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ABSTRACT
The aim of this paper is to prove a fixed point theorem using C-
class function and φ, ψ altering distance functions in partial metric
spaces.
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1. INTRODUCTION AND MATHEMATICAL
PRELIMINARIES

The concept of partial metric spaces were introduced by Matthews
in [10] as a part of the study of denotational semantics of data flow
networks. These spaces are generalizations of usual metric spaces
where the self distance for any point need not be equal to zero.
Let X be non-empty set and ρ : X × X → [0,∞) be a function
such that for all x, y, z ∈ X:

(i) x = y ⇔ ρ(x, x) = ρ(x, y) = ρ(y, y), (T0-separation axiom)
(ii) ρ(x, x) ≤ ρ(x, y),

(iii) ρ(x, y) = ρ(y, x), (Symmetry)
(iv) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) − ρ(z, z) (Modified Triangular

Inequality)

A partial metric space (for Short PMS) is a pair (X, ρ) such that X
is a non-empty set and ρ is a partial metric on X . It is clear that if
ρ(x, y) = 0, then x = y. But if x = y, ρ(x, y) may not be 0.

THEOREM 1.1 [10]. Let (X, ρ) be a complete partial metric
space and let T : X → X be a contraction mapping, that is there
exists λ ∈ [0, 1) such that ρ(Tx, Ty) ≤ λρ(x, y), for all x, y ∈ X .
Then T has a unique filed point z ∈ X . Moreover, ρ(z, z) = 0.

Later on, Abdelijawad [1], Acar [2], [3], Altun [4], Karapinar and
Erhan [14], Oltar and Valero [15] gave some generalizations of the
result of Matthews.

THEOREM 1.2. Let (X, ρ) be a complete partial metric
space and let T : X → X be a map such that

ρ(Tx, Ty) ≤ ϕ(M(x, y), for all x, y ∈ X where M(x, y) =
max{ρ(x, y), ρ(x, Tx), ρ(y, Ty), 1/2[ρ(x, Ty)+ρ(y, Tx)]} and
ϕ satisfies one of the following:

(i) ϕ : (0,∞) → (0,∞) is an upper semicontinuous from the
right such that ϕ(t) < t for all t > 0 [17].

(ii) ϕ : (0,∞) → (0,∞) is a non decreasing function such that
ϕn(t)→ 0 as n→∞ for all t > 0 [18].

Then T has a unique fixed point z ∈ X . Moreover, ρ(z, z) = 0.

On the other hand, Dukic et al. [19] proved the following nice
fixed point theorem. Before, we introduce the set S of function
β : [0,∞)→ [0, 1) satisfying β(tn)→ 1 implies tn → 0.

THEOREM 1.3. Let (X, ρ) be a complete partial metric space
and let T : X → X be a self-map. Suppose that there exists β ∈ S
such that

ρ(Tx, Ty) ≤ β(ρ(x, y))ρ(x, y)

holds for all x, y ∈ X . Then T has a unique fixed point z ∈ X and
for each x ∈ X , the Picard sequence {Tnx} converges to z when
n→∞.

THEOREM 1.4 [2]. Let (X, ρ) be a complete partial metric
space and let T : X → X be a self-map. Suppose that there exist
β ∈ S such that

ρ(Tx, Ty) ≤ β(M(x, y))

hold for all x, y ∈ X , where

M(x, y) = max{ρ(x, y), ρ(x, Tx), ρ(y, Ty),

1/2[ρ(x, Ty) + ρ(y, Tx)]}.

Then T has a unique fixed point z ∈ X .

In 2014 the concept of C-class functions (see Definition 1) was
introduced by A.H. Ansari in [7] that is pivotal result in fixed point
theory, for example see number (1), (2) from Example 2.

DEFINITION 1 [20]. A mapping f : [0,∞)2 → R is called
C-class function if it is continuous and satisfies following axioms:

(1) f(s, t) ≤ s:
(2) f(s, t) = s implies that either s = 0 or t = 0; for all s, t ∈

[0,∞).

Note for some f we have that f(0, 0) = 0.
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We denote C-class functions as C.

EXAMPLE 2 [20]. The following functions F : [0,∞)2 → R
are elements of C, for all s, t ∈ [0,∞):

(1) F (s, t) = s− t, F (s, t) = s⇒ t = 0.

