψ is a wavelet which captures high frequencies.
Let ψ~b,j be the wavelets ψ translated by~b ∈ R2, dilated by 2j

ψ~b,j(~x) =
1

22j
ψ(
~x−~b

2j
) (14)

We also use the notion

ψj(~x) =
1

22j
ψ(

~x

2j
). (15)

Thus the Fourier transform of ψ~b,j is defined by

ψ̂~b,j(
~k) = ψ̂(2j~k)ei

~k~b (16)

The continuous wavelet transform of the function f ∈ L2(R2) with
wavelets ψ~b,j is

w~b,j = 〈ψ~b,j |f〉 (17)

=

∫
R2

ψ∗~b,j(~x)f(~x) d2~x (18)

=

∫
R2

ψ∗j(~x−~b) f(~x) d2~x (19)

= ψj ? f(~b) (20)

Therefore, the continuous wavelet transform can be rewritten as a
convolution product ψj ? f(~b), then the convolution theorem of
Fourier transform imply that

ŵ.,j(~k) = ψ̂j(~k)f̂(~k) = ψ̂(2j~k)f̂(~k) (21)
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Moreover the continuous wavelet transform is translation-invariant,
Indeed, if f~u(~x) = f(~x− ~u), then

w~b,j(f~u) = 〈ψ~b,j |f~u〉 (22)

=

∫
R2

ψ∗~b,j(~x)f(~x− ~u) d2~x (23)

=

∫
R2

ψ∗j(~x−~b+ ~u) f(~x) d2~x (24)

= 〈ψ~b−~u,j |f~u〉 (25)

= w~b−~u,j(f) (26)

But a uniform sampling~bn of the position parameter~b destroys this
invariance, because the continuous wavelet transforms w~bn,j(f~u)

and w~bn−~u,j(f) can give different input values if ~u 6= ~bn.
The following theorem gives a sufficient condition to guarantee that
the family {φJ,~b, ψj,~b : j ∈]−∞, J ], ~b ∈ R2} is a shift-invariant
frame of L2(R2).

THEOREM 1. For any J ∈ Z the family {φJ,~b, ψj,~b : j ∈
] −∞, J ], ~b ∈ R2} is a tight half-continuous frame for L2(R2).
Therefore, any function f ∈ L2(R2) is represented as:

f(~x) = [ζ.,J ? φJ ](~x) +

J∑
j=−∞

[ω.,j ? ψj ](~x), (27)

with

w~b,j = 〈ψ~b,j |f〉, ζ~b,j = 〈φ~b,j |f〉,

ψ~b,j(~x) =
1

22j
ψ(
~x−~b

2j
) and φ~b,j(~x) =

1

22j
φ(
~x−~b

2j
).

PROOF. To prove that the family {φJ,~b, ψj,~b : j ∈] −
∞, J ], ~b ∈ R2} is a tight half-continuous frame for L2(R2), it
suffices to evaluate the equality:

|φ̂(2J~k)|2 +

J∑
i=−∞

|ψ̂(2j~k)|2 = 1 ∀~k ∈ R2 − {~0}. (28)

Let us prove first that

Ĝ(~k)Ĝ∗(~k) = 4− Ĥ(~k)Ĥ∗(~k). (29)

As |ĥ(0)| =
√

2, equation (7) implies

Ĥ(~k)Ĥ∗(~k) = ĥ(0)ĥ(0)ĥ∗(0)ĥ∗(0) =| ĥ(0) |2| ĥ(0) |2= 4.

Hence

Ĝ(~k)Ĝ∗(~k) = | Ĝ(~k) |2

= | ei~k
√
| Ĥ(~0) |2 − | Ĥ(~k) |2 |2

= | Ĥ(~0) |2 − | Ĥ(~k) |2

= 4− | Ĥ(~k) |2

= 4− Ĥ(~k)Ĥ∗(~k).

