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ABSTRACT 

By using support vector machine (SVM) and the grid 

technique Badr et al. [1] introduced new scaling techniques on 

the data set Wisconsin from UCI machine learning with a total 

569 rows and 33 columns. These scaling techniques overcame 

the standard normalization techniques. In this paper, three 

new scaling techniques are proposed by using SVM and the 

grid technique on the the data set Wisconsin from UCI 

machine learning with a total 569 rows and 32 columns. 

These scaling techniques are: (i) de Buchet for p = ( ∞) (ii) 

Lp-norm for p = (∞) (iii) Entropy . Experimental results show 

that SVM with new scaling techniques achieves 98.60 % , 

98.42 % and 98.42 % accuracy against to the standard 

normalization by  96.49 %. 
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1. INTRODUCTION 

Improving the accuracy of identifying the breast cancer 

disease is very important task. Breast cancer disease is the 

second most common type of cancer after lung cancer. Breast 

cancer is the most widespread by 12.3% of all cancer for 

males and females of all ages. It is the most spreading in 

women worldwide, accounting 25.4% of the whole cases 

diagnosed in 2018 [1]. Defects in breast cancer diagnosis by 

experts can be avoided by expert systems and artificial 

intelligent techniques. These expert systems can examine the 

medical data in shorter time and help junior physicians. 

Tomlin [2] performed a computational study comparing 

arithmetic mean, geometric mean, equilibration, Curtis and 

Reid scaling technique [3], Fulkerson and Wolfe scaling 

technique [4], and various combinations on six test problems. 

The conclusion of Tomlin's comparative study was that 

geometric mean scaling method, optionally followed by 

equilibration or Curtis and Reid scaling technique are the best 

combined scaling techniques. Larsson [5] extended Tomlin's 

study by comparing entropy [5], Lpnorm [6] and de Buchet 

[7] scaling techniques over a dataset of 135 randomly 

generated LPs. Larsson concluded that the entropy scaling 

technique can improve the conditioning number of the 

constraint matrix. Elble and Sahinidis [8] expanded on 

Tomlin's and Larsson's studies by conducting a computational 

study comparing arithmetic mean, de Buchet, entropy, 

equilibration, geometric mean, IBM MPSX [9], Lpnorm, 

binormilization, and various combinations of the 

aforementioned scaling techniques over Netlib and 

Kennington set. They used four measures to evaluate each 

scaling technique: (i) scaling time, (ii) solution time, (iii) 

number of iterations for the solution of the LP, and (iv) 

maximum conditioning number of the constraint matrix. Elble 

and Sahinidis concluded that equilibration is the best scaling 

technique.  

In a previous paper [10], the autors reviewed and compared 

both the CPU- and GPU-based implementations of seven 

scaling techniques, namely: (i) arithmetic mean, (ii) de 

Buchet, (iii) entropy, (iv) equilibration, (v) geometric mean, 

(vi) IBM MPSX, and (vii) Lp-norm scaling methods. They 

have performed a computational study over Netlib and 

Kennington set and concluded that arithmetic mean, 

equilibration and geometric mean are the best serial scaling 

techniques. In this paper a computational study is performed 

over a set of sparse randomly generated LPs in order to 

highlight the impact of scaling prior to the application of IPM, 

EPSA and simplex algorithms. To the best of our knowledge, 

this is the first paper that investigates the effect of scaling on 

IPM, EPSA and simplex algorithms.  

The scaling techniques can improve the accuracy of 

classifiers. Elsayed Badr et al. [11] proposed ten efficicent 

scaling techniques for optimizing SVM. These scalling 

techniques are efficient for linear programming approach [12-

20]. The scalling techniques that they applied with SVM on 

WDBC dataset are arithmetic mean, de Buchet for three cases 

(p=1, 2), equilibration, geometric mean, IBM MPSX, Lp-

norm for three cases (p=1 or 2). 

