
International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

36

A Timestamp based Novel Caching Mechanism for

Distributed Web Systems

Jay Parekh
Department of Information

Technology
Sardar Patel Institute of

Technology
Mumbai, India

Apurv Moroney
Department of Information

Technology
Sardar Patel Institute of

Technology
Mumbai, India

Lavina Golani
Department of Information

Technology
Sardar Patel Institute of

Technology
Mumbai, India

Radha Shankarmani
Department of Information Technology

Sardar Patel Institute of Technology
Mumbai, India

ABSTRACT

 Microservices are a loosely coupled distributed systems

architecture. With the uncertainty in prediction of the size of

the application, microservices play an important role in

development and scaling. As they are independently

functioning applications, difficulties in caching data

becomes manifold. Caching in microservices is achieved

either by maintaining a local cache with peer to peer

communication, or a global cache with single store

communication. However, multiple local caches come with

communication overheads and data consistency issues, while

a global cache has data management issues. This project

attempts to find a combination of both to reduce the

communication overheads and data size, while solving the

problem of data consistency. Focus is to create a mechanism

which uses both a global cache and a local cache. The global

cache would act as a verification cache and the local cache

would act as a data cache. This will minimize the size of the

global cache and the communication call size. In comparison

to the existing cache management techniques, this system

will act as a middle ground. It inherits the low

communication overheads from the global caching systems

and also manages to keep the global cache size minimum by

storing only verification data. The impact of this research

topic is multi-faceted, not only in scaling web applications to

a global scale but also in maintaining modular, data-

consistent caches in a cluster of microservices. Another

advantage of the proposed solution is that it can ameliorate

the problem of bandwidth always falling short in high load

applications

General Terms

Distributed Systems, Cache Management, Web

Applications, Microservices

Keywords

distributed systems, caching, microservices, web

applications, web services

1. INTRODUCTION

1.1 Microservices
A microservice is a small, loosely coupled, independently

deployed, independently scaled, and independently tested

application that has a single responsibility in the scheme of a

larger distributed web application [1]. Typically, these

microservices are designated to handle certain granular

functionalities of the larger application [2]. These features

grant microservices based applications unparalleled levels of

scalability, modularity, flexibility, and maintainability [3].

However, the adoption of the microservices architecture

accompanies a few problems that are inherent to distributed

systems. As the system grows to unexpected scale, the

underlying communication systems begin to tumble because

of the uncertain nature of large-scale networks [4]. This is

relevant to this discussion, as will be seen in further sections.

1.2 Web Caching
In large scale web applications, peak network traffic usually

far supersedes current network capabilities due to

bottlenecks present at various junctures of a network route.

This leads to traffic congestion in the network and

significant performance drops. One of the most convenient

solutions to this problem is the concept of caching. Caching

is the storage of data at locations that are logically nearer to

the consumer of said data [5]. Caches can be consumer-

oriented or provider-oriented [6]. This discussion concerns

provider-oriented caching mechanisms. These are systems

where the data is cached (replicated) at a site near the

provider of the data to the end user. In the case of

microservices based applications, caching sites must be

situated near the application servers that interface with the

user through the HTTP protocol. “There are only two hard

things in Computer Science: naming things and cache

invalidation” - this is a notoriously popular quote by

designer Phil Karlton. Cache invalidation is the practice of

freeing a cache store of data that is old and does not

correctly reflect the value of the original data that it is

replicating. This is necessary so as to avoid inconsistency in

the different data stores that simultaneously serve data. The

problems in invalidating cache entries are further

exacerbated in the case of caching in distributed systems. In

large scale web applications, it is common for the database

and the application servers functioning independently and

connected only through a wide area network. This creates a

motivation for application servers to cache database objects

while in the process of serving them to the end user. In

monolithic web applications (not distributed; composed of a

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

37

single application server), cache management is a simple

matter because of the presence of only one single copy of

the primary database. However, in a microservices based

web application, with the presence of a large number of

distributed points of replication, the level of complexity in

cache management and invalidation rises exponentially.