We shall now prove that

φ̂(2J~k)φ̂∗(2J~k) +
J∑

i=−∞

ψ̂(2j~k)ψ̂∗(2j~k) = 1,∀~k ∈ R2 − {~0}

(30)

The Fourier transform expressions (13), (12) and quality (29) prove
that:

ψ̂(~k)ψ̂∗(~k) =
1

4
Ĝ(
~k

2
)Ĝ∗(

~k

2
)φ̂(

~k

2
)φ̂∗(

~k

2
)

=
1

4

(
4− Ĥ(~k)Ĥ∗(~k)

)
φ̂(
~k

2
)φ̂∗(

~k

2
),

= φ̂(
~k

2
)φ̂∗(

~k

2
)− 1

4
Ĝ(~k)Ĝ∗(~k)φ̂(

~k

2
)φ̂∗(

~k

2
)

= φ̂(
~k

2
)φ̂∗(

~k

2
)− φ̂(~k)φ̂∗(~k).

Hence for p > 0, J > 0,

J∑
j=−p

ψ̂((2j~k)ψ̂∗((2j~k) = φ̂((2−p−1~k)φ̂∗((2−p−1~k)−φ̂((2J~k)φ̂∗((2J~k)

As ĥ(0) =
√

2, equation (12) implies φ̂(~0) = φ̂∗(~0) = 1. Letting
p→ +∞ yields

φ̂(2J~k)φ̂∗(2J~k)+

J∑
i=−∞

ψ̂(2j~k)ψ̂∗(2j~k) = 1 ∀~k ∈ R2−{~0}.

Thus the equality (30) is verified.

4. ADAPTIVE SELECTIVITY RECONSTRUCTION
In this section we propose a new Shift-invariant representation
which provide a new degree of freedom to describe adaptively the
different structures of the image geometry.
We consider 2π-periodic function Dα defined by

Dα(θ) =



1, θ ∈ [π
2

+ α, 3π
2
− α];

0, θ ∈ [0, π
2
− α] ∪ [ 3π

2
+ α, 2π];

β(
−π/2 + θ

α
), θ ∈ [π

2
− α, π

2
+ α];

β(
3π/2− θ

α
), θ ∈ [ 3π

2
− α, 3π

2
+ α].

(31)
where the function β is defined in [−1, 1] by

β(t) = sin
(π

4
(t+ 1)

)
, (32)

the function β satisfies

β2(t) + β2(−t) = 1. (33)

For L ∈ N∗ and α =
π

2L
, we create 2l different functions ηl,n

indexed by n ∈ {0, ..., 2l − 1} for any l ∈ {0, ..., L} defined by:

η0,0(θ) = 1, (34)

for n = 0, ..., 2l − 1

ηl+1,2n(θ) = ηl,n(θ)Dα(θ − (2n+ 1)π

2l
) (35)

and

ηl+1,2n+1(θ) = ηl,n(θ)Dα(θ − (2n+ 1)π

2l
− π) (36)
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PROPOSITION 1. For any l ∈ {1, ..., L} the parameter n de-

scribes a translation of θl,n = n
2π

2l
:

ηl,n(θ) = ηl,0(θ − θl,n) n = 0, 1, ..., 2l − 1 (37)

and the functions ηl,n have a support of the same size and equal to
2π

2l
+ 2α.

PROOF. One have for any l ∈ {1, ..., L}

ηl,1(θ) = Dα(θ − π

2l−1
− π)

l−2∏
p=0

Dα(θ − π

2p
),

ηl,0(θ) = Dα(θ − π

2l−1
)

l−2∏
p=0

Dα(θ − π

2p
),

By (31), these two functions ηl,1 and ηl,0 are related by the trans-
lation relation:

ηl,1(θ) = ηl,0(θ − 2π

2l
), (38)

and the size of their supports equals to
2π

2l
+ 2α.

Suppose that for a fixed l we have:

ηl,n(θ) = ηl,0(θ − θl,n), n = 0, 1, ..., 2l − 1. (39)

The properties (35) and (39) imply that

ηl+1,2n(θ) = ηl,n(θ)Dα(θ − (2n+ 1)π

2l
)

= ηl,0(θ − θl,n)Dα(θ − θl,n −
π

2l
)

= ηl+1,0(θ − θl+1,2n).

and the properties (36),(38) and (39) imply that

ηl+1,2n+1(θ) = ηl,n(θ)Dα(θ − (2n+ 1)π

2l
− π)

= ηl,0(θ − θl,n)Dα(θ − θl,n −
π

2l
− π)

= ηl+1,1(θ − θl+1,2n)

= ηl+1,0(θ − θl+1,2n+1).

thus the property (37) is verified for l+ 1

The combining of waveletψ and function ηl,n , give a new wavelets
whose Fourier transforms are