The rest of this paper is organized as follows. The algorithms 

that are used in the study: SVM described in Section 2.  The 

proposed model is introduced in section 3. In Section 4, 

detailed descriptions of new scaling techniques, de Buchet for 

p=(∞), entropy and Lp-norm for p=(∞) are proposed. 

Experimental design which has data description, experimental 

setup, measure for performance evaluation and a comparative 

study are introduced in section 5. In Section 6 the main results 

and discussion are proposed. Finally, conclusions and future 

works are introduced in section 7. 

2. PRELIMINARIES 
In this section, Support vector machine (SVM), and grew wolf 

optimizer (GWO) are presented and discussed.  

Support Vector Machine (SVM) 
Support vector machine SVM developed by Vapnik [9], the 

support vector machine (SVM) was primarily intended for 

binary classification. Its main objective is to determine the 

optimal hyperplane f (w, x) = w・ x +b separating two classes 

in a given dataset having input features x ∈ Rp , and labels y 
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∈ {−1, +1}. SVM learns by solving the following constrained 

optimization problem: 

1
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where wTw is the Manhattan norm, ξ is a cost function, and C 

is the penalty parameter (may be an arbitrary value or a 

selected value using hyper-parameter tuning). Its 

corresponding unconstrained optimization problem is the 

following: 
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where wx + b is the predictor function. The objective of Eq. 1 

is known as the primal form problem of L1-SVM, with the 

standard hinge loss. The problem with L1-SVM is the fact 

that it is not differentiable[18], as opposed to its variation, the 

L2-SVM: 
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The L2-SVM is differentiable and provides more stable 

results than its L1 counterpart. 

3. THE PROPOSED CLASSIFICATION 

MODEL 
A grid search algorithm must be guided by some 

performance metric, typically measured by cross-validation 

on the training set [21] or evaluation on a held-out validation 

set [22]. A typical soft-margin SVM classifier equipped with 

an RBF kernel has at least two hyperparameters that need to 

be tuned for good performance on unseen data: a 

regularization constant C and a kernel hyperparameter γ. 
Both parameters are continuous, so to perform grid search, 

one selects a finite set of "reasonable" values for each, say: 

{10,100,1000}C    and . Grid search then trains an SVM 

with each pair (C, γ) in the Cartesian product of these two 

sets and evaluates their performance on a held-out validation 

set (or by internal cross-validation on the training set, in 

which case multiple SVMs are trained per pair). Finally, the 

grid search algorithm outputs the settings that achieved the 

highest score in the validation procedure.  

4. SCALING TECHNIQUES 
Here, we introduce the mathematical notations of ten scaling 

techniques in addition to the normalization scaling techniques 

with ranges [0, 1] and [-1, 1]. First of all, we introduce the 

following mathematical preliminaries as shown in Table 1. 

The scaled matrix is expressed as RAS, such that R = diag (r1, 

…,rm) and S = diag (s1, …,sn). All scaling techniques 

proposed in this section apply first rows scaling and after that 

columns scaling. Then, the matrix after full scaling (row and 

column) is given by: 

R RS RA  = RA; A  =A S                                               (2)     

 

 

 

                                                                                                        

 

Table 1. Mathematical preliminaries for scaling 

techniques 

Symbol Description 

A (aij): 

ri: 

sj: 

R: 

S: 

Ni: 

Mj: 

ni: 

mj: 

AR (
R

ija ) 

 RS(
RS

ija ) 

m x n matrix (with m (observations) and n (attributes)). 

The scaling agent of row i 
The scaling agent of column j 

Diagonal matrix such that R = diag (r1, …,rm) 

Diagonal matrix such that S = diag (s1, …,sn) 

 
{ : 0}i ijN j A  , such that 1 i m   

{ : 0}j ijM i A   such that 1 j n   

The number of elements for the set Ni 
The number of elements for the set Mj 

 The scaled matrix by row R scaling agent. 