1.3 Caching in distributed web systems -

Status Quo
Presently, there are two parallel caching techniques

commonly employed in microservices and other distributed

web environments - Distributed (Global) Caching, and

Localized Caching.

1.3.1 Distributed (Global) Caching
 This design is characterized by a single primary data source

as well as a single global cache store shared by all the

application servers that access the database. This

architecture essentially solves the data inconsistency issue

since the cache is only composed of one single data store

without any active replicas. It is important to note, however,

that this global cache may be replicated into multiple copies,

but these copies only serve as backup entities and do not

actively interface with and serve the application servers. The

single cache store also may be distributed across multiple

nodes, but this distribution is transparent to the user and the

application server, thus essentially acting as a singular unit.

Since this single unit of cache is shared by multiple

application servers, it must be connected to those servers

over the network. This incurs a huge latency cost, when

compared to caches that are connected to the application

server over a local network, or caches residing on the same

machine as the application server. Also, this single cache

unit is also a single point of failure in the system. When this

cache unit goes down, the application servers are left with

no other means of caching their frequently accessed data.

Ensuring high availability of this global cache unit is not

straightforward and highly resource intensive. This is

because it involves complicated distributed communication

protocols to maintain data consistency between replicas,

while enforcing a master slave architecture. Redis is a

widely used distributed caching solution. Fig 1 shows a

typical architecture of a distributed web application

employing a distributed caching solution.

Fig 1 Distributed caching solution - Typical architecture

1.3.2 Localized Caching
In this approach, each application server maintains its own

separate cache unit, which is stored either at the same

machine as the server, or on a different machine in the same

local network. This design enables modular caching as each

application server can build and maintain its cache unit

tailored to its requirements. However, as the original data

source is still singular and shared by multiple such cache

units, this design suffers from data consistency problems.

Every update on a data object in the database must be

propagated to every cache unit that has replicated that

object. This also causes a massive communication overhead

as well as a networking overhead, since it needs to maintain

membership lists consisting of every ’node’ or server that

has cached data. This degrades the overall performance of

the application from the perspective of the end user. Fig 2

shows a typical architecture of a distributed web application

employing a local caching solution.

Fig 2 Localized Caching Solution - Typical Arthitecture

1.4 Objectives
As noted in the previous subsection, both the distributed

caching and local caching approaches currently in fashion

have certain advantages and certain disadvantages. The aim

of this project is to design a system that offers the better

features of both these approaches while overcoming the

shortcomings of the same. The objectives of this article can

be summarized by the following points:

• Create an efficient caching mechanism: Design a

caching mechanism which uses the advantages of both

global and local caching mechanisms i.e.: consistency

and low latency.

• Create a caching mechanism which supports heavy

reads: Design a system that can sustain high number of

read request, while serving correct values of data to

each of these requests.

• Design a scalable caching mechanism: The cache

should be easily scalable and have the ability to

function under a huge load without suffering any

significant loss in performance.

2. LITERATURE REVIEW
In [7], a comparison is made between different caching

solutions employed in distributed clusters. It elaborates on

caching in distributed clusters. Caching solutions vary from

application to application making a common solution very

difficult. This paper first focuses on these different methods

of caching in distributed systems. Later, it proposes a new

method of caching which uses heuristics. These heuristics

aid in reducing data transfer cost occurred while

invalidation. In [8], the authors have addressed the problem

of caching in a mobile environment. As in mobile

environments, network is not consistent and disconnection is

a problem, common cache strategies are not suited.

Invalidation reports is a method suggested for such

environments, but it has its own disadvantages. Long query

latency and bandwidth wastage are the major drawbacks of

the current IR based invalidation of caches. This paper

proposes a modification in invalidation reports strategy by

reducing the latency of queries. The proposed method also

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

38

uses the network bandwidth efficiently by reducing the

number of uplink requests. In [9], the authors focus on the

detailed analysis of cache invalidation patterns of

applications. It also predicts the patterns of invalidation

beyond 32 processors. The main idea proposed is a

classification scheme for objects present in parallel

programs. The results show that it is possible to write

programs in parallel systems without the invalidation system

fulminating. The classification scheme detects that the use of

directory-based scheme is effective with a reduced number

of pointers. Final result of the paper indicates that lowest

data is generated, and least number of invalidations happen

in the 32-byte range. In [10], they identify the cache

replacement and invalidation mechanisms for data

dependent on locations in mobile environments. A geometric

location model is used to study the data. Apart from analysis

of the data based on location, two new cache replacement

algorithms are suggested. PA and PAID strategies take into

consideration not only the location but also the distance

from the client to the scope of data and scope of the data

itself. If consideration of the valid scope, PA and PAID

perform better than existing strategies.