ψ̂l,n(~k) = ψ̂(~k) ηl,n(θ), (40)

Let ψ~b,j,l,n be wavelets ψl,n translated by~b ∈ R2, dilated by 2j

ψ~b,j,l,n(~x) =
1

22j
ψl,n(

~x−~b
2j

) (41)

Thus the Fourier transform of ψ~b,j,l,n is is defined by

ψ̂~b,j,l,n(~k) = ψ̂l,n(2j~k)ei
~k~b (42)

= ψ̂(2j~k)ηl,n(θ) (43)

= ψ̂(2j~k)ηl,0(θ − θl,n) (44)

The parameter l determines a selectivity level. Indeed, the aperture

of the cone in frequency space supporting ψ̂l,n is equal to
2π

2l
+2α,

so the angular selectivity of these directional wavelets is propor-
tional to 2l.
The continuous wavelet transform of the function f ∈ L2(R2) with
wavelets ψ~b,j,l,n is the function

w~b,j,l,n = 〈ψ~b,j,l,n|f〉 (45)

=

∫
R2

ψ∗~b,j,l,n(~x)f(~x) d2~x (46)

=

∫
R2

ψ∗j,l,n(~x−~b) f(~x) d2~x (47)

(48)

Therefore, the continuous wavelet transform can be rewritten as a
convolution product ψj,l,n ? f(~b), then the convolution theorem of
Fourier transform imply that

ŵ.,j,l,n(~k) = ψ̂j,l,n(~k)f̂(~k) (49)

The following proposition shows the possibility of using an adap-
tive selectivity decomposition:

THEOREM 2. For any function

l̃ :
R2 × Z → {0, 1, ..., L}
(~x, j) 7→ l̃(~x, j),

(50)

we obtain the following decomposition for any image f ∈ L2(R2)

f(~x) = [ζ.,J ? φJ ](~x) +

J∑
j=−∞

2l̃−1∑
n=0

[w.,j,l̃,n ? ψj,l̃,n](~x), (51)

with

ζ~b,J = 〈f |φ~b,J 〉 and w~b,j,l̃,n = 〈f |ψ~b,j,l̃,n〉. (52)

PROOF. We have

w~b,j,l̃,n = 〈f |ψ~b,j,l̃,n〉

=

∫
R2

ψ∗~b,j,l̃,n(~x)f(~x) d2~x

=

∫
R2

ψ∗
j,l̃,n

(~x−~b)f(~x) d2~x

= ψ∗
j,l̃,n

? f(~b)

and

ζ~b,j = 〈f |φ~b,J 〉

=

∫
R2

φ∗~b,J(~x)f(~x) d2~x

=

∫
R2

φ∗J(~x−~b)f(~x) d2~x

= φ∗J ? f(~b)

then the convolution theorem of fourier transform imply that

ŵ.,j,l̃,n(~k) = ψ̂∗
j,l̃,n

(~k)f̂(~k) = ψ̂∗
l̃,n

(2j~k)f̂(~k) (53)

and

ζ̂.,J(~k) = φ̂∗J(~k)f̂(~k) = φ̂∗(2j~k)f̂(~k) (54)
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Let FJ and Kj,l̃,n two function of L2(R2) defends by

FJ(~x) = [ζ.,J ? φJ ](~x) (55)

and

Kj,l̃,n(~x) = [w.,j,l̃,n ? ψj,l̃,n](~x), (56)

then the convolution theorem of fourier transform imply that

K̂j,l̃,n(~k) = ψ̂j,l̃,n(~k)ŵj,l̃,n(~k) = ψ̂l̃,n(2j~k)ŵj,l̃,n(~k) (57)

and

F̂J(~k) = φ̂J(~k)ζ̂J(~k) = φ̂(2j~k)ζ̂J(~k). (58)

The properties 53 and 54 chow that

K̂j,l̃,n(~k) = ψ̂l̃,n(2j~k)ψ̂∗
l̃,n

(2j~k)f̂(~k) (59)

and

F̂J(~k) = φ̂(2j~k)φ̂∗(2j~k)f̂(~k). (60)

We shall now prove that

2l̃−1∑
n=0

K̂j,l̃,n(~k) = K̂j,0,0(~k) = ψ̂(2j~k)ψ̂∗(2j~k)f̂(~k) (61)