(2) F (s, t) = ms, 0 < m < 1, F (s, t) = s⇒ s = 0;

(3) F (s, t) = s(1 + t)r; r ∈ (0,∞), F (s, t) = s ⇒ s = 0 or
t = 0;

(4) F (s, t) = log(t+ as)/(1 + t), a > 1, F (s, t) = s ⇒ s = 0
or t = 0;

(5) F (s, t) = ln(1 + as)/2, a > e, F (s, t) = s⇒ s = 0;

DEFINITION 3 [21]. A function ψ : [0,∞)→ [0,∞) is called
an altering distance function if the following properties are satis-
fied:

(i) ψ is non-decreasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

DEFINITION 4. A function ψ : R → R is called total altering
distance function if the following properties are satisfied:

(i) ψ is non-decreasing and continuous,

(ii) ψ(t) = 0 if and only if t = 0.

REMARK 5. We denote ψ inf set total altering distance func-
tions.

DEFINITION 6. An ultra altering distance function is a con-
tinuous, nondecreasing mapping φ : [0,∞) → [0,∞) such that
φ(t) > 0, t > 0 and φ(0) = 0.

REMARK 7. We denote u set ultra altering distance functions.

DEFINITION 8. A tripled (ψ, φ, F ) where ψ ∈ Ψ, φ ∈ Φu and
F ∈ C is say to be monotone if for any x, y ∈ [0,∞)

x ≤ y ⇒ F (ψ(x), φ(x)) ≤ F (ψ(y), φ(y)).

EXAMPLE 9. Let F (s, t) = s− t, ϕ(x) =
√
x

ψ(x) =

{
x if 0 ≤ x ≤ 1,

x2 if x > 1

then (ψ,ϕ, F ) is monotone.

EXAMPLE 10. Let F (s, t) = s− t, ϕ(x) = x2

ψ(x) =

{
x if 0 ≤ x ≤ 1,

x2 if x > 1

then (ψ,ϕ, F ) is not monotone.

LEMMA 11 [22]. If {xn} with lim
n→∞

d(xn, xn+1) = 0 is not

a Cauchy sequence in (X, p), and two sequences {m(k)} and
{n(k)} of positive integers such that n(k) > m(k) > k, then
the following four sequences

p(xm(k), xn(k)+1), p(xm(k), xn(k)),

p(xm(k)−1, xn(k)+1), p(xm(k)−1, xn(k))

tend to ε > 0, when k →∞.

2. MAIN RESULT
THEOREM 2.1. (X, ρ) be a complete partial metric space and

let f : X → X be a self-map. Suppose that there exist F ∈ C such
that

ψ(ρ(fx, fy) ≤ F (ψ(M(x, y)), ϕ(M(x, y))) (1)

holds for all x, y ∈ X , where ψ ∈ Ψinf , ϕ ∈ Φ, F ∈ C, such that
(ψ,ϕ, F ) is monotone and

M(x, y)=max

{
ρ(x, y), ρ(x, fx), ρ(y, fy),

1

2
[ρ(x, fy)+ρ(y, fx)]

}
(2)

Then f has a unique fixed point z ∈ X .

PROOF. Suppose x0 is an arbitrary point of X and define the
sequence {xn} in X such that

xn = fxn−1 = fn(x0) for every n ∈ N.

If xn = xn+1 for some n ∈ N , then xn is a fixed point of f and
the existence part of the proof is finished. Suppose that xn 6= xn+1

for every n ∈ N .
Then by (1), we have

ψ(ρ(xn, xn+1)) = ψ(ρ(fxn−1 , fxn))

≤ F (ψ(M(xn−1, xn), ϕ(M(xn−1, xn))

on the other hand, since

1

2
[ρ(xn−1, fxn) + ρ(xn, fxn−1)]

=
1

2
[ρ(xn−1, xn+1) + ρ(xn, xn)]

≤ 1

2
[ρ(xn−1, xn) + ρ(xn, xn+1)]

≤ max{ρ(xn−1, xn), ρ(xn, xn+1)}
= ρ(xn−1, xn).

Then

M(xn−1, xn)

= max

{
ρ(xn−1, xn), ρ(xn−1, fxn−1), ρ(xn, fxn),

1

2
[ρ(xn−1, fxn) + ρ(xn, fxn−1)]

}
= max

{
ρ(xn−1, xn), ρ(xn−1, xn), ρ(xn, xn+1),

1

2
[ρ(xn−1, xn+1) + ρ(xn, xn)]

}
= ρ(xn−1, xn).