3. METHODOLOGY
Firstly, an extensive survey on the common practices

currently followed by the industry in developing scalable,

distributed web applications is performed. A majority of

these applications were found to be microservices based.

Upon investigating about the problems commonly faced

while building these solutions, it was realized that

employing a reliable, economical caching system in these

applications was a notoriously difficult undertaking. On

delving deeper into the caching woes faced by these

applications, it was found that presently there is no caching

mechanism in practice that adequately surmounts the

difficulties posed by the distributed nature of large-scale

web applications. This led to the conclusion that presently

there are two major different caching techniques employed

by most web applications. These are described in detail in

the Caching in Distributed Web Systems subsection of the

Introduction section. Both these mechanisms suffer from

certain shortcomings. From here on, the research was

directed towards devising a caching mechanism for

distributed web applications that can overcome the

shortcomings of the two major existing solution

mechanisms. Timestamps are a concept used to attain

features like synchronicity, consistency, and sequence in

various algorithmic and other problems in Computer

Science. Timestamps have been proposed as a mechanism to

perform cache invalidation in web search engines [11]. It

was found that there is applicability for timestamps to be

used as a device to blend the two caching mechanisms for

distributed web systems discussed above. Once a

rudimentary caching solution using timestamps, that was a

combination of the distributed (global) and local caching

mechanisms was devised, both logical and technical flaws in

the system as it was, were discovered. This led to a road map

of minor and major increments to the system, at the end of

which a fully developed, robust system that satisfactorily

addresses all the concerns regarding the two existing caching

mechanisms, and the minor flaws found in the initial

versions of the system, was ready. This novel caching

mechanism essentially integrates the two existing

mechanisms using timestamps. The rudimentary version of

this mechanism had certain flaws. These flaws included

issues with sequence and synchronicity, which in order to

overcome, an algorithm was devised, for the correct

execution of read and write requests on the system. To

achieve this, a few state variables were introduced, and also

a maneuver involving queuing of write requests on the

global cache server. What is proposed and presented in this

article is the final iteration of this system, and it adequately

addresses all the flaws that cropped up during the various

stages of the research and ideation

3.1 Proposed System
There are 2 operations that are done by the user - Read &

Write.

• Read - Whenever a read is requested, the request

goes to the global cache. Previous Write ID of this

read is set as Latest Write ID and the read count is

incremented by 1. If timestamp is not present in

the global cache, the data is queried from the

database and the timestamp is added to the local

cache. Also, the data is set to the local cache and

the data and timestamp are set in the local cache.

This completes the read operation and increments

the completed read count by 1. If timestamp is

present in the global cache, we check if the status

of the object is unlocked and previous Write ID of

this read is equal to the completed read. – Until the

above criteria is satisfied, polling is done every

500ms. – If this condition is satisfied, the

timestamp from the global cache is returned to the

local cache. If the timestamp of the local cache is

greater than or equal to the timestamp of local

cache, the data is fresh. But if the local cache

timestamp is less than the global cache timestamp,

it means that the global cache was updated after

this server’s last read. So, this local cache has stale

data. a request is made to the database to fetch the

latest data. The timestamp of the local cache is

updated. This completes the read operation and

increments the completed read count by 1. The

flowchart for this operation is depicted as Fig 3.

• Write - When a write request is sent by the user, it

goes to the global cache. This write ID is

appended to the queue, the Latest Write ID is set

as this Write ID and the previous read count for

this write is made equal to the read count.