According to the expression 31 and the property 33, we verify that

D2
α(θ) +D2

α(θ − π) = 1. (62)

Hence, for any l ∈ {0, ..., L}

2l̃−1∑
n=0

K̂j,l̃,n(~k)

=

2l̃−1∑
n=0

ψ̂l̃,n(2j~k)ψ̂∗
l̃,n

(2j~k)f̂(~k)

=

2l̃−1−1∑
n=0

[
ψ̂l̃,2n(2j~k)ψ̂∗

l̃,2n
(2j~k)

+ ψ̂j,l̃,2n+1(2j~k)ψ̂?
j,l̃,2n+1

(2j~k)
]
f̂(~k)

=

2l̃−1−1∑
n=0

[
ψ̂j,l̃−1,n(2j~k)ψ̂?

j,l̃−1,n(2j~k)D2
α(θ̄n,l̃)

+ ψ̂j,l̃−1,n(2j~k)ψ̂?
j,l̃−1,n(2j~k)D2

α(θ̄n,l̃ − π)
]
f̂(~k)

=

2l̃−1−1∑
n=0

ψ̂j,l̃−1,n(2j~k)ψ̂?
j,l̃−1,n(2j~k)

[
D2
α(θ̄n,l̃) +D2

α(θ̄n,l̃ − π)
]
f̂(~k)

=
2l−1−1∑
n=0

ψ̂j,l̃−1,n(2j~k)ψ̂?
j,l̃−1,n(2j~k)f̂(~k)

=

2l̃−1−1∑
n=0

K̂j,l̃−1,n(~k).

Therefore,

2l̃−1∑
n=0

K̂j,l̃,n(~k) = K̂j,0,0(~k) = ψ̂(2j~k)ψ̂∗(2j~k)f̂(~k)

and the equation 27 yields

f̂(~k) = F̂J(~k) +

J∑
j=−∞

K̂j,0,0(~k)

= F̂J(~k) +

J∑
j=−∞

2l̃−1∑
n=0

K̂j,l̃,n(~k).

This shows that

f(~x) = FJ(~x) +

J∑
j=−∞

2l̃−1∑
n=0

Kj,l̃,n(~x)

= [ζ.,J ? φJ ](~x) +

J∑
j=−∞

2l̃−1∑
n=0

[w.,j,l̃,n ? ψj,l̃,n](~x).

5. PULSE COUPLED NEURAL NETWORKS
Pulse coupled neural networks (PCNN) were introduced as a sim-
ple model for the cortical neurons in the visual area of the cat’s
brain and monkey visual cortices . PCNN is a feedback network
and each PCNN neuron consists of three parts: receptive field ,mod-
ulation field,and pulse generator. Unlike the most existing arti?cial
neural networks, PCNN is based on iterative calculation and does
not require any training process. The PCNN model applied in im-
age processing tasks is generally a single-layer network with a 2-D
array input. There is a one-to-one correspondence between input
image pixels and PCNN neurons, so the number of neurons is equal
to that of pixels. Each neuron is linked with its neighboring neu-
rons for information transmission and coupling . The mathematical
model of PCNN is described as follows [11, 12, 20]:

Fxy(n) = Sxy (63)

Lxy(n) = e−αLLxy(n−1)+VL
∑

Wxy,pqYxy,pq(n−1) (64)

Uxy(n) = Fxy(n)(1 + βLxy(n)) (65)

Yxy =

{
1, If Uxy(n) > θxy(n)
0, otherwise. (66)

θxy(n) = e−αθθxy(n− 1) + V0Yxy(n− 1) (67)

and

Txy(n) = Tij(n− 1) + Yxy(n). (68)

Here, F , L, U , Y , T are the feeding input, the linking input, the
internal activation, the output and dynamic threshold, respectively;
n is the discrete time step; pair (x, y) represents neuron’s position
in 2D neural network; S is the external stimulus (e.g., the intensity
of pixel (x, y)). In addition, pair pq represents the position with
coordinates (x + p, y + q). So Ypq’s are the outputs of neuron of
position (x, y) connects with its neighboring neurons. Txy(n) are
often used to indicate the total firing times in n iteration. The firing
times are employed to represent image information. The SPCNN
model is initialized as Yxy(0) = 0, Uxy(0) = 0 and θxy(0) = 0. n
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is the total iteration times. (αL, αθ) and (VL, Vθ) are the time con-
stants and normalizing constants for the linked input and dynamic
threshold, respectively. The linking strength β reflects the weight
of linking field that plays a key role in fusion. Traditionally, β is
chosen according to experiences which is lack of self-adaptability.