 
 The final scaled matrix. 

 

1) de Buchet scaling technique: The de Buchet 

scaling model is based on the relative divergence and is 

formulated as shown in Equation (3): 

1/

, 0
,

min { 1/ }

p

p
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 
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where p is a positive integer and Z  is the number of the 

nonzero elements of  A. We focus on the case p =  .  

Case p = , Equation (3) is formulated as shown in Equation 

(4): 

, 0
,

min max | log( ) |ij i j
r s

i j Z

a r s




                                                       (4) 

The row scaling factors are described in Equation (5): 

   
1/ 2
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                                       (5)    

Similarly, the column scaling factors are presented in 

Equation (6): 
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jj

R R
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i Mi M
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The de Buchet for the case p =  scaling technique 

corresponds to the geometric mean scaling technique that will 

be described later. 

2) Lp-norm scaling technique: The Lp-norm scaling model is 

formulated as shown in Equation (7): 

1/

, 0
,

min (| log( ) | )p p

ij i j
r s

i j Z

a r s




                                                (7) 

where p is a positive integer and Z  is the cardinality number 

of the nonzero elements of the constraint matrix A. 

We focus now our attention on the case p =  .  

Case p =  , the model is equivalent to the de Buchet method 

(case p =  ) and geometric mean scaling techniques which 

were proposed in [11]. 

3) Entropy scaling technique is equivalent to the arithmetic 

scaling technique that was introduced in [11]. 
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4) Normalization scaling technique [0, 1]: Equation (8) is 

used for normalization scaling method with range [0, 1] such 

that a, a′, maxk and mink are the original value, the scaled 

value, the maximum value and the minimum value of feature 

k respectively.  

' k

k k

a- min
a

max - min
                                                   (8) 

5. EXPERIMENTAL DESIGN 
In this section, we introduce data description, measure for 

performance evaluation and the comparative study. 

5.1 Data description 
In this work, we have run the proposed model on the 

Wisconsin diagnosis Breast Cancer (WDBC) dataset that 

available the UCI Machine Learning Repository [23].  The 

dataset consists of 569 instances divided into two classes. The 

two classes malignant and benign have 357 and 212 cases 

respectively. Each record in the database has thirty-three 

attributes.  

5.2. Experimental setup 
The proposed model was developed by MATLAB. SVM, 

implementation was enhanced, which is originally developed 

by Chang and Lin [24]. Table 3 describes the experiments 

computing environment. 

Table 2. Description of the computing environment 

CPU 

 

RAM Size 

MATLAB version 

Intel (R) Core (TM) i5- 7200U 

CPU@ 2.70 GHz 

4 GB RAM 

R2015a (8.5.0.197613) 

Salzberg [25] introduced the k-fold CV which is used to 

guarantee the valid results. In this paper, k = 10.  

5.3. Measure for performance evaluation 
In order to test the performance of the proposed model, we 

use accuracy. According to the confusion matrix, accuracy is 

defined as follows: 

Acc = (TruPos + TruNeg) / [TruPos + FlsPos + TruNeg + 

FlsNeg]×100%                                                                    (9) 

Where: Acc: Accuracy; TruPos: true positive; TruNeg: true 

negative; FlsPos: false positive qnd FlsNeg,: false negative. 

5.4. Comparative study 

In this study, we compare the performance of the proposed  

SVM using grid search technique with different scaling 

techniques. The best C and  are computed by grid search. 

The searching space of parameters C and   are set to C = {2-

5,  2-3,…, 215} and   = {2−15, 2−13,⋯, 21}, respectively.  