Subsequently, the read count is set to 0. It is then

checked whether the object satisfies the following

conditions: its status is unlocked; the write ID of

the request is at the head of the queue and the

previous read count for this Write ID is equal to

the complete read count. Until the above

conditions are satisfied, the request keeps polling

every 500ms. When all the above conditions are

satisfied, the write request locks the object status

and proceeds to update the database. After the

write operation is completed- the global cache

timestamp is updated, the completed Write ID of

the object is set as this Write ID, the status of the

object is unlocked and the completed read count is

set to 0. The write response is given to the user.

The flowchart for this operation is depicted as Fig

4.

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

39

Fig 3 Read Request Flowchart

Fig 4 Write Request Flowchart

3.2 System Architecture
Fig 5. illustrates the proposed system architecture - Node JS

and its framework Express JS is used to write the server-side

code. A node library, called nodecache was used to build the

in-process cache to cache the data. Mongo DB is used as the

database which takes care of distributing and backing up the

data. Redis is used to build the global cache. Mongo DB is a

NOSQL Database which is deployed on Scale grid. Redis is

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

40

a key-value document store. This is also deployed on Scale

Grid. The application servers are deployed to Microsoft

Azure cloud machines. This deployment of all the servers

and databases on the cloud is performed to see how the

system works with the latency of the internet.

Fig 5 Proposed System Architecture

3.3 Process Flow
Fig 6. depicts the process flow. There are 3 servers in this

setup. All operations take place on object X. Initially, the

global cache has the following values for object key X:

status-unlocked, timestamp-nil, latest Write Id-nil, latest

Completed Write ID- nil, read count-0 & completed read

count-0. A write operation(W1) for object X is sent from

server 1. The write request is appended to the queue with

previous read count as 0(which is the read count) the read

count is set to 0 and the latest write ID is set as. Since W1

satisfies all conditions for a write operation to execute, the

status of the object is locked, and the write operation starts.

Meanwhile, a read request (R1) is sent from server 2. The

read count is increased by 1 and now becomes 1. Since the

read conditions for R1 are not satisfied, it keeps polling

every 500ms. A write request (W2) is made from server 3.

The write request W2 is appended to the queue with

previous read as 1, read count is updated to 0 and the latest

write ID is updated as W2. Since, all its conditions are not

satisfied, W2 keeps polling every 500ms. The write

Request W1 is completed, it is removed from the queue

and the status of the object is set to unlocked and the latest

completed Write ID is set as W1. Since the conditions of

read R1 are satisfied, it executes and the read complete

count increases by 1 and now becomes 1. After the read

R1, conditions for W2 are satisfied and it locks the object

and executes. After its execution is completed, status of the

object is unlocked, the latest completed write ID becomes

W2 and the completed reads is set as 0.

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

41

Fig 6 Process Flow Diagram

3.4 Status table
Let us assume that the operations are carried out on object

X. There are 2 local servers- server 1 and server 2. The

following is the sequence of requests made in increasing

order of time. It is also mentioned that which request

comes from which cache.

Order of

Operations

R1 W1 R2 W2 R3 W3

Comes from

which Cache

1 1 2 1 1 2

Legend for the table-

• TS- timestamp

• S- status of object

• QS- queue status

• LW- Latest Write ID(last write ID entered in the

queue)

• LCW- Latest Completed Write ID(write ID of the

latest completed write)

• RC- read count

• CRC- Completed Read count

• PRC- Previous read count(the reads that take place

before write)

Table1 summarises the states of the variables for the given

sequence of requests

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

42

Table 1 Variable status table for given sequence of operations

Operation DB value Global Cache

(TS,S,QS), (LW,LCW)

,(RC,CRC)

Local Cache 1 Local Cache 2

Initial A No TS, UL, []

Null, Null, 0, 0

TS: No TS

Data : No data

TS: No TS

Data : No data

R1 arrives A No TS, UL, []

Null, Null, 1, 0

TS: No TS

Data : No data

TS: No TS

Data : No data

R1 completes A 100, UL, []

Null, Null, 1,1

TS: 102

Data : A

TS: No TS

Data : No data

W1 arrives A 100, L, [W1/1]