6. PROPOSED FUSION METHOD
Supposed the source images fA and fB have been registered, the
process of the proposed image fusion algorithm is as follows.

(1) Fix the largest scale J ∈ N∗ and the highest selectivity level
L ∈ N.

(2) Compute the multiselectivity multiscale decomposition
(MMD) for the two source images fA and fB

MMD = {ζA~b,J , ζ
B
~b,J
WA
~b,j,l,n

,WB
~b,j,l,n

} (69)

where~b = (x, y), 1 ≤ j ≤ J, 0 ≤ l ≤ L, 0 ≤ n ≤ 2l − 1.

(3) According to PCNN model described from 63 to 68 we calculat
the firing times Txy(N) of each neuron for the coefficients χ
of MMD, where N is the total number of iterations.

(4) The fused coefficients χF is obtained using the following

χFxy =

{
χAxy, If TAxy(N) > TBxy(N);
χBxy, otherwise. (70)

(5) Determine l̃(j, ~x). One possibility is the choice of l̃(j, ~x)
which offers the best match between the image and the
wavelets,

l̃(j, ~x) = arg max
l∈[0,L]

max
n∈[0,2l−1]

WF
~x,j,l,n

‖ψ~x,j,l,n‖
(71)

(6) Reconstruct the fused image fF by {ζF~b,J , ,W
F
~b,j,l,n

} and

l̃(j, ~x) using 51.

To quantitatively assess the performances of different methods,
five widely recognized objective fusion metrics are applied in
our experiments, shannon entropy (EN ), average gradient(AG),
Standard Deviation (SD), mutual information MI and QAB/F .

Shannon entropyEN quantifies the richness of information in the
fused image. The larger the EN value is, the more abundant the
information amount of the fusion image is. The shannon entropy of
a fused image was calculated according to

EN = −
255∑
i=0

Pi log(Pi) (72)

where Pi is the probability of gray level i in the fused image.

Average gradientAG reflects the variance of the gray value which
could be used to evaluate the clarity of one image.The higher value
of gradient value denotes that the image is clearer and the fusion
performance is better. The definition is shown as

AG =
1

(lx − 1)(ly − 1)

lx∑
i=1

ly∑
j=1

√
µx(i, j) + µy(i, j)

2
(73)

µx(i, j) = (fF (i, j)− fF (i+ 1, j))2 (74)

µy(i, j) = (fF (i, j)− fF (i, j + 1))2 (75)

fF (i, j) is the pixel value of the fused image at position (i, j); lx,
ly decide the area (the biggest time is 3× 3).

Standard deviation SD measures the degree that the data points
deviate from the mean. The standard deviation was calculated ac-
cording to

SD =

√∑
(fF (i, j)− f̄F )2

T − 1
(76)

where fF (i, j) is the pixel value of the fused image at the position
of (i, j); f̄F is the average pixel value; T is the number of the pixel
of an image. A larger standard deviation means a better visible
effect.

Mutual information MI essentially computes how much infor-
mation from source images is transferred to the fused image. With
the increase of the value of mutual information, fused image can
get richer information from the source image.

MI = MIFA +MIFB (77)

Where MIFA or MIFB is denotes the mutual information be-
tween the Fused image and original image, which is defined as
follows

MIFA =

N∑
i=0

M∑
J=0

PFA(i, j) log
PFA(i, j))

PF (i, j) + PA(i, j)
(78)

PFA(i, j) is the joint histogram of the fused image fF and the
source image fA [21].

QAB/F computes and measures the amount of edge information
transferred from the source images to the fused images using a So-
bel edge detector to calculate strength and orientation information
at each pixel in both source and the fused images. The larger the
value is, the more edge information is transformed to the fused im-
age. The definition of QAB/F is defined as∑N

i=0

∑M
J=0(QAFij wAij +QBFij wBij)∑N
i=0

∑M
J=0(wAij + wBij)

(79)

QAFij = QAFgij +QαAFij (80)

QBFij = QBFgij +QαBFij (81)

Q.Fgij and Qα.Fij denote the edge strength and orientation preser-
vation values, respectively [22]. The larger value means the better
fusion performance.