6. EXPERIMENTAL RESULTS AND 

DISCUSSIONS 
Table 3 and Table 4 show a comparison among classification 

accuracies of SVM with normalization scaling [0, 1], de 

Buchet scaling for p=(∞), Lp-norm scaling for p=(∞) and 

entropy scaling technique. It is apparent from these tables that 

the average accuracy rates achieved by SVM with de Buchet 

scaling technique for p = ∞ (98.60 %), Lp-norm scaling 

technique for p = ∞ (98.42) and entropy scaling technique 

(98.42 %) are better than that obtained by SVM with 

normalization scaling techniques (96.49%)  

Table 3: Accuracy for WBCD database using SVM with C 

and  which were calculated by grid search technique 

(Without scaling and Normalization scaling [0,1] 

Fold 

Normalization scaling [0,1] 

(S1) 

de Buchet p =inf  

(S2) 

C   Acc.% C   Acc.% 

1 2^13 2^-7 100 2^5 2^-5 100 

2 2^15 2^-9 98.25 2^11 2^-9 100 

3 2^15 2^1 92.98 2^11 2^-9 96.49 

4 2^15 2^-1 94.74 2^11 2^-9 96.49 

5 2^15 2^-1 94.74 2^3 2^-11 100 

6 2^15 2^1 96.49 2^11 2^-9 100 

7 2^15 2^-3 98.25 2^11 2^-9 100 

8 2^15 2^-13 96.49 2^11 2^-9 94.74 

9 2^15 2^1 94.74 2^13 2^-11 98.25 

10 2^15 2^1 98.25 2^13 2^-11 100 

Avg. 30310.4 0.91 96.49 2871.2 0.0044 98.60 

CPU 
Time 

7.263212 15.417493 

 

Table 4: Accuracy for WBCD database using SVM with C 

and  which were calculated by grid search technique 

(Normalization scaling [-1,1] and de Buchet scaling(p=1)) 

Fold 

Entropy 

(S3) 

Lp-norm p = inf 

 (S4) 

C   Acc. % C   Acc. 

% 

1 2^3 2^-7 100.00 2^11 2^-9 98.21 

2 2^15 2^-9 98.25 2^9 2^-9 98.25 

3 2^9 2^-5 96.49 2^11 2^-9 98.25 

4 2^-1 2^-5 96.49 2^3 2^-3 98.25 

5 2^9 2^-9 100.00 2^11 2^-9 98.25 

6 2^5 2^-5 98.25 2^11 2^-9 96.49 

7 2^7 2^-7 98.25 2^11 2^-9 100 

8 2^-1 2^-3 98.25 2^11 2^-9 100 

9 2^9 2^-9 100.00 2^11 2^-9 98.25 

10 2^15 2^-9 98.25 2^9 2^-11 98.25 

Avg. 6724.1 0.024 98.42 1536.8 0.014 98.42 

CPU 

Time 
12.516496 15.03757 

 

Table 5 summarize the results of all scaling techniques that 

obtained by SVM according the accuracies and CPU times. It 

is apparent from Table 5 that the normalization scaling 

technique [0, 1] overcomes all other scaling techniques 

according to CPU time only. On the other hand, the de Buchet 




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(p =inf) scaling technique outperforms all scaling techniques 

according to the accuracy. 

Table 5: Accuracy and CPU Time for WBCD database 

using SVM with C and  which were calculated by grid 

search technique  

No. Techniques Accuracy% CPU Time 

S1 Normalization [0,1] 96.49 7.263212 

S2 de Buchet p =inf 98.60 15.417493 

S3 Entropy 98.42 12.516496 

S4 Lp-norm p = inf 98.42 15.03757 

 

7. CONCLUSION AND FUTURE WORK 
In this paper, three new scaling techniques were  proposed by 

using SVM and the grid technique on the the data set 

Wisconsin from UCI machine learning with a total 569 rows 

and 33 columns. These scaling techniques are: (i) de Buchet 

for p = (∞) (ii) Lp-norm for p = (∞) (iii) Entropy. 

Experimental results showed that SVM with new scaling 

techniques achieved 98.60 % , 98.42 % and 98.42 % accuracy 

against to the standard normalization by  96.49 %. 
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