W1, Null, 0,1

TS: 102

Data : A

TS: No TS

Data : No data

W1 completes B 106, UL, []

W1, W1, 0, 0

TS: 102

Data : A

TS: No TS

Data : No data

R2 arrives B 106, UL, []

W1, W1, 1,0

TS: 102

Data : A

TS: No TS

Data : No data

W2 arrives B 106, UL, [W2/1]

W2, W1, 1, 0

TS: 102

Data : A

TS: No TS

Data : No data

R2 completes B 106, UL, [W2/1]

W2, W1, 1, 1

TS: 102

Data : A

TS: 108

Data : B

R3 arrives B 106, L, []

W2, W1, 1,1

TS: 102

Data : A

TS: 108

Data : B

W3 arrives B 106, L, [W3/1]

W3, W1, 0, 1

TS: 102

Data : A

TS: 108

Data : B

W2 completes C 112, UL, [W3/1]

W3, W2, 0,0

TS: 102

Data : A

TS: 108

Data : B

R3 completes C 112, UL, [W3/1]

W3, W2, 0,1

TS: 116

Data : C

TS: 108

Data : B

W3 completes D 118, UL, []

W3, W3, 0, 0

TS: 116

Data : C

TS: 108

Data : B

4. RESULTS
 In this section, the prototype developed based on the

proposed system is discussed. The functioning of the

prototype is illustrated, and then the results obtained are

examined, which indicates an appreciable improvement in

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

43

performance when compared to systems based on a global

caching mechanism. The prototype application is deployed

on Microsoft Azure cloud service, the global timestamp

server is also deployed on Azure through Scalegrid in the

form of a Redis instance. The central database is also

deployed on Azure through Scalegrid as a MongoDB

instance. The application servers are written in NodeJS

using the Express framework. The in-process cache

attached with every application server instance is set up

using a NodeJS library called NodeCache. First, the

functioning of the prototype is delineated through screen

captures of live updates during execution of Read and

Write requests on the server. Fig 7 illustrates this. Then,

the raw request execution times for a read request on both

the systems are displayed, one using the hybrid cache

mechanism, and the other using the global cache

mechanism. Figures 8 and 9 show the response times for

read requests on the two systems. The requests are

generated and sent using Postman, an open source tool for

HTTP request generation. As seen in the figures, a

significant improvement in response time can be observed

when the application shifts from using the global cache

system to using the hybrid cache system. A performance

jump of around 400% is observed. This is illustrated in by

the graph drawn in Fig 10.

Fig 7 Screen capture of live updates during requests execution

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

44

Fig 8 Response time for a read request on the global cache system

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

45

Fig 9 Response time for a read request on the hybrid cache system

Fig 10 Performance Gain through Hybrid Caching

5. LIMITATIONS
The authors do not intend to advertise this system as a

cure-all mechanism that can provide efficient, fast caching

to every kind of distributed web application. In fact, when

it comes to caching on networked systems, it is believed no

’one size fits all’ solution exists. As such, this proposed

system has certain features that may prove to be drawbacks

in the following forms: This system is not expected to

perform well when integrated with applications that suffer

from a heavy load of write requests, since in such a

scenario, the server will have to frequently fetch fresh data

from the database.

The global timestamp server may turn out to be a single

point of failure if adequate backup mechanisms are not in

place. It is important to note however, that setting up

backup plans for this timestamps server through replicas is

much easier than doing the same for the global cache

server that stores the actual data.

Table 2 Comparison of the three caching approaches in

various respects

Approach/Charac

teristic

Global

Cache

Local

Cache

Proposed

Solution

Suitable in Write-

heavy

application

s

Read-

heavy

applicatio

ns

High

reads,

low

writes

Network Transfer

Size

Entire Data

Object

None Only

Timestam

p

International Journal of Computer Applications (0975 – 8887)

Volume 175– No.19, September 2020

46

Data Transferred

Over

WAN LAN LAN

Data Consistency Immediate Eventual Immediat

e

Network Latency High Low Low

Cache

Modularity

No Yes Yes

Single Point of

Failure

Yes No No

Amount of Data

Stored on Cache

Service

High

(Entire

Data

Objects)

None Low

(Only

Timestam

p)

6. CONCLUSION
Through this article, the authors have demonstrated that it

is possible to integrate the two commonly employed

caching mechanisms in distributed web environments in

order to reap the benefits of both, using timestamps as the

crux of the solution. Table 2 depicts a comparison of the

three caching approaches and thus illustrates the benefits

of the proposed system. The proposed system, in essence,

is a hybrid combination of both the existing solutions, the

global cache system and the local cache system.