7. EXPERIMENTAL RESULTS
In this section, we use proposed method to fuse the medical im-
ages, we conduct experiments on six pairs of multimodal medical
images, which include, three pairs of MR and CT images, and three
pair of T1-weighted MR (MR-T1), T2-weighted MR (MR-T2) and
PET images. Parameters of PCNN is set,αL = 0.06931,αθ = 0.2,

β = 0.2, VL = 1.0, Vθ = 20, W =

 0.707 1 0.707
1 0 1

0.707 1 0.707

, and the
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Table 1. Objective assessment of different methods on four categories of medical image
fusion problems

images Methods EN AG SD MI QAB/F

CT and MR

DWT-PCNN 5.547 8.156 68.2251 4.354 0.6188
NSCT-PCNN 6.4040 8.6349 69.2021 4.5821 0.6188
NSST-PCNN 6.3966 8.6632 69.1797 4.6531 0.6315

Proposed Method 6.8202 8.6454 69.2670 4.9706 0.6521

CT and MR

DWT-PCNN 4.5684 7.0387 70.2581 3.0254 0.4231
NSCT-PCNN 5.5821 7.6066 72.8854 3.4747 0.5060
NSST-PCNN 5.5249 7.5736 73.0768 3.5949 0.5155

Proposed Method 5.6978 7.5891 72.9821 3.6769 0.5551

MRT1 and MRT2

DWT-PCNN 4.2148 8.5478 71.2025 1.1258 0.4518
NSCT-PCNN 5.2207 9.9223 74.0258 2.5367 0.5166
NSST-PCNN 5.1852 10.1272 75.6418 2.5785 0.5252

Proposed Method 5.2880 10.0846 75.4195 2.6561 0.5840

MR and PET

DWT-PCNN 4.0578 7.8596 82.8456 2.2671 0.3148
NSCT-PCNN 5.0578 8.0596 83.0009 2.5671 0.4874
NSST-PCNN 4.6482 8.5333 85.8324 2.6811 0.506

Proposed Method 4.9299 8.6699 84.4585 2.6943 0.5114

Fig. 1. Example of CT and MR images fusion obtained by different methods. From top left, clockwise: CT, MR, DWT-PCNN, NSCT-PCNN, NSST-PCNN
and proposed method.

maximal iterative number is N = 200. We compare the fusion re-
sults of the proposed framework with the following methods on the
same dataset.

• Method 1 DWT-PCNN: Image fusion method based on pulse
couple neuron network in discrete wavelet transform Domain with
basis db2.

• Method 2 NSCT-PCNN: Image fusion method based on pulse
couple neuron networkin the Nonsubsampled Contourlet Trans-
form Domain.

• Method 3 NSST-PCNN: Image fusion method based on pulse
couple neuron network in the nonsubsampled shearlet transform
Domain.

7



International Journal of Computer Applications (0975 - 8887)
Volume 175 - No.19, September 2020

Fig. 2. Example of MR-T1 and MR-T2 images fusion obtained by different methods. From top left, clockwise: MR-T1, MR-T2, DWT-PCNN, NSCT-PCNN,
NSST-PCNN and proposed method.

Fig. 3. Example of PET and MR images fusion obtained by different methods. From top left, clockwise: PET, MR, DWT-PCNN, NSCT-PCNN, NSST-PCNN
and proposed method.

Table 1 shows evaluation results of four methods. The EN of the
fused image obtained by the proposed method is maximum, which
means that the fused image contains the largest amount of infor-
mation and has relatively better fusion result than others. TheMI

and QAB/F achieve the best result of all, which illustrates that
the fused image based on the proposed method extracts more infor-
mation from the original images and has the best contrast and the
notable target.
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From the visual analysis of Figures 1, 2 and 3, it is observed that the
proposed framework could successfully preserve both the feature
information of the CT images (e.g., the bony structures) and the
PET images (e.g., high metabolic areas).

8. CONCLUSION
In this paper, we introduced a new medical image fusion method
based on a adaptive selectivity representation, which can capture
the different structures of the geometry of the image. The fused im-
ages processed by this method have improved fusion quality com-
pared with those produced by other methods in terms of better bal-
ance between feature information and information for soft tissues,
and better preserving of functional information.
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