So,

ψ(ρ(xn, xn+1)) ≤ F (ψ(ρ(xn−1, xn)), ϕ(ρ(xn−1, xn)))

≤ ψ(ρ(xn−1, xn))

⇒ ρ(xn, xn+1) ≤ ρ(xn−1, xn). (3)

thus {ρ(xn, xn+1)} is a non-increasing sequence of non-negative
real numbers. Hence lim

n→∞
ρ(xn, xn+1) = γ ≥ 0 for certain γ ∈

[0,∞).
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Now, we will prove that γ = 0. In the contrary case, from (3) with
letting n→∞

ψ(r) = F (ψ(r), ϕ(r))

So, ψ(r) = 0, or ϕ(r) = 0. Consequently, r = 0.
This contradicts that r = 0.
Therefore, lim

n→∞
ρ(xn, xn+1) = 0.

Now, we show that {xn} is a Cauchy sequence in X i.e.
We prove that lim

n,m→∞
ρ(xn, xm) = 0.

In the contrary, we suppose that the sequence {xn} is not a Cauchy
sequence in (X, ρ), then sequences in Lemma 11 tend to ε > 0,
when k →∞.
So we can see that

lim
k→∞

M(xm(k), xn(k)) = ε.

So from (1)

ψ(ρ(xm(k), xn(k))) = ψ(ρ(fxm(k)−1 , fxn(k)−1))

≤ F (ψ(M(xm(k)−1, xn(k)−1)),

ϕ(M(xm(k)−1, xn(k)−1)))

with letting k →∞,

ψ(ε) ≤ F (ψ(ε), ϕ(ε))

So, ψ(ε) = 0, or ϕ(ε) = 0.
Consequently, ε = 0, this contradicts our assumption that

lim
n,m→∞

ρ(xn, xm) = ε > 0.

Therefore,

lim
n,m→∞

ρ(xn, xm) = 0.

This means that {xn} is a Cauchy sequence in a complete partial
metric space (X, ρ) and consequently, there exists z ∈ X such that

0 = lim
n,m→∞

ρ(xn, xm) = lim
n→∞

ρ(xn, z) = ρ(z, z).

Now, we will prove that z is a fixed point of f . For this assume
ρ(z, fz) > 0.
Then, we have

ρ(z, fz) ≤ ρ(z, fxn) + ρ(fxn , fz)− ρ(fxn , fxn),

This implies that

ψ(ρ(z, fz)− ρ(z, fxn) + ρ(fxn , fxn))

≤ ψ(ρ(fxn , fz))

≤ F (ψ(M(xn, z)), ϕ(M(xn, z)))

where

M(xn, z) = max

{
ρ(xn, z), ρ(xn, fxn), ρ(z, fz),

1

2
[ρ(xn, fz) + ρ(z, fxn)]

}
= max

{
ρ(xn, z), ρ(xn, xn+1), ρ(z, fz),

1

2
[ρ(xn, fz) + ρ(z, xn+1)]

}
= max

{
ρ(z, z), ρ(z, z),

ρ(z, fz), [ρ(z, fz) + ρ(z, z)]/2

}
= ρ(z, fz).

And so with letting n→∞

ψ(ρ(z, fz)) ≤ F (ψ(ρ(z, fz)), ϕ(ρ(z, fz)))

So, ψ(ρ(z, fz)) = 0, or ϕ(ρ(z, fz)) = 0.
Consequently, ρ(z, fz) = 0, this contradicts the inequality
ρ(z, fz) > 0, so that ρ(z, fz) = 0. Thus z = fz .
Suppose that z and w are fixed points of f then, if z 6= w, we have
by (1)

ψ(ρ(z,w)) = ψ(ρ(fz, fw))

≤ F (ψ(M(z,w)), ϕ(M(z,w)))

where

M(z,w) = max

{
ρ(z,w), ρ(z, fz), ρ(w, fw),

1

2
[ρ(z, fw) + ρ(w, fz)]

}
= max

{
ρ(z,w), ρ(z, z), ρ(w,w),

1

2
[ρ(z,w) + ρ(w, z)]

}
= ρ(z,w).

Thus

ψ(ρ(z,w)) ≤ F (ψ(ρ(z,w)), ϕ(ρ(z,w)))

So, ψ(ρ(z,w)) = 0, or ϕ(ρ(z,w)) = 0.
Consequently, ρ(z,w) = 0, a contradiction.
This proves the uniqueness of the fixed point of f .

3. EXAMPLE
Let X = [0, 1] and ρ(x, y) = max{x, y}. Then (X, ρ) is a com-
plete partial metric space.
Let F (s, t) = m.s, 0 < m < 1

φ(x) =
√
x, x ∈ [0, 1]

ψ(x) = x, x ∈ [0, 1]

f(x) =
x2

2
, x ∈ [0, 1].

Clearly, F is a C-class function.
(ψ, φ, F ) is a monotone function.
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All the conditions of Theorem 2.1 are satisfied. ‘0’ is the unique
fixed point of f .
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