Development of a prototype for the proposed system was

undertaken, and a significant performance gain in the

response times for read requests was observed, when

compared to the existing global cache systems. Having

addressed the limitations of this system, it is concluded

that this caching mechanism can provide excellent

performance gains for distributed web application systems

that function under the constraints mentioned in the

previous section.

6.1 Future Scope
Here, the authors acknowledge that there are certain areas

in the system with potential for enhancement that may

further improve the efficiency and performance of the

system. Discussion on them is omitted either because they

are highly tangential to the primary objectives as put forth

at the start, or because they involve domains that the

authors do not wish to touch upon within the scope of this

article. These areas include, but are not limited to, setting

up cache eviction policies based on Machine Learning on

the local caches, and devising failure control mechanisms

for both the global timestamp server and the local caches.

7. REFERENCES
[1] J. Thones. “Microservices”. In: IEEE Software 32.1

(2015), pp. 116–116.

[2] Claus Pahl and Pooyan Jamshidi. “Microservices: A

Systematic Mapping Study.” In: CLOSER (1). 2016,

pp. 137–146.

[3] Nicola Dragoni et al. “Microservices: Yesterday,

Today, and Tomorrow”. In: Present and Ulterior

Software Engineering. Ed. by Manuel Mazzara and

Bertrand Meyer. Cham: Springer International

Publishing, 2017, pp. 195–216. ISBN: 978-3-319-

67425-4. DOI: 10.1007/ 978-3-319-67425-4 12. URL:

https://doi.org/10.1007/ 978-3-319-67425-4 12.

[4] Werner Vogels, Robbert van Renesse, and Ken

Birman. “The Power of Epidemics: Robust

Communication for Large-Scale Distributed

Systems”. In: SIGCOMM Comput. Commun. Rev.

33.1 (Jan. 2003), pp. 131–135. ISSN: 0146-4833.

DOI: 10.1145/774763.774784. URL: https:

//doi.org/10.1145/774763.774784.

[5] Michael Rabinovich and Oliver Spatscheck. Web

caching and replication. Vol. 67. Addison-Wesley

Boston, USA, 2002.

[6] G. Barish and K. Obraczke. “World Wide Web

caching: trends and techniques”. In: IEEE

Communications Magazine 38.5 (2000), pp. 178–184.

[7] Pooja Kohli and Rada Chirkova. “Cache Invalidation

and Update Propagation in Distributed Caches

(extended abstract)”. In: (June 2010).

[8] Guohong Cao. “A scalable low-latency cache

invalidation strategy for mobile environments”. In:

IEEE Transactions on Knowledge and Data

Engineering 15.5 (2003), pp. 1251–1265.

[9] A. Gupta and W. -. Weber. “Cache invalidation

patterns in shared-memory multiprocessors”. In: IEEE

Transactions on Computers 41.7 (1992), pp. 794–810.

[10] Baihua Zheng, Jianliang Xu, and D. L. Lee. “Cache

invalidation and replacement strategies for

locationdependent data in mobile environments”. In:

IEEE Transactions on Computers 51.10 (2002), pp.

1141– 1153.

[11] Sadiye Alici et al. “Timestamp-Based Result Cache

Invalidation for Web Search Engines”. In:

Proceedings of the 34th International ACM SIGIR

Conference on Research and Development in

Information Retrieval. SIGIR ’11. Beijing, China:

Association for Computing Machinery, 2011, pp.

973–982. ISBN: 9781450307574. DOI:

10.1145/2009916.2010046. URL: https://doi.org/

10.1145/2009916.2010046.

IJCATM : www.ijcaonline.org

